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Cray XT4 Supercomputer
Purpose-Built for MPP Applications

Next-generation Massively Parallel 
Processing (MPP) supercomputer from Cray

• Follow-on to Cray XT3 & Cray XD1 systems

• Based on industry-leading AMD Opteron 
processors

• Maintains strong system balance:

� 2X injection bandwidth with SeaStar2
� 2X memory bandwidth with DDR2

� Dual-core today, quad-core in 4Q07
• Support for Linux compute nodes (2H07)
• Support for FPGA nodes (1H08)

Results in application performance and highly 
reliable operation at massive scale

Introduces the Cray XT infrastructure

5

“Scalable Computing At 
Work”

Product evolution with 
demonstrated support for 

applications requiring hundreds 
or thousands of processors 

working simultaneously on the 
same problem
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XT4 BLAS & LAPACK

� Cray is currently in the process of migrating LA products
• From ACML to libGoto + Cray LibSci

� Eventual package will be a piecemeal collection of best 
routines and hand tuned cases for certain problem sizes

� Will explore ATLAS to help fill in the gaps 
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XT4 libraries  - GotoBLAS vs ACML BLAS
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XT4 libs – Sparse Iterative Solvers

� With peta-scaling machines, we see an increased need for 
highly tuned sparse iterative solvers

� Cray will not develop an iterative solver package for scalar 
systems
• Leverage PETSc and Trilinos
• Tune for Cray processor / interconnect

� Add Cray custom value in 3 areas
• Cray Sparse BLAS 
• Parallel performance of solvers
• Custom preconditioners
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Iterative solvers, serial/parallel breakdown

� For large systems, sparse kernels are the key
� For small problems, need to redesign solver in a way that hides 

more latency
• Easy to do on ‘Baker’ system, hard to do on XT systems

parallel expense on 64 cores
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Cray sparse BLAS overview

� CSR matrix vector product
• Generic

� Unrolled over rhs, columns
� Prefetching of matrix values and column index
� Various compilers / compiler switches
� Support for 0 and 1 base indexing
� Various orders of loops

� FBR and VBR implementations
� Jagged diagonals and Segmented Scan implementations
� Level-based solves
� Comprehensive test infrastructure

At least for immediate future, emphasis is on generic CSR
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do q = 1, n_rhs

next_row_begin = row_start (1)

do i = 1, n_rows

row_begin = next_row_begin
next_row_begin = row_start (i +1)
ip = 0.d0

do k = row_begin, next_row_begin - 1
ip = ip +  values (k) * x (col_index (k), q)

end do

y (i, q) = ip

end do
end do

Unroll q loop

Unroll k loop

Prefetch directives

choices of compilers
zero / one indexing

(Prefetch X 
cachelines, Y 

iterations ahead )

Interchange all loops

Generic CSR MV code optimization opportunities
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Aggressive optimizations can be dangerous

prefetch value against local rows in MV
low density systems
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Sparse BLAS software engineering challenge

� Experientially, cannot make strong predictions about applicability of 
specific optimizations

� Also cannot predict the relationship between optimizations
� Needed a harness to analyze performance of every implementation
� E.g. testing

unroll Q loop [1:10] times
unroll K loop [1:10] times
prefetch [1:8] cachelines at [4:24] iterations ahead of time
base [0, 1]

-> 32,000 different sparse MV implementations

256 summer internships each implementing 125 routines !

This is ignoring loop interchanges and compiler flags etc….
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Cray Sparse BLAS generator

� Ruby code generator reads a sparse BLAS template file
• Modified Fortran code
• Directives for unrolling and expansion, prefetching etc.
• Allows readable end product

� Ruby test harness generates wrappers for each routine
• allows a set of compilers/compiler flags to be defined and tested 

against

� Parallel test environment allows testing of each 
implementation for a specific class of sparse matrices

� Ruby end product re-organizes data and imports into a 
‘viewable’ format
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C versus Ruby code generation experiences

~45 minutes~7 minutesPerformance
(6000 routines)

attractiveUGLYAesthetics 
(generated code) 

Simple and 
attractive

UGLYAesthetics 
(generator)

General and 
extensible

Completely 
specific

Generality

~40 hours~40 hoursDevelopment time

RubyC



May 16, 2007 16Copyright 2007 – Cray Inc.

Iterative solver tuning philosophy

� Whilst we cannot make predictions about individual kernel 
performance, we can use empirical data to make statements 
about best implementation for certain matrix classes

� Cannot afford sparsity analysis stage
• If data is not in block format, it is not treated as such
• Same if data is not explicitly represented at symmetric

� We know, or can find out enough about a sparse matrix to 
categorize it
• Local number of rows
• Number of RHS
• Density
• block size if any
• Symmetry
• Standard deviation of density

� Appropriate tuning recipe can then be applied accordingly
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E.g. Most important case (1 RHS & unstructured)
PETSc library, using BCGS solver and bjacobi precondi tioner
Matrix is low density, order 2M
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Longer term strategy

� Like OSKI, we see that block structure can be and should be 
exploited
• “A large majority of sparse solver users have block structure property 

in their problems, but very few of them take advantage of that 
structure in any explicit way.” Mike Heroux

� FBR/VBR kernel tuning is another great advantage of the 
code generator
• Explicitly move users over where possible

� Where not possible (majority?) we may require integration of 
the distinct products
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Future iterative solver support vision

PETSc & Trilinos

OSKI

Cray 
Sparse
BLAS

Machine independent

Some machine affinity

Tuned for Cray machines
Compiler sensitivities
Directed optimizations
Highly tuned for FBR/VBR

Finds block 
Structure and 
best kernel 
match

Solves systems
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Multiple core challenges

� All computer vendors are facing this question
How do we exploit parallelism within a socket
� For supercomputing vendors the issue is somewhat different
How do we exploit additional parallelism within a socket

� Mixed-mode parallel libraries are hot again
On how many cores can we stretch this approach to fit?
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E.g. Mixed mode ScaLAPACK

� Cray supports ScaLAPACK working in mixed mode
• MPI across sockets (1 BLACS process per socket)
• Threaded BLAS within sockets
• Persistent requirement

� How many cores-per-socket can this model scale to?
• Studied the degradation of local BLAS3 dimensions as a function of 

block size

• How much parallelism can we exploit in the common local BLAS 
operations that are called via scalapack?

e.g. *
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E.g. pdgetrf

NB=64, process=0, process grid=8x8
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E.g. pdpotrf
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E.g. Divide-and-Conquer
dsyevd: dgemm on proc0,blocksize=64,matrix=25k
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Multiple core support

� Our results show that the mixed model may be falling over 
as early as quad core
• 8 cores as 2-way x 4 cores NUMA will certainly be a problem

� One MPI process per core model is not a viable option

� Can recursive algorithms do better?
• Cray are looking at this 

� Customers do not want to re-visit dense linear algebra
• performance vs. inconvenience  
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Cray Iterative Refinement Toolkit

� Instigated by the work at UTK
� Exploits longer SSE vector lengths by performing 

factorizations in single precision and using iterative 
refinement (mixed precision)

� Includes serial and parallel (real and complex) versions of
• LU, Cholesky, QR

� Includes advanced interface allowing
• Minimization of forward error
• Control over iterative refinement process
• Advanced convergence scheme
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IRT on XT4 
(Condition vs. performance)
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‘Baker’ System (simplified)

High Bandwidth Gemini interconnect
Configurable

Baker 
Opteron

Compute 
Nodes

Baker 
Opteron

Compute 
Nodes

Baker 
Opteron

Compute 
Nodes

Baker 
Opteron

Compute 
Nodes

Local 
memory

Local 
memory

Local 
memory

Local 
memory

Globally addressable memory
Support for PGAS
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Baker libraries

� Parallel optimization centered around reducing 
communication bottlenecks by exploiting Baker interconnect 
and memory system
• Remote load and stores (assembly, CAF, UPC)

� E.g. ScaLAPACK on X1e
• ScaLAPACK collectives replaced with lightweight CAF versions 

(specific)

� Advantage of 1-sided collectives
• Better algorithms
• Potential for latency hiding
• Inline code
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Library optimization through PGAS

� Support of PGAS languages is high on Cray’s agenda
• Do not expect many application to be written entirely in PGAS

� Want to allow users to switch in and out of PGAS 
languages, and to allow their usage internally within libraries

� Normally, need symmetrically allocated memory to use 
PGAS 

� Need a mechanism to allow remotely accessibility of PGAS 
objects without having to allocate from the symmetric heap
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CAF/UPC as a bottleneck solution

� Support pointer addressing to allow use of these models 
without re-allocation from the symmetric heap
• Use a Co-array of derived type, which has a one member – a pointer 

to a local array. 

Parallel library optimization or benchmarking optimization 
using PGAS is entirely dependent on its implementation

Symmetric
address

Node X Node Y
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Cascade libraries

� DARPA phase III awarded to Cray to build next generation 
machine

CRAY SIGNS $250 MILLION AGREEMENT WITH DARPA TO 
DEVELOP BREAKTHROUGH ADAPTIVE SUPERCOMPUTER

SEATTLE, WA, November 21, 2006 -- Global supercomputer leader Cray Inc. 
announced today that it has been awarded a $250 million agreement from the U.S. 
Defense Advanced Research Projects Agency (DARPA).  

Under this agreement, Cray will develop a revolutionary new supercomputer based on 
the company's Adaptive Supercomputing vision, a phased approach to hybrid 
computing that integrates a range of processing technologies into a single scalable 
platform.

[…]
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Cascade System Architecture

� Globally addressable memory with unified addressing architecture
� Configurable network, memory, processing and I/O
� Heterogeneous processing across node types, and within MVP nodes
� Can adapt at configuration time, compile time, run time

Globally Addressable Memory
Support for partitioned or flat address space
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General Cascade library issues

� Heterogeneity
• Which processor?
• Separate library implementations on both the Opteron and the 

Scorpio compute nodes must agree…
• How do we support multiple libraries simply?
• How much decision making is at compile time, and how much at run-

time?

� Ease of use
• Hiding machine complexity from users is central, libraries are a big 

part

� Petascaling
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re-visiting CSR MV

do q = 1, n_rhs

next_row_begin = row_start (1)

do i = 1, n_rows

row_begin = next_row_begin
next_row_begin = row_start (i +1)
ip = 0.0

do k = row_begin, next_row_begin - 1
ip = ip +  values (k) * x (col_index (k), q)

end do

y (i, q) = ip

end do
end do

Multi-thread 
opportunity?

Vectorize
ooportunity?

scalar opportunity?
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Future emphasis

� Heterogeneous compute nodes = more runtime awareness 
in libraries

� More complex analysis and more build complication = More 
automation
• OO languages generating low-level codes

� Bigger systems and bigger scaling applications = More 
emphasis on sparse solvers

� More layers of software support = better integration with the 
community



May 16, 2007 37Copyright 2007 – Cray Inc.

Thank You!


