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The free lunch is over
Hardware

e power consumption reduce clock and
* heat dissipation iIncrease execution
* piNs units = Multicore

Software

Conseqguence

Non-parallel software won't run any faster. A
new approach to programming is required.
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What is a Multicore processor, BTW?

“a processor that combines two or more independent
processors into a single package” (wikipedia)

What about:

e types of core?
> homogeneous (AMD Opteron, Intel Woodcrest...)
> heterogeneous (STI Cell, Sun Niagara, NVIDIA...)

e memory?

> how is it arranged?
* bus?

> IS it going to be fast enough?
e cache?

> Shared? (Intel/AMD)
> nhot present at all? (STI Cell)

e COMMunications?
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What's the Multicore timeline?

Many-core Era
Massivaly parallal
applications

_ 100-
Increasing HW
Threads

Per Socket Multi-core Era

Scalar and
parallal applications

2003 2005 2007 2009 2011 2013

* Source: Platform 2015: Intel® Processor and Platform Evolution for
the Next Decade, Intel White Paper (via LaBarta, et. al. SC06)
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Parallelism in Linear Algebra software so far

Shared Memory Distributed Memory

LAPACK ScalLAPACK

parallelism

PThreads
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Parallelism in Linear Algebra software so far

Shared Memory Distributed Memory
parallelism

LAPACK ScalLAPACK

PThreads
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Parallelism in LA
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PACK: Cholesky factorization

DPOTF2: BLAS-2
non-blocked factorization of the panel

DTRSM: BLAS-3
updates by applying the u=L"
transformation computed in DPOTF2

DGEMM (DSYRK): BLAS-3
updates trailing submatrix




Parallelism in LAPACK: Cholesky factorization

BLAS?2 operations cannot
be efficiently parallelized
because they are

/ \ o

e strict synchronizations
e poor parallelism
e poor scalability
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Parallelism in LAPACK: Cholesky factorization

The execution flow if filled with stalls due to
synchronizations and sequential operations.
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Parallelism in LAPACK: Cholesky factorization

Tiling operations:

do DPOTF2 on

for all
do DTRSM on
end

for all
do DGEMM on
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Parallelism in LAPACK: Cholesky factorization

2:1

5:1 5:2 5:3 5:4 H-)

Cholesky can be represented as a
Directed Acyclic Graph (DAG) where
nodes are subtasks and edges are

dependencies among them.

As long as dependencies are not

violated, tasks can be scheduled in any
order.
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Parallelism in LAPACK: Cholesky factorization
higher flexibility
some degree of adaptativity
no idle time
better scalability
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Parallelism in LAPACK: block data layout

Column-Major Block data layout
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Parallelism in LAPACK: block data layout

Column-Major Block data layout
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Parallelism in LAPACK: block data layout

Column-Major Block data layout
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Parallelism in LAPACK: block data layout

The use of block data layout storage can
significantly improve performance

Blocking Speedup

DGEMM
DTRSM

128
block size
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Cholesky: performance

Cholesky -- Dual Clovertown

A’/_/\_/\_-

/ S
async. 2d blocking
LAPACK + Th. BLAS

AN AN

\ \ \
4000 6000 8000 10000

problem size
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Cholesky: performance

Cholesky -- 8-way Dual Opteron

/ \

e
pd

/ async. 2d blocking

LAPACK + Th.
BLAS

/

I
5000 7500 10000 12500 15000
problem size
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Parallelism in LAPACK: LU/QR factorizations

DGETF2: BLAS-2
non-blocked panel

factorization

/\ DTRSM: BLAS-3

updates U with

transformation computed in
DGETF2

DGEMM: BLAS-3
updates the trailing
submatrix
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Parallelism in LAPACK: LU/QR factorizations

CSCADS Autotuning Workshop

The LU and QR factorizations
algorithms in LAPACK don't allow
for 2D distribution and block
storage format.

. LU: pivoting takes into account
the whole panel and cannot be
split in a block fashion.

. QR: the computation of

Householder reflectors acts on
the whole panel.

. The application of the
transformation can only be
sliced but not blocked.




Parallelism in LAPACK: LU/QR factorizations

LU

Time
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LU factorization:

performance

LU -- Dual Clovertown

async. 1D
LAPACK + Th. BLAS
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Multicore friendly, “delightfully
parallel*”, algorithms

Computer Science can't go any further on old algorithms.
We need some math...
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The QR factorization in LAPACK

The QR transformation factorizes a matrix A into the
factors Q and R where Q is unitary and R is upper
triangular. It is based on Householder reflections.

Assume that IS the part
of the matrix that has been
already factorized and
contains the Householder

reflectors that determine the
matrix Q.
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The QR factorization in LAPACK

The QR transformation factorizes a matrix A into the
factors Q and R where Q is unitary and R is upper
triangular. It is based on Householder reflections.

N

=DGEQR2(
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The QR factorization in LAPACK

The QR transformation factorizes a matrix A into the
factors Q and R where Q is unitary and R is upper
triangular. It is based on Householder reflections.

=DLARFB(
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The QR factorization in LAPACK

The QR transformation factorizes a matrix A into the
factors Q and R where Q is unitary and R is upper
triangular. It is based on Householder reflections.

How does it compare to LU?

. It Is stable because it uses
Householder transformations
that are orthogonal

. It is more expensive than LU
because its operation count is
4/3n° versus 2/3n°
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Multicore friendly algorithms: QR

A different algorithm can be used where operations
can be broken down into tiles.

—— P\ | =DGEQR2(

The QR factorization of the
upper left tile is performed.
This operation returns

a small R factor:

and the corresponding
Householder reflectors:
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Multicore friendly algorithms: QR

A different algorithm can be used where operations
can be broken down into tiles.

=DLARFB( [\

All the tiles in the first block-
row are updated by

pplying the transformation
1 computed at the
previous step.
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Multicore friendly algorithms: QR

A different algorithm can be used where operations
can be broken down into tiles.
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=—— 1 | =DGEQR2(

The R factor computed at
the first step is coupled with
one tile in the block-column
and a QR factorization is
computed. Flops can be saved
due to the shape of the matrix
resulting from the coupling.




Multicore friendly algorithms: QR

A different algorithm can be used where operations
can be broken down into tiles.

=DLARFB( 1

Each couple of tiles along
the corresponding block rows is
updated by applying the
transformations computed in
the previous step. Flops can be
saved considering the shape of
the Householder vectors.
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Multicore friendly algorithms: QR

A different algorithm can be used where operations
can be broken down into tiles.

=—— 1 |=DGEQR2(

The last two steps are

repeated for all the tiles in the
first block-column.
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Multicore friendly algorithms: QR

A different algorithm can be used where operations
can be broken down into tiles.

=DLARFB( 1

The last two steps are
repeated for all the tiles in the
first block-column.
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Multicore friendly algorithms: QR

A different algorithm can be used where operations
can be broken down into tiles.

=DLARFB( 1

The last two steps are
repeated for all the tiles in the
first block-column.

25% more Flops than the LAPACK version!!!*
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Multicore friendly algorithms: QR
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Multicore friendly algorithms: QR

. Very fine granularity

. Few dependencies, I.e.,
high flexibility for the
scheduling of tasks

. Block data layout is
possible

ADS Autotuning Workshop




Multicore friendly algorithms: QR

Execution flow on a 8-way dual core Opteron.
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Multicore friendly algorithms: QR

QR Factorization: Scaling -- 8-way Dual Opteron
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async. 1D
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Multicore friendly algorithms: QR

QR Factorization: Scaling -- 8-way Dual Opteron
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Multicore friendly algorithms: QR

OR Factorization -- 8-way Dual Opteron

//

’—/

\l LAPACK + Th. BLAS
async. 1D
async 2D blocking

I I T I I I T I I
1000 2000 3000 4000 5000 6000 7000 8000 9000 1000
0

problem size

CSCADS Autotuning Workshop




Multicore friendly algorithms: QR

0

QR Factorization -- Dual Clovertown

async. 2D blocking

async. 1D
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Current work and future plans
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Current work and future plans

. Implement LU factorization on multicores

. Is it possible to apply the same approach to two-
sided transformations (Hessenberg, Bi-Diag, Tri-
Diag)?

. Explore techniques to avoid extra flops

. Implement the new algorithms on distributed
memory architectures (J. Langou and J. Demmel)
. Implement the new algorithms on the Cell
processor

« Explore automatic exploitation of parallelism
through graph driven programming environments
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CeIISuperScaIar and SMPSuperScalar

i mwmm

http //www _bsc. es/cellsuperscalar

. Uses source-to-source translation to determine
dependencies among tasks

. scheduling of tasks is performed automatically
by means of the features provided by a library

. it Is easily possible to explore different
scheduling policies

. all of this is obtained by decorating the code
with pragmas and, thus, Is transparent to other
compilers
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Compilation Eniroent

M-mnh - -
mmmmmm

app_spe.c

CSS
compiler

app_ppe.c
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Ilib_css-ppe.so

Ilib_css-spe.so

SPE Compilerr® aPP_SP€.0

PPE Compile
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SPE Linker

PPE Linker

SPE Embedde




CellSuperScalar and SMPSuperScalar

1 Supercomputing
Canter
3 Caniro Nackonal de Suparcomputa cion

for (1 = 0; 1 < DIM; 1++) {
for (g= 0; j< i-1; j++){
for (k = 0; k < j-1; k++) {
sgemm_tile( ALi1[k]l. ADOILK]. ALiI0O] ):
+

strsm_tile(C ALJ10I1. ALIL] )
}
for (j =0; j < i-1; j++v) {
ssyrk_tile(C A1, AL1]1L1] );
}
spotrf_tile( ALT][1] );
}

void sgemm_tile(float *A, float *B, float *C)

void strsm_tile(float *T, float *B)

void ssyrk _tile(float *A, float *C)
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CellSuperScalar and SMPSuperScalar

iC

CS

Barcelona
Supercomputing

for (1 = 0; 1 < DIM; 1++) {
for (= 0; j< i-1; j++){
for (k = 0; k < j-1; k++) {
sgemm_tile( ALi1[K]., ALILK]. ALi1Li] );
+

strsm_tile(C ALJ10I1. ALIL] )
}
for (j =0; j < i-1; j++v) {
ssyrk_tile(C A1, AL1]1L1] );
}
spotrf_tile( ALT][1] );
}

#pragma css task 1nput(A[64][64], B[64][64]) 1nout(C[64][64])
void sgemm_tile(float *A, float *B, float *C)

#pragma css task input (T[64][64]) 1nout(B[64][64])
void strsm_tile(float *T, float *B)

#pragma css task i1nput(A[64][64], B[64][64]) 1nout(C[64][64])
void ssyrk _tile(float *A, float *C)
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Empirical Tuning
of MADNESS

Haihang You and Keith Seymour
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What's MADNESS?

SciDAC code by Robert Harrison @
ORNL

Framework for adaptive multiresolution
methods in multiwavelet bases

Collaborative optimization effort as part
of UTK's participation in PERI, the
Performance Engineering Research
Institute
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GCO Framework

Pentium M 1700 MHz Matrix-Vector Multiply
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MADNESS Kernel Tuning

e GCO didn't work!

e |[nstead:

— Extract matrix-vector multiplication
kernel from doitgen routine

— Design and hand-code a specific code
generator for small size matrix-vector
multiplication

— Tune optimal block size and unrolling
factor separately for each input size
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MFLOPS Opteron(1.8 GHz)

—e— auto-tuned C matrix-
vector kernel

—m— hand-tuned Fortran
multi-resolution kernel

reference kernel in C

n
o
@)
—l
LL
=

atlas matrix-vector C
kernel
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MFLOPS Pentium 4(1.7 GHz)

—e— auto-tuned C matrix-
vector kernel

—=— hand-tuned Fortran
multi-resolution kernel

reference Kernel in C

0]
ol
O
1
LL
=

atlas matrix-vector C
kernel
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MFLOPS Woodcrest(3.0 GHz)

—e— auto-tuned C matrix-
vector kernel

—m— hand-tuned Fortran
multi-resolution kernel

reference kernel in C

n
o
@)
—l
LL
=

atlas matrix-vector C
kernel

ADS Autotuning Workshop




« We have demonstrated an effective
empirical tuning strategy for optimizing
the doitgen computational kernel code

— less effort than hand tuning
— better performance than either:

 hand-tuned or
e general purpose optimization
e Future

— Aggressive code generator for MV
multiplication

— Parallelize parameter search

CSCADS Autotuning Workshop




Thank you

http://icl.cs.utk.edu
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AllReduce algorithms

The QR factorization of a long and skinny matrix with its
data partitioned vertically across several processors arises
In @ wide range of applications.

Input: Output:
A is block distributed by rows Q is block distributed by rows
R is global

Q| | R

A
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AllReduce algorithms

They are used in:

.in iterative methods with multiple right-hand sides (block iterative
methods:)

> Trilinos (Sandia National Lab.) through Belos (R. Lehoucq, H. Thornquist, U. Hetmaniuk).
>BlockGMRES, BlockGCR, BlockCG, BlockQMR, ...

.in iterative methods with a single right-hand side
»S-step methods for linear systems of equations (e.g. A. Chronopoulos),
sLGMRES (Jessup, Baker, Dennis, U. Colorado at Boulder) implemented in PETSc,
sRecent work from M. Hoemmen and J. Demmel (U. California at Berkeley).

. in iterative eigenvalue solvers,
>PETSc (Argonne National Lab.) through BLOPEX (A. Knyazev, UCDHSC),
>HYPRE (Lawrence Livermore National Lab.) through BLOPEX,
> Trilinos (Sandia National Lab.) through Anasazi (R. Lehoucq, H. Thornquist, U. Hetmaniuk),
>PRIMME (A. Stathopoulos, Coll. William & Mary )
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AllReduce algorithms
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AllReduce algorithms
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AllReduce algorithms
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AllReduce algorithms
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AllReduce algorithms
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AllReduce algorithms
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AllReduce algorithms
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AllReduce algorithms
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AllReduce algorithms: performance

Weak Scalability Strong Scalability

N=50, locM=100.000 -- Pentiumlll + Dolphin N=50, M=100000 -- Pentiumlll + Dolphin
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