
Cray Math Software :
current and future developments

Adrian Tate
Tech Lead of Math Software

Cray Inc.

May 16, 2007 2Copyright 2007 – Cray Inc.

Contents

� Roadmap
� XT4 Opteron libraries
� ‘Baker’ Libraries
� ‘Cascade’ Libraries
� Future emphasis

May 16, 2007 3Copyright 2007 – Cray Inc.

Contributors

� John Lewis
� Jonathan Bentz
� John Levesque
� Other Libraries people

• Chao Yang
• Keita Teranishi
• Neal Gaarder

May 16, 2007 4Copyright 2007 – Cray Inc.

Cray X1ECray X1ECray X1ECray X1E

Cray XD1 Cray XD1 Cray XD1 Cray XD1

Cray XT3Cray XT3Cray XT3Cray XT3

Phase I: Rainier ProgramPhase I: Rainier ProgramPhase I: Rainier ProgramPhase I: Rainier Program
Multiple Processor Types with
Integrated Infrastructure and
User Environment

BlackWidowBlackWidowBlackWidowBlackWidow
Cray XT4Cray XT4Cray XT4Cray XT4

2006

2007

2008

Cray XMTCray XMTCray XMTCray XMT

BakerBakerBakerBaker

2009

Cray XT4Cray XT4Cray XT4Cray XT4
UpgradeUpgradeUpgradeUpgrade

The Cray Roadmap

Phase II: Phase II: Phase II: Phase II:
Cascade ProgramCascade ProgramCascade ProgramCascade Program
Adaptive
Hybrid System

Phase 0: Individually Architected MachinesPhase 0: Individually Architected MachinesPhase 0: Individually Architected MachinesPhase 0: Individually Architected Machines
Unique Products Serving Individual Market Needs

GraniteGraniteGraniteGranite
2010+Cray XT4+Cray XT4+Cray XT4+Cray XT4+

UpgradeUpgradeUpgradeUpgrade

Slide 4

May 16, 2007 5Copyright 2007 – Cray Inc.

Cray XT4 Supercomputer
Purpose-Built for MPP Applications

Next-generation Massively Parallel
Processing (MPP) supercomputer from Cray

• Follow-on to Cray XT3 & Cray XD1 systems

• Based on industry-leading AMD Opteron
processors

• Maintains strong system balance:

� 2X injection bandwidth with SeaStar2
� 2X memory bandwidth with DDR2

� Dual-core today, quad-core in 4Q07
• Support for Linux compute nodes (2H07)
• Support for FPGA nodes (1H08)

Results in application performance and highly
reliable operation at massive scale

Introduces the Cray XT infrastructure

5

“Scalable Computing At
Work”

Product evolution with
demonstrated support for

applications requiring hundreds
or thousands of processors

working simultaneously on the
same problem

May 16, 2007 6Copyright 2007 – Cray Inc.

XT4 BLAS & LAPACK

� Cray is currently in the process of migrating LA products
• From ACML to libGoto + Cray LibSci

� Eventual package will be a piecemeal collection of best
routines and hand tuned cases for certain problem sizes

� Will explore ATLAS to help fill in the gaps

May 16, 2007 7Copyright 2007 – Cray Inc.

XT4 libraries - GotoBLAS vs ACML BLAS

-15

-10

-5

0

5

10

1 5 9 13 17 21 25 29 33 37 41 45 49 53 57 61 65 69 73 77 81 85 89 93 97 101 105 109 113 117 121 125 129 133 137 141 145 149

ma t r i x

%
 im

pr
ov

em
nt

 G
ot

o
vs

 A
C

M
L

dgemm

zgemm

May 16, 2007 8Copyright 2007 – Cray Inc.

XT4 libs – Sparse Iterative Solvers

� With peta-scaling machines, we see an increased need for
highly tuned sparse iterative solvers

� Cray will not develop an iterative solver package for scalar
systems
• Leverage PETSc and Trilinos
• Tune for Cray processor / interconnect

� Add Cray custom value in 3 areas
• Cray Sparse BLAS
• Parallel performance of solvers
• Custom preconditioners

May 16, 2007 9Copyright 2007 – Cray Inc.

Iterative solvers, serial/parallel breakdown

� For large systems, sparse kernels are the key
� For small problems, need to redesign solver in a way that hides

more latency
• Easy to do on ‘Baker’ system, hard to do on XT systems

parallel expense on 64 cores

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

20000 120000 200000 1200000 2000000

problem size

other

% MV

%MPI

May 16, 2007 10Copyright 2007 – Cray Inc.

Cray sparse BLAS overview

� CSR matrix vector product
• Generic

� Unrolled over rhs, columns
� Prefetching of matrix values and column index
� Various compilers / compiler switches
� Support for 0 and 1 base indexing
� Various orders of loops

� FBR and VBR implementations
� Jagged diagonals and Segmented Scan implementations
� Level-based solves
� Comprehensive test infrastructure

At least for immediate future, emphasis is on generic CSR

May 16, 2007 11Copyright 2007 – Cray Inc.

do q = 1, n_rhs

next_row_begin = row_start (1)

do i = 1, n_rows

row_begin = next_row_begin
next_row_begin = row_start (i +1)
ip = 0.d0

do k = row_begin, next_row_begin - 1
ip = ip + values (k) * x (col_index (k), q)

end do

y (i, q) = ip

end do
end do

Unroll q loop

Unroll k loop

Prefetch directives

choices of compilers
zero / one indexing

(Prefetch X
cachelines, Y

iterations ahead)

Interchange all loops

Generic CSR MV code optimization opportunities

May 16, 2007 12Copyright 2007 – Cray Inc.

Aggressive optimizations can be dangerous

prefetch value against local rows in MV
low density systems

-20.00

-10.00

0.00

10.00

20.00

30.00

40.00

50.00

60.00

70.00

33
0

13
18

26
35

32
94

46
11

59
29

79
05

10
54

1

13
17

6

15
81

1

21
08

1

26
35

1

31
62

2

42
16

2

52
70

3

63
24

3

84
32

4
11

59
46

15
81

08
23

18
91

63
24

30

Number of local rows

P
re

fe
tc

h
va

lu
e

a
dd

ed
 (%

)

prefetch 2cachelines 4iterations

May 16, 2007 13Copyright 2007 – Cray Inc.

Sparse BLAS software engineering challenge

� Experientially, cannot make strong predictions about applicability of
specific optimizations

� Also cannot predict the relationship between optimizations
� Needed a harness to analyze performance of every implementation
� E.g. testing

unroll Q loop [1:10] times
unroll K loop [1:10] times
prefetch [1:8] cachelines at [4:24] iterations ahead of time
base [0, 1]

-> 32,000 different sparse MV implementations

256 summer internships each implementing 125 routines !

This is ignoring loop interchanges and compiler flags etc….

May 16, 2007 14Copyright 2007 – Cray Inc.

Cray Sparse BLAS generator

� Ruby code generator reads a sparse BLAS template file
• Modified Fortran code
• Directives for unrolling and expansion, prefetching etc.
• Allows readable end product

� Ruby test harness generates wrappers for each routine
• allows a set of compilers/compiler flags to be defined and tested

against

� Parallel test environment allows testing of each
implementation for a specific class of sparse matrices

� Ruby end product re-organizes data and imports into a
‘viewable’ format

May 16, 2007 15Copyright 2007 – Cray Inc.

C versus Ruby code generation experiences

~45 minutes~7 minutesPerformance
(6000 routines)

attractiveUGLYAesthetics
(generated code)

Simple and
attractive

UGLYAesthetics
(generator)

General and
extensible

Completely
specific

Generality

~40 hours~40 hoursDevelopment time

RubyC

May 16, 2007 16Copyright 2007 – Cray Inc.

Iterative solver tuning philosophy

� Whilst we cannot make predictions about individual kernel
performance, we can use empirical data to make statements
about best implementation for certain matrix classes

� Cannot afford sparsity analysis stage
• If data is not in block format, it is not treated as such
• Same if data is not explicitly represented at symmetric

� We know, or can find out enough about a sparse matrix to
categorize it
• Local number of rows
• Number of RHS
• Density
• block size if any
• Symmetry
• Standard deviation of density

� Appropriate tuning recipe can then be applied accordingly

May 16, 2007 17Copyright 2007 – Cray Inc.

E.g. Most important case (1 RHS & unstructured)
PETSc library, using BCGS solver and bjacobi precondi tioner
Matrix is low density, order 2M

0

5

10

15

20

25

16 32 64 128 256

cores

%
 im

pr
ov

em
en

t

improvment MV

improvement overall

May 16, 2007 18Copyright 2007 – Cray Inc.

Longer term strategy

� Like OSKI, we see that block structure can be and should be
exploited
• “A large majority of sparse solver users have block structure property

in their problems, but very few of them take advantage of that
structure in any explicit way.” Mike Heroux

� FBR/VBR kernel tuning is another great advantage of the
code generator
• Explicitly move users over where possible

� Where not possible (majority?) we may require integration of
the distinct products

May 16, 2007 19Copyright 2007 – Cray Inc.

Future iterative solver support vision

PETSc & Trilinos

OSKI

Cray
Sparse
BLAS

Machine independent

Some machine affinity

Tuned for Cray machines
Compiler sensitivities
Directed optimizations
Highly tuned for FBR/VBR

Finds block
Structure and
best kernel
match

Solves systems

May 16, 2007 20Copyright 2007 – Cray Inc.

Multiple core challenges

� All computer vendors are facing this question
How do we exploit parallelism within a socket
� For supercomputing vendors the issue is somewhat different
How do we exploit additional parallelism within a socket

� Mixed-mode parallel libraries are hot again
On how many cores can we stretch this approach to fit?

May 16, 2007 21Copyright 2007 – Cray Inc.

E.g. Mixed mode ScaLAPACK

� Cray supports ScaLAPACK working in mixed mode
• MPI across sockets (1 BLACS process per socket)
• Threaded BLAS within sockets
• Persistent requirement

� How many cores-per-socket can this model scale to?
• Studied the degradation of local BLAS3 dimensions as a function of

block size

• How much parallelism can we exploit in the common local BLAS
operations that are called via scalapack?

e.g. *

May 16, 2007 22Copyright 2007 – Cray Inc.

E.g. pdgetrf

NB=64, process=0, process grid=8x8

0

1000

2000

3000

4000

5000

6000

7000

8000

9000

10000

0 200 400 600 800 1000 1200 1400

blas 3 count

m
at

rix
 s

iz
e

M (25k)

N (25k)

M (50k)

N (50k)

M (75k)

N (75k)

May 16, 2007 23Copyright 2007 – Cray Inc.

E.g. pdpotrf

0

500

1000

1500

2000

2500

3000

3500

0 1000 2000 3000 4000 5000 6000 7000 8000 9000 10000

dgemm calling sequence

dg
em

m
 s

iz
e

M

May 16, 2007 24Copyright 2007 – Cray Inc.

E.g. Divide-and-Conquer
dsyevd: dgemm on proc0,blocksize=64,matrix=25k

0

500

1000

1500

2000

2500

3000

3500

0 5000 10000 15000 20000 25000 30000

dgemm count

si
ze

M

N

K

Tridiagonal Reduction
Find
eigenvalues

Eigenvectors

May 16, 2007 25Copyright 2007 – Cray Inc.

Multiple core support

� Our results show that the mixed model may be falling over
as early as quad core
• 8 cores as 2-way x 4 cores NUMA will certainly be a problem

� One MPI process per core model is not a viable option

� Can recursive algorithms do better?
• Cray are looking at this

� Customers do not want to re-visit dense linear algebra
• performance vs. inconvenience

May 16, 2007 26Copyright 2007 – Cray Inc.

Cray Iterative Refinement Toolkit

� Instigated by the work at UTK
� Exploits longer SSE vector lengths by performing

factorizations in single precision and using iterative
refinement (mixed precision)

� Includes serial and parallel (real and complex) versions of
• LU, Cholesky, QR

� Includes advanced interface allowing
• Minimization of forward error
• Control over iterative refinement process
• Advanced convergence scheme

May 16, 2007 27Copyright 2007 – Cray Inc.

IRT on XT4
(Condition vs. performance)

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.
00

E+0
1

1.
00

E+0
2

1.
00

E+0
3

1.
00

E+0
4

1.
00

E+0
5

1.
00

E+0
6

1.
00

E+0
7

1.
00

E+0
8

1.
00

E+0
9

Condition Number

S
pe

ed
-u

p

n=3000

n=2000

n=1000

Measuring speed-up for various condition numbers, M atrix dimension = 3000, irt_lu_real_serial used

IRT works well IRT may

help

IRT will

not help

May 16, 2007 28Copyright 2007 – Cray Inc.

‘Baker’ System (simplified)

High Bandwidth Gemini interconnect
Configurable

Baker
Opteron

Compute
Nodes

Baker
Opteron

Compute
Nodes

Baker
Opteron

Compute
Nodes

Baker
Opteron

Compute
Nodes

Local
memory

Local
memory

Local
memory

Local
memory

Globally addressable memory
Support for PGAS

May 16, 2007 29Copyright 2007 – Cray Inc.

Baker libraries

� Parallel optimization centered around reducing
communication bottlenecks by exploiting Baker interconnect
and memory system
• Remote load and stores (assembly, CAF, UPC)

� E.g. ScaLAPACK on X1e
• ScaLAPACK collectives replaced with lightweight CAF versions

(specific)

� Advantage of 1-sided collectives
• Better algorithms
• Potential for latency hiding
• Inline code

May 16, 2007 30Copyright 2007 – Cray Inc.

Library optimization through PGAS

� Support of PGAS languages is high on Cray’s agenda
• Do not expect many application to be written entirely in PGAS

� Want to allow users to switch in and out of PGAS
languages, and to allow their usage internally within libraries

� Normally, need symmetrically allocated memory to use
PGAS

� Need a mechanism to allow remotely accessibility of PGAS
objects without having to allocate from the symmetric heap

May 16, 2007 31Copyright 2007 – Cray Inc.

CAF/UPC as a bottleneck solution

� Support pointer addressing to allow use of these models
without re-allocation from the symmetric heap
• Use a Co-array of derived type, which has a one member – a pointer

to a local array.

Parallel library optimization or benchmarking optimization
using PGAS is entirely dependent on its implementation

Symmetric
address

Node X Node Y

May 16, 2007 32Copyright 2007 – Cray Inc.

Cascade libraries

� DARPA phase III awarded to Cray to build next generation
machine

CRAY SIGNS $250 MILLION AGREEMENT WITH DARPA TO
DEVELOP BREAKTHROUGH ADAPTIVE SUPERCOMPUTER

SEATTLE, WA, November 21, 2006 -- Global supercomputer leader Cray Inc.
announced today that it has been awarded a $250 million agreement from the U.S.
Defense Advanced Research Projects Agency (DARPA).

Under this agreement, Cray will develop a revolutionary new supercomputer based on
the company's Adaptive Supercomputing vision, a phased approach to hybrid
computing that integrates a range of processing technologies into a single scalable
platform.

[…]

May 16, 2007 33Copyright 2007 – Cray Inc.

Cascade System Architecture

� Globally addressable memory with unified addressing architecture
� Configurable network, memory, processing and I/O
� Heterogeneous processing across node types, and within MVP nodes
� Can adapt at configuration time, compile time, run time

Globally Addressable Memory
Support for partitioned or flat address space

Granite
MVP

Compute
Nodes

Granite
MVP

Compute
Nodes

Granite
MVP

Compute
Nodes

Granite
MVP

Compute
Nodes

Baker
Opteron
Compute

Nodes

Baker
Opteron
Compute

Nodes

Baker
Opteron
Compute

Nodes

Baker
Opteron
Compute

Nodes

Baker
Opteron

SIO
Nodes

High Bandwidth Interconnect
Extremely flexible and configurable

Local
Memory

Local
Memory

Local
Memory

Local
Memory

Local
Memory

Local
Memory

Local
Memory

Local
Memory

Local
Memory

Local
Memory

Local
Memory

Local
Memory

Baker
Opteron

SIO
Nodes

Opteron
Service I/O

Node

Gemini
Communication

Accelerator

Network

Memory

AMD
Processor

I/O Interface

Scorpio
Co-processor

Network

Memory

AMD
Processor

Granite MVP

Compute
Node

Baker
Opteron

Compute
Node

Gemini
Communication

Accelerator

Network

Memory

AMD
Processor

Granite
MVP

Compute
Nodes

Granite
MVP

Compute
Nodes

May 16, 2007 34Copyright 2007 – Cray Inc.

General Cascade library issues

� Heterogeneity
• Which processor?
• Separate library implementations on both the Opteron and the

Scorpio compute nodes must agree…
• How do we support multiple libraries simply?
• How much decision making is at compile time, and how much at run-

time?

� Ease of use
• Hiding machine complexity from users is central, libraries are a big

part

� Petascaling

May 16, 2007 35Copyright 2007 – Cray Inc.

re-visiting CSR MV

do q = 1, n_rhs

next_row_begin = row_start (1)

do i = 1, n_rows

row_begin = next_row_begin
next_row_begin = row_start (i +1)
ip = 0.0

do k = row_begin, next_row_begin - 1
ip = ip + values (k) * x (col_index (k), q)

end do

y (i, q) = ip

end do
end do

Multi-thread
opportunity?

Vectorize
ooportunity?

scalar opportunity?

May 16, 2007 36Copyright 2007 – Cray Inc.

Future emphasis

� Heterogeneous compute nodes = more runtime awareness
in libraries

� More complex analysis and more build complication = More
automation
• OO languages generating low-level codes

� Bigger systems and bigger scaling applications = More
emphasis on sparse solvers

� More layers of software support = better integration with the
community

May 16, 2007 37Copyright 2007 – Cray Inc.

Thank You!

