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Questions we are going to answer

What architecture/platform should we target?
Cray’s systems!

Will self-tuned libraries always outperform compiler-
generated code?

Yes, because we search the best combination of compiler’s tuning Yes, because we search the best combination of compiler’s tuning 
flags and auto-generated code.

Will simple performance models obviate the need for 
empirical search?

Simple and good performance models would reduce the search 
space a lot (since we do just for Cray).
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Cray’s role in libraries (in the past)

Early Cray machines were important in the evolution of Math 
Software – e.g. BLAS 3

Extensive tuning of BLAS and FFT in assembly language
Tuned for Cray’s hardware (usually vector)

Provide custom sparse solvers and special data structures
Things were simple then

Same or similar ISA
Hardware complexity was at register level
Single processing cores and bandwidth galore
API’s were sufficient for good performance
Custom solvers were attractive 

Nothing was adaptive because it was not necessary 
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Things change…

3 main things have changed that motivate auto-tuning
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Reason why we do auto-tuning

1. Hardware

2. Evolution of Linear System Solvers

3. Application Dependent Performance 3. Application Dependent Performance 
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#1 Hardware

Now Cray sell mostly x86 based supercomputers
AMD Opteron currently
Intel Xeon in near future

No longer control the ISA – it keeps changing on us!
Single core (AMD64)
Dual core (faster memory, includes SSE3 instructions)
Quad-core (new memory hierarchy + new instructions)Quad-core (new memory hierarchy + new instructions)
Very short development cycle (compared to old vector 
supercomputers)
Cray sells machines for all 3 concurrently

Now have Multi-core chips, existing methods and API’s may 
not allow us to overcome the memory bandwidth wall. 
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#2 Evolution of Linear System Solvers

¼ PetaFlop and 31,000 cores motivates a deep emphasis on 
sparse iterative solvers

Even more cores in our future machines!

Maturity of numerical methods and software infrastructure
Iterative methods and preconditioning

Templates, SciDAC TOPs Projects, etc.Templates, SciDAC TOPs Projects, etc.
De facto standard software packages

PETSc, Trilinos, hypre

Cray supports these software packages and tune them for 
our systems

Like how we support dense linear algebra packages
No change in API
No change in functionality  
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#3 Application Dependent Performance

SpMV performance depends wildly on sparsity pattern / 
character

Density (number of non-zeroes per row) and sparsity pattern 
govern how well the base CSR kernel performs

Unlike dense linear algebraUnlike dense linear algebra

General purpose tuned codes cannot be written for these 
types of problem
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Generic CSR SpMV code (the Bedrock)

do q = 1, n_rhs

next_row_begin = row_start (1)

do i = 1, n_rows

row_begin = next_row_begin
next_row_begin = row_start (i +1)
ip = 0.0ip = 0.0

do k = row_begin, next_row_begin - 1
ip = ip +  values (k) * x (col_index (k), q)

end do

y (i, q) = ip

end do

end do
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Irregular memory access on values
Irregular access on col_index
Very little re-use of col_index and values
Code is memory bandwidth bound

Vendors have not been ‘doing their part’ here
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Opt 2 : K loop unrolled by 2, no prefetching



Can’t just throw a great optimization at SpMV
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Same problem with aggressive tuning by 
compiler (PGI using -fast –fastsse)
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SpMV summary

Linear solve results in many serial SpMV operations
These are the most expensive part of a linear solve
Code is memory bandwidth bound
Performance of SpMV changes with respect to 
matrix characteristicsmatrix characteristics
Applicability of an optimization applies only to a 
certain problem or set of problems
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There is no “General Purpose” SpMV Code



Cray Adaptive Sparse Kernels
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Consider this reasonable optimization space

• 8 variantsUnroll k loop from 1, up 
to 8

• 4 variantsUnroll q loop, from 
1 to 4

• 5 variantsPrefetch 1 to 5 
cache lines before 

loop

8 implementations

32 implementations

160 
implementations
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loop

• 10 variantsPrefetch before loop 1 to 
10 rows in advance 

• 30 variants
Prefetch 1 cacheline with inner 
loop, 1 to 30 iterations ahead of 

time

implementations

1600 
implementations

48000 
implementations

= work for 250 summer 
internships



CASK design / philosophy

Using limited analysis and without the involvement of the 
user

1. Analyze matrix at minimal cost

2. Categorize matrix against internal classes

3. Based on offline experience, find best CASK code for particular 
matrix class

4. Previously assign “best” compiler flags to CASK code

5. Assign best CASK kernel and perform Ax
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Auto-tuning Framework

CASK Code Generator

CASKTemplate File

Input (XML)
•Ranges for optimizations (e.g. prefetch length, unrol l lengths)
•Matrix Specifications
•Compiler flags

Tester (Fortran90 & C)
Compile

Matrix Specification
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CASKTemplate File

A kernel in Fortran with custom directives: 

•Loops to unroll

•Substitutions to make

•Prefetch instructions to insert

Output:

CASK Library

Performance Analysis Tools 

(ruby, XML, etc.)

Batch script tool 

(ruby and shell script)

Code Selection, 
Create Runtime Optimization Code 



Auto-tuning Framework (Continued)

Implemented with Ruby and XML
Ruby orchestrates the tuning process
XML defines the target range of tuning parameters and test sparse 
matrix 

Code generator
Tester program contains a random matrix generator

Takes 10+ parameters Takes 10+ parameters 
Can generate blocked and banded sparse matrices 
Also imports HB format sparse matrix files  

Performance analysis tool integrated with CrayPat
Allows off-line tuning as well as establishing a scheme for on-line 
tuning with a negligible runtime overhead.
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CASK and PETSc, single core

1.1

1.2

1.3

1.4

1.4

1.5

1.6

0.8

0.9

1

1.1

1

1.1

1.2

1.3

1 6 11 16 21 26 31 36 41 46 51 56

July 08 Copyright 2008,  Cray Inc. Slide 19



CASK and PETSc – quad core
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FBSR and CSR Comparison
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Auto-tuning Experience

Good performance model is required to enable good auto-
tuning

We incrementally refined our performance model!
Often the auto-tuning results pointed out what we were missing. 

Good matrix generator is requiredGood matrix generator is required
Even for random matrices, it is possible reproduce real-application-
like matrices in terms of performance behavior
Care must be taken when using matrices in the public repositories 
(NIST, U of Florida) 
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Very rareCommon



Auto-tuning Experience (Continued)

Ruby and XML provides a great flexibility of tool 
development

Easy to add a new tuning feature
XML is used to control the tuning, parameter search space, and log-
keeping, etc.

The size of the search space for parameters seems to be big The size of the search space for parameters seems to be big 
at the beginning, but it can be reduced.

Supervised search using our knowledge in compiler flags and sparse 
matrix computation
Every auto-tuning results tell us what to trim
How to automate this trimming process? 

Works as a good regression test tool!
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Further Auto-tuning Work in LibSci

CASK 1.0 released in August 2008
Runs with PETSc
CSR and FBSR SpMV
Version 2.0 will support Trilinos, VBR and Transpose SpMV,  
Triangular Solution and more.

CRAFFT Version 1.0 will be released in July 2008
Very simple APIVery simple API
FFTW, ACML support
Less runtime tuning overhead

Working with Spiral team for CRAFFT Version 2
Parallel FFTs
Auto-tuning in Dense Linear Algebra? (GEMM, eigensolvers, 
ScaLAPACK)
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Special Thanks

CASK Team
Adrian Tate 
John Lewis
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