
Keita Teranishi

CASK, Cray Adaptive Sparse Kernels

Cray, Inc.

CScADS 2008, Summer
Workshop 2008

Questions we are going to answer

What architecture/platform should we target?
Cray’s systems!

Will self-tuned libraries always outperform compiler-
generated code?

Yes, because we search the best combination of compiler’s tuning Yes, because we search the best combination of compiler’s tuning
flags and auto-generated code.

Will simple performance models obviate the need for
empirical search?

Simple and good performance models would reduce the search
space a lot (since we do just for Cray).

July 08 Copyright 2008, Cray Inc. Slide 2

Cray’s role in libraries (in the past)

Early Cray machines were important in the evolution of Math
Software – e.g. BLAS 3

Extensive tuning of BLAS and FFT in assembly language
Tuned for Cray’s hardware (usually vector)

Provide custom sparse solvers and special data structures
Things were simple then

Same or similar ISA
Hardware complexity was at register level
Single processing cores and bandwidth galore
API’s were sufficient for good performance
Custom solvers were attractive

Nothing was adaptive because it was not necessary
July 08 Copyright 2008, Cray Inc. Slide 3

Things change…

3 main things have changed that motivate auto-tuning

July 08 Copyright 2008, Cray Inc. Slide 4

Reason why we do auto-tuning

1. Hardware

2. Evolution of Linear System Solvers

3. Application Dependent Performance 3. Application Dependent Performance

July 08 Copyright 2008, Cray Inc. Slide 5

#1 Hardware

Now Cray sell mostly x86 based supercomputers
AMD Opteron currently
Intel Xeon in near future

No longer control the ISA – it keeps changing on us!
Single core (AMD64)
Dual core (faster memory, includes SSE3 instructions)
Quad-core (new memory hierarchy + new instructions)Quad-core (new memory hierarchy + new instructions)
Very short development cycle (compared to old vector
supercomputers)
Cray sells machines for all 3 concurrently

Now have Multi-core chips, existing methods and API’s may
not allow us to overcome the memory bandwidth wall.

6July 08 Copyright 2008, Cray Inc.

#2 Evolution of Linear System Solvers

¼ PetaFlop and 31,000 cores motivates a deep emphasis on
sparse iterative solvers

Even more cores in our future machines!

Maturity of numerical methods and software infrastructure
Iterative methods and preconditioning

Templates, SciDAC TOPs Projects, etc.Templates, SciDAC TOPs Projects, etc.
De facto standard software packages

PETSc, Trilinos, hypre

Cray supports these software packages and tune them for
our systems

Like how we support dense linear algebra packages
No change in API
No change in functionality

7July 08 Copyright 2008, Cray Inc.

#3 Application Dependent Performance

SpMV performance depends wildly on sparsity pattern /
character

Density (number of non-zeroes per row) and sparsity pattern
govern how well the base CSR kernel performs

Unlike dense linear algebraUnlike dense linear algebra

General purpose tuned codes cannot be written for these
types of problem

July 08 Copyright 2008, Cray Inc. Slide 8

Generic CSR SpMV code (the Bedrock)

do q = 1, n_rhs

next_row_begin = row_start (1)

do i = 1, n_rows

row_begin = next_row_begin
next_row_begin = row_start (i +1)
ip = 0.0ip = 0.0

do k = row_begin, next_row_begin - 1
ip = ip + values (k) * x (col_index (k), q)

end do

y (i, q) = ip

end do

end do

July 08 Copyright 2008, Cray Inc. Slide 9

Irregular memory access on values
Irregular access on col_index
Very little re-use of col_index and values
Code is memory bandwidth bound

Vendors have not been ‘doing their part’ here

1.2

1.4

1.6

1.8

R
el

at
iv

e
P

er
fo

rm
an

ce opt1 - low
density
opt1 - high
density
opt2 - low

Performance of 2 tuned SpMV kernels
relative to BASE case

Opt 1 : prefetch 4 cachelines, 4 iterations ahead o f time, no unrolling

0.4

0.6

0.8

1.0

20
00

40
00

60
00

80
00

10
00

0

12
00

0

14
00

0

16
00

0

18
00

0

20
00

0

22
00

0

24
00

0

26
00

0

28
00

0

30
00

0

R
el

at
iv

e
P

er
fo

rm
an

ce

Matrix Dimension

opt2 - low
density
opt2 - high
density

July 08 Copyright 2008, Cray Inc. Slide 10

Opt 2 : K loop unrolled by 2, no prefetching

Can’t just throw a great optimization at SpMV

30

40

50

60

70

%
 Im

pr
ov

em
en

t o
ve

r
ba

se
 c

as
e

Optimization : Unroll k loop by 2, prefetch 2 cache lines,
4 iterations ahead of time

-20

-10

0

10

20

30

330 2635 4611 7905 13176 21081 31622 52703 84324158108632430

%
 Im

pr
ov

em
en

t o
ve

r
ba

se
 c

as
e

Matrix dimension

July 08 Copyright 2008, Cray Inc. Slide 11

Same problem with aggressive tuning by
compiler (PGI using -fast –fastsse)

1.1

1.2

1.3

1.4

1.5

R
e

la
ti

v
e

 P
e

rf
o

rm
a

n
ce

Relative Performance against Base Case (-O3)

0.5

0.6

0.7

0.8

0.9

1

1.1

1 4 7 10 13 16 19 22 25 28 31 34 37 40 43 46 49 52

R
e

la
ti

v
e

 P
e

rf
o

rm
a

n
ce

Matrix ID#

Base -fast -fastsse

July 08 Copyright 2008, Cray Inc. Slide 12

SpMV summary

Linear solve results in many serial SpMV operations
These are the most expensive part of a linear solve
Code is memory bandwidth bound
Performance of SpMV changes with respect to
matrix characteristicsmatrix characteristics
Applicability of an optimization applies only to a
certain problem or set of problems

July 08 Copyright 2008, Cray Inc. Slide 13

There is no “General Purpose” SpMV Code

Cray Adaptive Sparse Kernels

July 08 Copyright 2008, Cray Inc. Slide 14

Consider this reasonable optimization space

• 8 variantsUnroll k loop from 1, up
to 8

• 4 variantsUnroll q loop, from
1 to 4

• 5 variantsPrefetch 1 to 5
cache lines before

loop

8 implementations

32 implementations

160
implementations

July 08 Copyright 2008, Cray Inc.

Slide 15

loop

• 10 variantsPrefetch before loop 1 to
10 rows in advance

• 30 variants
Prefetch 1 cacheline with inner
loop, 1 to 30 iterations ahead of

time

implementations

1600
implementations

48000
implementations

= work for 250 summer
internships

CASK design / philosophy

Using limited analysis and without the involvement of the
user

1. Analyze matrix at minimal cost

2. Categorize matrix against internal classes

3. Based on offline experience, find best CASK code for particular
matrix class

4. Previously assign “best” compiler flags to CASK code

5. Assign best CASK kernel and perform Ax

July 08 Copyright 2008, Cray Inc. Slide 16

Auto-tuning Framework

CASK Code Generator

CASKTemplate File

Input (XML)
•Ranges for optimizations (e.g. prefetch length, unrol l lengths)
•Matrix Specifications
•Compiler flags

Tester (Fortran90 & C)
Compile

Matrix Specification

July 08 Copyright 2008, Cray Inc. Slide 17

CASKTemplate File

A kernel in Fortran with custom directives:

•Loops to unroll

•Substitutions to make

•Prefetch instructions to insert

Output:

CASK Library

Performance Analysis Tools

(ruby, XML, etc.)

Batch script tool

(ruby and shell script)

Code Selection,
Create Runtime Optimization Code

Auto-tuning Framework (Continued)

Implemented with Ruby and XML
Ruby orchestrates the tuning process
XML defines the target range of tuning parameters and test sparse
matrix

Code generator
Tester program contains a random matrix generator

Takes 10+ parameters Takes 10+ parameters
Can generate blocked and banded sparse matrices
Also imports HB format sparse matrix files

Performance analysis tool integrated with CrayPat
Allows off-line tuning as well as establishing a scheme for on-line
tuning with a negligible runtime overhead.

July 08 Copyright 2008, Cray Inc. Slide 18

CASK and PETSc, single core

1.1

1.2

1.3

1.4

1.4

1.5

1.6

0.8

0.9

1

1.1

1

1.1

1.2

1.3

1 6 11 16 21 26 31 36 41 46 51 56

July 08 Copyright 2008, Cray Inc. Slide 19

CASK and PETSc – quad core

1

1.05

1.1

1.15

1.2

1.3

1.4

1.5

Single core Parallel on 4 cores

0.8

0.85

0.9

0.95

1

1

1.1

1.2

1 4 7 10 13 16 19 22 25 28 31 34 37 40 43 46 49 52 55 58

Matrix ID#

July 08 Copyright 2008, Cray Inc. Slide 20

FBSR and CSR Comparison

400

500

600

700

M
flo

ps
/c

or
e

Performance of CASK CSR and FBSR Kernels
N= 40,000, BW=6000, BS=4, QC (4 core)

0

100

200

300

0 20 40 60 80 100 120

M
flo

ps
/c

or
e

NNz/row

PETSc-CSR CASK-CSR PETSc-FBSR CASK-FBSR

July 08 Copyright 2008, Cray Inc. Slide 21

Auto-tuning Experience

Good performance model is required to enable good auto-
tuning

We incrementally refined our performance model!
Often the auto-tuning results pointed out what we were missing.

Good matrix generator is requiredGood matrix generator is required
Even for random matrices, it is possible reproduce real-application-
like matrices in terms of performance behavior
Care must be taken when using matrices in the public repositories
(NIST, U of Florida)

July 08 Copyright 2008, Cray Inc. Slide 22

Very rareCommon

Auto-tuning Experience (Continued)

Ruby and XML provides a great flexibility of tool
development

Easy to add a new tuning feature
XML is used to control the tuning, parameter search space, and log-
keeping, etc.

The size of the search space for parameters seems to be big The size of the search space for parameters seems to be big
at the beginning, but it can be reduced.

Supervised search using our knowledge in compiler flags and sparse
matrix computation
Every auto-tuning results tell us what to trim
How to automate this trimming process?

Works as a good regression test tool!

July 08 Copyright 2008, Cray Inc. Slide 23

Further Auto-tuning Work in LibSci

CASK 1.0 released in August 2008
Runs with PETSc
CSR and FBSR SpMV
Version 2.0 will support Trilinos, VBR and Transpose SpMV,
Triangular Solution and more.

CRAFFT Version 1.0 will be released in July 2008
Very simple APIVery simple API
FFTW, ACML support
Less runtime tuning overhead

Working with Spiral team for CRAFFT Version 2
Parallel FFTs
Auto-tuning in Dense Linear Algebra? (GEMM, eigensolvers,
ScaLAPACK)

July 08 Copyright 2008, Cray Inc. Slide 24

Special Thanks

CASK Team
Adrian Tate
John Lewis

July 08 Copyright 2008, Cray Inc. Slide 25

