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The free lunch is overThe free lunch is over

Problem

• power consumption
• heat dissipation
• pins

Solution

reduce clock and 
increase execution 
units = Multicore

Consequence

Non-parallel software won't run any faster. A 
new approach to programming is required.

Hardware

Software
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What is a Multicore processor, BTW?What is a Multicore processor, BTW?

“a processor that combines two or more independent 
processors into a single package” (wikipedia) 

What about:
• types of core?

homogeneous (AMD Opteron, Intel Woodcrest...) 
heterogeneous (STI Cell, Sun Niagara, NVIDIA...) 

• memory?
how is it arranged?

• bus?
is it going to be fast enough?

• cache?
shared? (Intel/AMD) 
not present at all? (STI Cell) 

• communications?
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WhatWhat’’s the  s the  MulticoreMulticore timeline?timeline?

* Source: Platform 2015: Intel® Processor and Platform Evolution for 
the Next Decade, Intel White Paper (via LaBarta, et. al. SC06)
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Parallelism in Linear Algebra software so farParallelism in Linear Algebra software so far

LAPACK

Threaded
BLAS

PThreads OpenMP

ScaLAPACK

PBLAS

BLACS
+ MPI

Shared Memory Distributed Memory

parallelism
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Parallelism in LAPACK: Cholesky factorizationParallelism in LAPACK: Cholesky factorization

DPOTF2:  BLAS-2
non-blocked factorization of the panel

DTRSM:  BLAS-3
updates by applying the 
transformation computed in DPOTF2

DGEMM (DSYRK): BLAS-3
updates trailing submatrix

U= LT
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Parallelism in LAPACK: Cholesky factorizationParallelism in LAPACK: Cholesky factorization

BLAS2 operations cannot 
be efficiently parallelized 
because they are 
bandwidth bound.

• strict synchronizations
• poor parallelism
• poor scalability
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Parallelism in LAPACK: Cholesky factorizationParallelism in LAPACK: Cholesky factorization

The execution flow if filled with stalls due to 
synchronizations and sequential operations.

Time
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Parallelism in LAPACK: Cholesky factorizationParallelism in LAPACK: Cholesky factorization

do DPOTF2 on

for all 
do DTRSM on

end

for all
do DGEMM on 

end

end

Tiling operations:
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Parallelism in LAPACK: Cholesky factorizationParallelism in LAPACK: Cholesky factorization

Cholesky can be represented as a 
Directed Acyclic Graph (DAG) where 
nodes are subtasks and edges are 
dependencies among them.

As long as dependencies are not 
violated, tasks can be scheduled in any 
order.

3:3 4:3

3:2 4:2

2:2

2:2 3:2 4:2
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Time

Parallelism in LAPACK: Cholesky factorizationParallelism in LAPACK: Cholesky factorization
higher flexibility
some degree of adaptativity
no idle time
better scalability

Cost:

1 /3n3

n 3

2n3
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Parallelism in LAPACK: block data layoutParallelism in LAPACK: block data layout

Column-Major Block data layout
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Column-Major

Parallelism in LAPACK: block data layoutParallelism in LAPACK: block data layout

Block data layout
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Column-Major

Parallelism in LAPACK: block data layoutParallelism in LAPACK: block data layout

Block data layout
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The use of block data layout storage can 
significantly improve performance

Parallelism in LAPACK: block data layoutParallelism in LAPACK: block data layout
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Cholesky: performance Cholesky: performance 
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Cholesky: performance Cholesky: performance 
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Parallelism in LAPACK: LU/QR factorizationsParallelism in LAPACK: LU/QR factorizations

DGETF2: BLAS-2
non-blocked panel 
factorization

DTRSM: BLAS-3
updates U with 
transformation computed in 
DGETF2

DGEMM: BLAS-3
updates the trailing 
submatrix
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Parallelism in LAPACK: LU/QR factorizationsParallelism in LAPACK: LU/QR factorizations

The LU and QR factorizations 
algorithms in LAPACK don't allow 
for 2D distribution and block 
storage format.

LU: pivoting takes into account 
the whole panel and cannot be 
split in a block fashion.

QR: the computation of 
Householder reflectors acts on 
the whole panel. 

The application of the 
transformation can only be 
sliced but not blocked.



CScADS Autotuning Workshop

Time

Parallelism in LAPACK: LU/QR factorizationsParallelism in LAPACK: LU/QR factorizations

LU
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Multicore friendly, Multicore friendly, ““delightfully delightfully 
parallelparallel**””, algorithms, algorithms
Computer Science can't go any further on old algorithms. 
We need some math...

* quote from Prof. S. Kale
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Assume that         is the part 
of the matrix that has been 
already factorized and          
contains the Householder 
reflectors that determine the 
matrix Q.

The QR factorization in LAPACKThe QR factorization in LAPACK

The QR transformation factorizes a matrix A into the 
factors Q and R where Q is unitary and R is upper 
triangular. It is based on Householder reflections.
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The QR factorization in LAPACKThe QR factorization in LAPACK

The QR transformation factorizes a matrix A into the 
factors Q and R where Q is unitary and R is upper 
triangular. It is based on Householder reflections.

=DGEQR2(       )  
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The QR factorization in LAPACKThe QR factorization in LAPACK

The QR transformation factorizes a matrix A into the 
factors Q and R where Q is unitary and R is upper 
triangular. It is based on Householder reflections.

=DLARFB(                    ) 
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The QR factorization in LAPACKThe QR factorization in LAPACK

The QR transformation factorizes a matrix A into the 
factors Q and R where Q is unitary and R is upper 
triangular. It is based on Householder reflections.

How does it compare to LU?
It is stable because it uses 

Householder transformations 
that are orthogonal
It is more expensive than LU 

because its operation count is 
versus4 /3 n3 2 /3 n3
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Multicore friendly algorithms: QRMulticore friendly algorithms: QR

=DGEQR2(      ) 

A different algorithm can be used where operations 
can be broken down into tiles.

The QR factorization of the 
upper left tile is performed. 
This operation returns
a small R factor:        
and the corresponding 
Householder reflectors: 
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=DLARFB(             ) 

Multicore friendly algorithmsMulticore friendly algorithms: QR: QR

A different algorithm can be used where operations 
can be broken down into tiles.

All the tiles in the first block-
row are updated by 
applying the transformation  

computed at the 
previous step.



CScADS Autotuning Workshop

1 =DGEQR2(      )

Multicore friendly algorithmsMulticore friendly algorithms: QR: QR

A different algorithm can be used where operations 
can be broken down into tiles.

The R factor        computed at 
the first step is coupled with 
one tile in the block-column 
and a QR factorization is 
computed. Flops can be saved 
due to the shape of the matrix 
resulting from the coupling.
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1=DLARFB(             )

Multicore friendly Multicore friendly algorithms: QRalgorithms: QR

A different algorithm can be used where operations 
can be broken down into tiles.

Each couple of         tiles along 
the corresponding block rows is 
updated by applying the       
transformations computed in 
the previous step. Flops can be 
saved considering the shape of 
the Householder vectors.
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1 =DGEQR2(      ) 

Multicore friendly Multicore friendly algorithms: QRalgorithms: QR

A different algorithm can be used where operations 
can be broken down into tiles.

The last two steps are 
repeated for all the tiles in the 
first block-column.
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1=DLARFB(             ) 

Multicore friendly Multicore friendly algorithms: QRalgorithms: QR

A different algorithm can be used where operations 
can be broken down into tiles.

The last two steps are 
repeated for all the tiles in the 
first block-column.
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1=DLARFB(             ) 

Multicore friendly Multicore friendly algorithms: QRalgorithms: QR

A different algorithm can be used where operations 
can be broken down into tiles.

The last two steps are 
repeated for all the tiles in the 
first block-column.

25% more Flops than the LAPACK version!!!*

*we are working on a way to remove these extra flops.
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Multicore friendly Multicore friendly algorithms: QRalgorithms: QR
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Multicore friendly Multicore friendly algorithms: QRalgorithms: QR

Very fine granularity
Few dependencies, i.e., 

high flexibility for the 
scheduling of tasks
Block data layout is 

possible
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Time

Multicore friendly Multicore friendly algorithms: QRalgorithms: QR

Execution flow on a 8-way dual core Opteron.
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Multicore friendly Multicore friendly algorithms: QRalgorithms: QR
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Multicore friendly Multicore friendly algorithms: QRalgorithms: QR
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Multicore friendly Multicore friendly algorithms: QRalgorithms: QR
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Current work and future plansCurrent work and future plans
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Current work and future plansCurrent work and future plans

Implement LU factorization on multicores
Is it possible to apply the same approach to two-

sided transformations (Hessenberg, Bi-Diag, Tri-
Diag)?
Explore techniques to avoid extra flops
Implement the new algorithms on distributed 

memory architectures (J. Langou and J. Demmel) 
Implement the new algorithms on the Cell

processor
Explore automatic exploitation of parallelism 

through graph driven programming environments



CScADS Autotuning Workshop

CellSuperScalar and SMPSuperScalarCellSuperScalar and SMPSuperScalar

http://www.bsc.es/cellsuperscalar

uses source-to-source translation to determine 
dependencies among tasks
scheduling of tasks is performed automatically 

by means of the features provided by a library
it is easily possible to explore different 

scheduling policies
all of this is obtained by decorating the code 

with pragmas and, thus, is transparent to other 
compilers
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app.c

CSS 
compiler

app_spe.c

app_ppe.c

llib_css-spe.so

Cell 
executable

llib_css-ppe.so

SPE Linker

PPE Linker

SPE
executableSPE Compiler app_spe.o

PPE Compiler app_ppe.o
SPE Embedder

SPE Linker

PPE
Object

SDK

Compilation EnvironmentCompilation Environment
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for (i = 0; i < DIM; i++) {
for (j= 0; j< i-1; j++){

for (k = 0; k < j-1; k++) {
sgemm_tile( A[i][k], A[j][k], A[i][j] );

}
strsm_tile( A[j][j], A[i][j] );

}
for (j = 0; j < i-1; j++) {

ssyrk_tile( A[i][j], A[i][i] );
}
spotrf_tile( A[i][i] );

}

void sgemm_tile(float *A, float *B, float *C) 

void strsm_tile(float *T, float *B) 

void ssyrk_tile(float *A, float *C) 

CellSuperScalar and SMPSuperScalarCellSuperScalar and SMPSuperScalar
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for (i = 0; i < DIM; i++) {
for (j= 0; j< i-1; j++){

for (k = 0; k < j-1; k++) {
sgemm_tile( A[i][k], A[j][k], A[i][j] );

}
strsm_tile( A[j][j], A[i][j] );

}
for (j = 0; j < i-1; j++) {

ssyrk_tile( A[i][j], A[i][i] );
}
spotrf_tile( A[i][i] );

}

#pragma css task input(A[64][64], B[64][64]) inout(C[64][64]) 
void sgemm_tile(float *A, float *B, float *C) 

#pragma css task input (T[64][64]) inout(B[64][64]) 
void strsm_tile(float *T, float *B) 

#pragma css task input(A[64][64], B[64][64]) inout(C[64][64]) 
void ssyrk_tile(float *A, float *C) 

CellSuperScalar and SMPSuperScalarCellSuperScalar and SMPSuperScalar
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Empirical TuningEmpirical Tuning
of MADNESSof MADNESS

Haihang You and Keith SeymourHaihang You and Keith Seymour
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• SciDAC code by Robert Harrison @ 
ORNL

• Framework for adaptive multiresolution
methods in multiwavelet bases

• Collaborative optimization effort as part 
of UTK’s participation in PERI, the 
Performance Engineering Research 
Institute

WhatWhat’’s MADNESS?s MADNESS?
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front end

code

IR CG

Search Engine

Loop Analyzer code

Driver 
generator

testing
driver

info of tuning parameters

tuning parameters

+

GCO FrameworkGCO Framework
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• GCO didn’t work!
• Instead:

– Extract matrix-vector multiplication 
kernel from doitgen routine

– Design and hand-code a specific code 
generator for small size matrix-vector 
multiplication

– Tune optimal block size and unrolling 
factor separately for each input size

MADNESS Kernel TuningMADNESS Kernel Tuning
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MFLOPS Pentium 4(1.7 GHz)
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MFLOPS Woodcrest(3.0 GHz)

0

500

1000

1500

2000

2500

3000

3500

4000

1 4 7 10 13 16 19 22 25 28

SIZE

M
FL

O
PS

auto-tuned C matrix-
vector kernel
hand-tuned Fortran
multi-resolution kernel
reference kernel in C

atlas matrix-vector C
kernel



CScADS Autotuning Workshop

MADNESS Conclusions
• We have demonstrated an effective 

empirical tuning strategy for optimizing 
the doitgen computational kernel code
– less effort than hand tuning
– better performance than either:

• hand-tuned or
• general purpose optimization

• Future
– Aggressive code generator for MV 

multiplication
– Parallelize parameter search
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Thank youThank you

http://icl.cs.utk.edu
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AllReduce algorithmsAllReduce algorithms

57

The QR factorization of a long and skinny matrix with its 
data partitioned vertically across several processors arises 
in a wide range of applications. 

Input:
A is block distributed by rows

Output:
Q is block distributed by rows
R is global

A1

A2

A3

Q1

Q2

Q3

R
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AllReduce algorithmsAllReduce algorithms

in iterative methods with multiple right-hand sides (block iterative 
methods:) 

Trilinos (Sandia National Lab.) through Belos (R. Lehoucq, H. Thornquist, U. Hetmaniuk).

BlockGMRES, BlockGCR, BlockCG, BlockQMR, …

in iterative methods with a single right-hand side

s-step methods for linear systems of equations (e.g. A. Chronopoulos),

LGMRES (Jessup, Baker, Dennis, U. Colorado at Boulder) implemented in PETSc,

Recent work from M. Hoemmen and J. Demmel (U. California at Berkeley).

in iterative eigenvalue solvers,

PETSc (Argonne National Lab.) through BLOPEX (A. Knyazev, UCDHSC), 

HYPRE (Lawrence Livermore National Lab.) through BLOPEX,

Trilinos (Sandia National Lab.) through Anasazi (R. Lehoucq, H. Thornquist, U. Hetmaniuk),

PRIMME (A. Stathopoulos, Coll. William & Mary ) 

They are used in:
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AllReduce algorithmsAllReduce algorithms
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