
Targeting MultiTargeting Multi--Core systems in Core systems in
Linear Algebra applicationsLinear Algebra applications

Alfredo Buttari, Jack Dongarra, Jakub Kurzak
and Julien Langou

presented by Dan Terpstra
terpstra@cs.utk.edu

CScADS Autotuning Workshop
Snowbird, Utah, July 9 - 12, 2007

CScADS Autotuning Workshop

The free lunch is overThe free lunch is over

Problem

• power consumption
• heat dissipation
• pins

Solution

reduce clock and
increase execution
units = Multicore

Consequence

Non-parallel software won't run any faster. A
new approach to programming is required.

Hardware

Software

CScADS Autotuning Workshop

What is a Multicore processor, BTW?What is a Multicore processor, BTW?

“a processor that combines two or more independent
processors into a single package” (wikipedia)

What about:
• types of core?

homogeneous (AMD Opteron, Intel Woodcrest...)
heterogeneous (STI Cell, Sun Niagara, NVIDIA...)

• memory?
how is it arranged?

• bus?
is it going to be fast enough?

• cache?
shared? (Intel/AMD)
not present at all? (STI Cell)

• communications?

CScADS Autotuning Workshop

WhatWhat’’s the s the MulticoreMulticore timeline?timeline?

* Source: Platform 2015: Intel® Processor and Platform Evolution for
the Next Decade, Intel White Paper (via LaBarta, et. al. SC06)

CScADS Autotuning Workshop

Parallelism in Linear Algebra software so farParallelism in Linear Algebra software so far

LAPACK

Threaded
BLAS

PThreads OpenMP

ScaLAPACK

PBLAS

BLACS
+ MPI

Shared Memory Distributed Memory

parallelism

CScADS Autotuning Workshop

Parallelism in Linear Algebra software so farParallelism in Linear Algebra software so far

LAPACK

Threaded
BLAS

PThreads OpenMP

ScaLAPACK

PBLAS

BLACS
+ MPI

Shared Memory Distributed Memory
parallelism

CScADS Autotuning Workshop

Parallelism in LAPACK: Cholesky factorizationParallelism in LAPACK: Cholesky factorization

DPOTF2: BLAS-2
non-blocked factorization of the panel

DTRSM: BLAS-3
updates by applying the
transformation computed in DPOTF2

DGEMM (DSYRK): BLAS-3
updates trailing submatrix

U= LT

CScADS Autotuning Workshop

Parallelism in LAPACK: Cholesky factorizationParallelism in LAPACK: Cholesky factorization

BLAS2 operations cannot
be efficiently parallelized
because they are
bandwidth bound.

• strict synchronizations
• poor parallelism
• poor scalability

CScADS Autotuning Workshop

Parallelism in LAPACK: Cholesky factorizationParallelism in LAPACK: Cholesky factorization

The execution flow if filled with stalls due to
synchronizations and sequential operations.

Time

CScADS Autotuning Workshop

Parallelism in LAPACK: Cholesky factorizationParallelism in LAPACK: Cholesky factorization

do DPOTF2 on

for all
do DTRSM on

end

for all
do DGEMM on

end

end

Tiling operations:

CScADS Autotuning Workshop

Parallelism in LAPACK: Cholesky factorizationParallelism in LAPACK: Cholesky factorization

Cholesky can be represented as a
Directed Acyclic Graph (DAG) where
nodes are subtasks and edges are
dependencies among them.

As long as dependencies are not
violated, tasks can be scheduled in any
order.

3:3 4:3

3:2 4:2

2:2

2:2 3:2 4:2

2:1 3:1 4:1

1:1

4:2 4:3

1:1

2:1 2:2

3:1

4:1

3:33:2

5:1 5:2 5:3 5:4 5:5

4:4

CScADS Autotuning Workshop

Time

Parallelism in LAPACK: Cholesky factorizationParallelism in LAPACK: Cholesky factorization
higher flexibility
some degree of adaptativity
no idle time
better scalability

Cost:

1 /3n3

n 3

2n3

CScADS Autotuning Workshop

Parallelism in LAPACK: block data layoutParallelism in LAPACK: block data layout

Column-Major Block data layout

CScADS Autotuning Workshop

Column-Major

Parallelism in LAPACK: block data layoutParallelism in LAPACK: block data layout

Block data layout

CScADS Autotuning Workshop

Column-Major

Parallelism in LAPACK: block data layoutParallelism in LAPACK: block data layout

Block data layout

CScADS Autotuning Workshop

64 128 256
0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

Blocking Speedup

DGEMM
DTRSM

block size

sp
ee

du
p

The use of block data layout storage can
significantly improve performance

Parallelism in LAPACK: block data layoutParallelism in LAPACK: block data layout

CScADS Autotuning Workshop

Cholesky: performance Cholesky: performance

0 2000 4000 6000 8000 10000
0

5

10

15

20

25

30

35

40

45

50

55

Cholesky -- Dual Clovertown

async. 2d b locking
LAPACK + Th. BLAS

problem size

G
flo

p/
s

CScADS Autotuning Workshop

Cholesky: performance Cholesky: performance

0 2500 5000 7500 10000 12500 15000
2.5

5
7.5
10

12.5
15

17.5
20

22.5
25

27.5
30

32.5
35

Cholesky -- 8-way Dual Opteron

async. 2d b locking
LAPACK + Th.
BLAS

problem size

G
flo

p/
s

CScADS Autotuning Workshop

Parallelism in LAPACK: LU/QR factorizationsParallelism in LAPACK: LU/QR factorizations

DGETF2: BLAS-2
non-blocked panel
factorization

DTRSM: BLAS-3
updates U with
transformation computed in
DGETF2

DGEMM: BLAS-3
updates the trailing
submatrix

CScADS Autotuning Workshop

Parallelism in LAPACK: LU/QR factorizationsParallelism in LAPACK: LU/QR factorizations

The LU and QR factorizations
algorithms in LAPACK don't allow
for 2D distribution and block
storage format.

LU: pivoting takes into account
the whole panel and cannot be
split in a block fashion.

QR: the computation of
Householder reflectors acts on
the whole panel.

The application of the
transformation can only be
sliced but not blocked.

CScADS Autotuning Workshop

Time

Parallelism in LAPACK: LU/QR factorizationsParallelism in LAPACK: LU/QR factorizations

LU

CScADS Autotuning Workshop

0 2000 4000 6000 8000 10000
0

2.5
5

7.5
10

12.5
15

17.5
20

22.5
25

27.5
30

32.5
35

LU -- Dual Clovertown

async. 1D
LAPACK + Th. BLAS

problem size

G
flo

p/
s

LU factorization: performanceLU factorization: performance

CScADS Autotuning Workshop

Multicore friendly, Multicore friendly, ““delightfully delightfully
parallelparallel**””, algorithms, algorithms
Computer Science can't go any further on old algorithms.
We need some math...

* quote from Prof. S. Kale

CScADS Autotuning Workshop

Assume that is the part
of the matrix that has been
already factorized and
contains the Householder
reflectors that determine the
matrix Q.

The QR factorization in LAPACKThe QR factorization in LAPACK

The QR transformation factorizes a matrix A into the
factors Q and R where Q is unitary and R is upper
triangular. It is based on Householder reflections.

CScADS Autotuning Workshop

The QR factorization in LAPACKThe QR factorization in LAPACK

The QR transformation factorizes a matrix A into the
factors Q and R where Q is unitary and R is upper
triangular. It is based on Householder reflections.

=DGEQR2()

CScADS Autotuning Workshop

The QR factorization in LAPACKThe QR factorization in LAPACK

The QR transformation factorizes a matrix A into the
factors Q and R where Q is unitary and R is upper
triangular. It is based on Householder reflections.

=DLARFB()

CScADS Autotuning Workshop

The QR factorization in LAPACKThe QR factorization in LAPACK

The QR transformation factorizes a matrix A into the
factors Q and R where Q is unitary and R is upper
triangular. It is based on Householder reflections.

How does it compare to LU?
It is stable because it uses

Householder transformations
that are orthogonal
It is more expensive than LU

because its operation count is
versus4 /3 n3 2 /3 n3

CScADS Autotuning Workshop

Multicore friendly algorithms: QRMulticore friendly algorithms: QR

=DGEQR2()

A different algorithm can be used where operations
can be broken down into tiles.

The QR factorization of the
upper left tile is performed.
This operation returns
a small R factor:
and the corresponding
Householder reflectors:

CScADS Autotuning Workshop

=DLARFB()

Multicore friendly algorithmsMulticore friendly algorithms: QR: QR

A different algorithm can be used where operations
can be broken down into tiles.

All the tiles in the first block-
row are updated by
applying the transformation

computed at the
previous step.

CScADS Autotuning Workshop

1 =DGEQR2()

Multicore friendly algorithmsMulticore friendly algorithms: QR: QR

A different algorithm can be used where operations
can be broken down into tiles.

The R factor computed at
the first step is coupled with
one tile in the block-column
and a QR factorization is
computed. Flops can be saved
due to the shape of the matrix
resulting from the coupling.

CScADS Autotuning Workshop

1=DLARFB()

Multicore friendly Multicore friendly algorithms: QRalgorithms: QR

A different algorithm can be used where operations
can be broken down into tiles.

Each couple of tiles along
the corresponding block rows is
updated by applying the
transformations computed in
the previous step. Flops can be
saved considering the shape of
the Householder vectors.

CScADS Autotuning Workshop

1 =DGEQR2()

Multicore friendly Multicore friendly algorithms: QRalgorithms: QR

A different algorithm can be used where operations
can be broken down into tiles.

The last two steps are
repeated for all the tiles in the
first block-column.

CScADS Autotuning Workshop

1=DLARFB()

Multicore friendly Multicore friendly algorithms: QRalgorithms: QR

A different algorithm can be used where operations
can be broken down into tiles.

The last two steps are
repeated for all the tiles in the
first block-column.

CScADS Autotuning Workshop

1=DLARFB()

Multicore friendly Multicore friendly algorithms: QRalgorithms: QR

A different algorithm can be used where operations
can be broken down into tiles.

The last two steps are
repeated for all the tiles in the
first block-column.

25% more Flops than the LAPACK version!!!*

*we are working on a way to remove these extra flops.

CScADS Autotuning Workshop

Multicore friendly Multicore friendly algorithms: QRalgorithms: QR

CScADS Autotuning Workshop

Multicore friendly Multicore friendly algorithms: QRalgorithms: QR

Very fine granularity
Few dependencies, i.e.,

high flexibility for the
scheduling of tasks
Block data layout is

possible

CScADS Autotuning Workshop

Time

Multicore friendly Multicore friendly algorithms: QRalgorithms: QR

Execution flow on a 8-way dual core Opteron.

CScADS Autotuning Workshop

Multicore friendly Multicore friendly algorithms: QRalgorithms: QR

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
0

2000

4000

6000

8000

10000

12000

14000

16000

18000

20000

22000

QR Factorizat ion: Scaling -- 8-way Dual Opteron

LAPACK + Th. BLAS
async. 1D
async. 2D blocking

n. of processes

G
flo

p/
s

CScADS Autotuning Workshop

Multicore friendly Multicore friendly algorithms: QRalgorithms: QR

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
0

2000

4000

6000

8000

10000

12000

14000

16000

18000

20000

22000

QR Factorizat ion: Scaling -- 8-way Dual Opteron

LAPACK + Th. BLAS
async. 1D
async. 2D blocking

n. of processes

G
flo

p/
s

CScADS Autotuning Workshop

Multicore friendly Multicore friendly algorithms: QRalgorithms: QR

0 1000 2000 3000 4000 5000 6000 7000 8000 9000 1000
0

0

2.5

5

7.5

10

12.5

15

17.5

20

22.5

QR Factorizat ion -- 8-way Dual Opteron

LAPACK + Th. BLAS
async. 1D
async 2D blocking

problem size

G
flo

p/
s

CScADS Autotuning Workshop

Multicore friendly Multicore friendly algorithms: QRalgorithms: QR

0 1000 2000 3000 4000 5000 6000 7000 8000 9000 1000
0

0
2.5

5
7.5
10

12.5
15

17.5
20

22.5
25

27.5
30

32.5
35

QR Factor izat ion -- Dual Clovertown

async. 2D blocking
async. 1D
LAPACK+ Th. BLAS

problem size

G
flo

p/
s

CScADS Autotuning Workshop

Current work and future plansCurrent work and future plans

CScADS Autotuning Workshop

Current work and future plansCurrent work and future plans

Implement LU factorization on multicores
Is it possible to apply the same approach to two-

sided transformations (Hessenberg, Bi-Diag, Tri-
Diag)?
Explore techniques to avoid extra flops
Implement the new algorithms on distributed

memory architectures (J. Langou and J. Demmel)
Implement the new algorithms on the Cell

processor
Explore automatic exploitation of parallelism

through graph driven programming environments

CScADS Autotuning Workshop

CellSuperScalar and SMPSuperScalarCellSuperScalar and SMPSuperScalar

http://www.bsc.es/cellsuperscalar

uses source-to-source translation to determine
dependencies among tasks
scheduling of tasks is performed automatically

by means of the features provided by a library
it is easily possible to explore different

scheduling policies
all of this is obtained by decorating the code

with pragmas and, thus, is transparent to other
compilers

CScADS Autotuning Workshop

app.c

CSS
compiler

app_spe.c

app_ppe.c

llib_css-spe.so

Cell
executable

llib_css-ppe.so

SPE Linker

PPE Linker

SPE
executableSPE Compiler app_spe.o

PPE Compiler app_ppe.o
SPE Embedder

SPE Linker

PPE
Object

SDK

Compilation EnvironmentCompilation Environment

CScADS Autotuning Workshop

for (i = 0; i < DIM; i++) {
for (j= 0; j< i-1; j++){

for (k = 0; k < j-1; k++) {
sgemm_tile(A[i][k], A[j][k], A[i][j]);

}
strsm_tile(A[j][j], A[i][j]);

}
for (j = 0; j < i-1; j++) {

ssyrk_tile(A[i][j], A[i][i]);
}
spotrf_tile(A[i][i]);

}

void sgemm_tile(float *A, float *B, float *C)

void strsm_tile(float *T, float *B)

void ssyrk_tile(float *A, float *C)

CellSuperScalar and SMPSuperScalarCellSuperScalar and SMPSuperScalar

CScADS Autotuning Workshop

for (i = 0; i < DIM; i++) {
for (j= 0; j< i-1; j++){

for (k = 0; k < j-1; k++) {
sgemm_tile(A[i][k], A[j][k], A[i][j]);

}
strsm_tile(A[j][j], A[i][j]);

}
for (j = 0; j < i-1; j++) {

ssyrk_tile(A[i][j], A[i][i]);
}
spotrf_tile(A[i][i]);

}

#pragma css task input(A[64][64], B[64][64]) inout(C[64][64])
void sgemm_tile(float *A, float *B, float *C)

#pragma css task input (T[64][64]) inout(B[64][64])
void strsm_tile(float *T, float *B)

#pragma css task input(A[64][64], B[64][64]) inout(C[64][64])
void ssyrk_tile(float *A, float *C)

CellSuperScalar and SMPSuperScalarCellSuperScalar and SMPSuperScalar

CScADS Autotuning Workshop

Empirical TuningEmpirical Tuning
of MADNESSof MADNESS

Haihang You and Keith SeymourHaihang You and Keith Seymour

CScADS Autotuning Workshop

• SciDAC code by Robert Harrison @
ORNL

• Framework for adaptive multiresolution
methods in multiwavelet bases

• Collaborative optimization effort as part
of UTK’s participation in PERI, the
Performance Engineering Research
Institute

WhatWhat’’s MADNESS?s MADNESS?

CScADS Autotuning Workshop

front end

code

IR CG

Search Engine

Loop Analyzer code

Driver
generator

testing
driver

info of tuning parameters

tuning parameters

+

GCO FrameworkGCO Framework

CScADS Autotuning Workshop

• GCO didn’t work!
• Instead:

– Extract matrix-vector multiplication
kernel from doitgen routine

– Design and hand-code a specific code
generator for small size matrix-vector
multiplication

– Tune optimal block size and unrolling
factor separately for each input size

MADNESS Kernel TuningMADNESS Kernel Tuning

CScADS Autotuning Workshop

MFLOPS Opteron(1.8 GHz)

0

500

1000

1500

2000

2500

1 4 7 10 13 16 19 22 25 28 31
SIZE

M
FL

O
PS

auto-tuned C matrix-
vector kernel
hand-tuned Fortran
multi-resolution kernel
reference kernel in C

atlas matrix-vector C
kernel

CScADS Autotuning Workshop

MFLOPS Pentium 4(1.7 GHz)

0

200

400

600

800

1000

1200

1 4 7 10 13 16 19 22 25 28 31
SIZE

M
FL

O
PS

auto-tuned C matrix-
vector kernel
hand-tuned Fortran
multi-resolution kernel
reference Kernel in C

atlas matrix-vector C
kernel

CScADS Autotuning Workshop

MFLOPS Woodcrest(3.0 GHz)

0

500

1000

1500

2000

2500

3000

3500

4000

1 4 7 10 13 16 19 22 25 28

SIZE

M
FL

O
PS

auto-tuned C matrix-
vector kernel
hand-tuned Fortran
multi-resolution kernel
reference kernel in C

atlas matrix-vector C
kernel

CScADS Autotuning Workshop

MADNESS Conclusions
• We have demonstrated an effective

empirical tuning strategy for optimizing
the doitgen computational kernel code
– less effort than hand tuning
– better performance than either:

• hand-tuned or
• general purpose optimization

• Future
– Aggressive code generator for MV

multiplication
– Parallelize parameter search

CScADS Autotuning Workshop

Thank youThank you

http://icl.cs.utk.edu

CScADS Autotuning Workshop

AllReduce algorithmsAllReduce algorithms

57

The QR factorization of a long and skinny matrix with its
data partitioned vertically across several processors arises
in a wide range of applications.

Input:
A is block distributed by rows

Output:
Q is block distributed by rows
R is global

A1

A2

A3

Q1

Q2

Q3

R

CScADS Autotuning Workshop

AllReduce algorithmsAllReduce algorithms

in iterative methods with multiple right-hand sides (block iterative
methods:)

Trilinos (Sandia National Lab.) through Belos (R. Lehoucq, H. Thornquist, U. Hetmaniuk).

BlockGMRES, BlockGCR, BlockCG, BlockQMR, …

in iterative methods with a single right-hand side

s-step methods for linear systems of equations (e.g. A. Chronopoulos),

LGMRES (Jessup, Baker, Dennis, U. Colorado at Boulder) implemented in PETSc,

Recent work from M. Hoemmen and J. Demmel (U. California at Berkeley).

in iterative eigenvalue solvers,

PETSc (Argonne National Lab.) through BLOPEX (A. Knyazev, UCDHSC),

HYPRE (Lawrence Livermore National Lab.) through BLOPEX,

Trilinos (Sandia National Lab.) through Anasazi (R. Lehoucq, H. Thornquist, U. Hetmaniuk),

PRIMME (A. Stathopoulos, Coll. William & Mary)

They are used in:

CScADS Autotuning Workshop

AllReduce algorithmsAllReduce algorithms

A0

A1

p
ro

ce
ss

e
s

time

CScADS Autotuning Workshop

R0
(0)

(,) QR ()

A0 V0
(0)

R1
(0)

(,) QR ()

A1 V1
(0)

p
ro

ce
ss

e
s

time

11

11

AllReduce algorithmsAllReduce algorithms

CScADS Autotuning Workshop

R0
(0)

(,) QR ()

A0 V0
(0)

) R0
(0)

R1
(0)

R1
(0)

(,) QR ()

A1 V1
(0)

p
ro

ce
ss

e
s

time

11

11

11

(

AllReduce algorithmsAllReduce algorithms

CScADS Autotuning Workshop

R0
(0)

(,) QR ()

A0 V0
(0)

R0
(1)

(,) QR () R0
(0)

R1
(0)

V0
(1)

V1
(1)

R1
(0)

(,) QR ()

A1 V1
(0)

p
ro

ce
ss

e
s

time

11

11

22

11

AllReduce algorithmsAllReduce algorithms

CScADS Autotuning Workshop

R0
(0)

(,) QR ()

A0 V0
(0)

R0
(1)

(,) QR () R0
(0)

R1
(0)

V0
(1)

V1
(1)

InApply (to) V0
(1)

0nV1
(1)

Q0
(1)

Q1
(1)

R1
(0)

(,) QR ()

A1 V1
(0)

p
ro

ce
ss

e
s

time

11

11

22

33

11

AllReduce algorithmsAllReduce algorithms

CScADS Autotuning Workshop

R0
(0)

(,) QR ()

A0 V0
(0)

R0
(1)

(,) QR () R0
(0)

R1
(0)

V0
(1)

V1
(1)

InApply (to) V0
(1)

0nV1
(1)

Q0
(1)

Q1
(1)

Q0
(1)

R1
(0)

(,) QR ()

A1 V1
(0)

p
ro

ce
ss

e
s

time

11

11

22

33

11 22

Q1
(1)

AllReduce algorithmsAllReduce algorithms

CScADS Autotuning Workshop

R0
(0)

(,) QR ()

A0 V0
(0)

R0
(1)

(,) QR () R0
(0)

R1
(0)

V0
(1)

V1
(1)

InApply (to) V0
(1)

0nV1
(1)

Q0
(1)

Q1
(1)

Apply (to)
0n

V0
(0)

Q0
(1)

Q0

R1
(0)

(,) QR ()

A1 V1
(0)

Apply (to)

V1
(0)

Q1
(1)

Q1

p
ro

ce
ss

e
s

time

0n

11

11

22

33

44

44

11 22

AllReduce algorithmsAllReduce algorithms

CScADS Autotuning Workshop

p
ro

ce
ss

e
s

time

R0
(0) () QR ()

A0

R0
(1) ()

QR ()
R0

(0)

R1
(0)

R1
(0) () QR ()

A1

R2
(0) () QR ()

A2

R2
(1) ()

QR ()
R2

(0)

R3
(0)

R3
(0) () QR ()

A3

R()
QR ()

R0
(1)

R2
(1)

11

11

11

2222

22

11

11

11

11

AllReduce algorithmsAllReduce algorithms

CScADS Autotuning Workshop

0 10 20 30 40 50 60 70
10
20

30

40

50
60
70

80

90

100

110

120
130

N= 50, locM= 100.000 -- Pent ium III + Dolphin

rhh_qr3
qrf

of processors

M
flo

p/
s

pe
r

pr
oc

es
so

r

0 5 10 15 20 25 30 35
10

20

30

40

50

60

70

80

90

100

110

120

N= 50, M= 100000 -- Pent ium III + Dolphin

rhh_qr3
qrf

of processors

M
flo

ps
/s

 p
er

 p
ro

ce
ss

or

AllReduce algorithms: performanceAllReduce algorithms: performance

Weak Scalability Strong Scalability

