Targeting Multi-Core systems in Linear Algebra applications

Alfredo Buttari, Jack Dongarra, Jakub Kurzak and Julien Langou presented by Dan Terpstra <u>terpstra@cs.utk.edu</u>

CScADS Autotuning Workshop Snowbird, Utah, July 9 - 12, 2007

The free lunch is over

Hardware

Problem

power consumption
heat dissipation

• pins

Solution

reduce clock and increase execution units = Multicore

Software

Consequence

Non-parallel software won't run any faster. A new approach to programming is required.

CScADS Autotuning Workshop

ICL OF NNOVATIVE COMPUTING LABORATORY

What is a Multicore processor, BTW?

"a processor that combines two or more independent processors into a single package" (wikipedia)

What about:

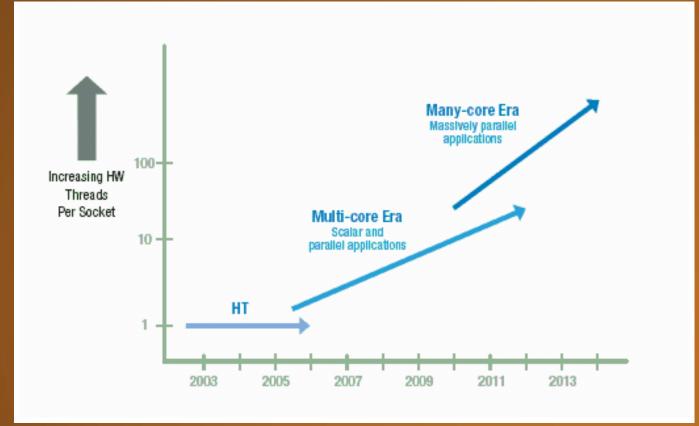
types of core?

- A homogeneous (AMD Opteron, Intel Woodcrest...)
- heterogeneous (STI Cell, Sun Niagara, NVIDIA...)
- memory?
 - how is it arranged?
- bus?
 - is it going to be fast enough?
- cache?
 - → shared? (Intel/AMD)
 - → not present at all? (STI Cell)
- communications?

CScADS Autotuning Workshop

ICL OF INNOVATIVE COMPUTING LABORATORY

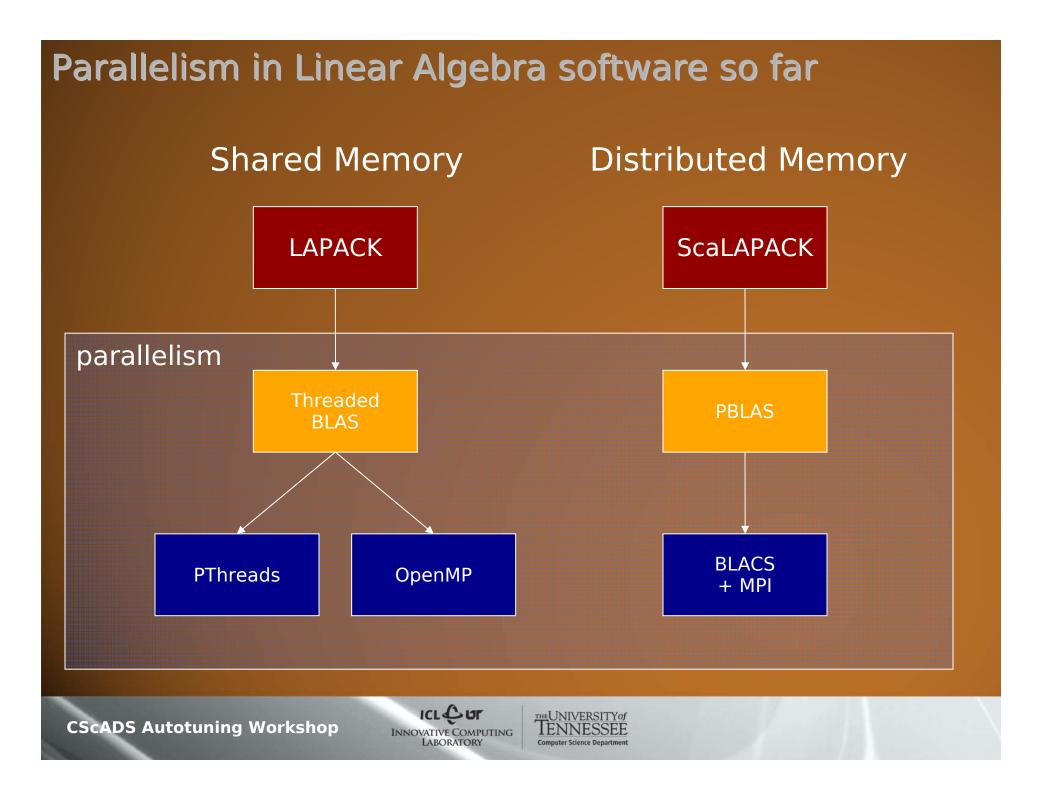
What's the Multicore timeline?



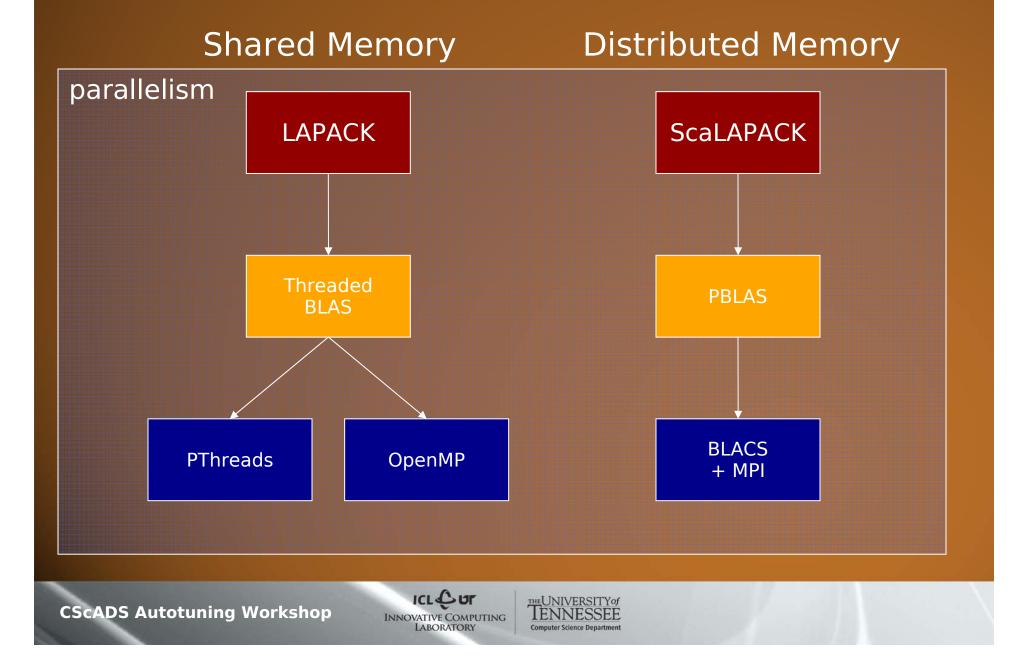
* Source: Platform 2015: Intel® Processor and Platform Evolution for the Next Decade, Intel White Paper (via LaBarta, et. al. SC06)

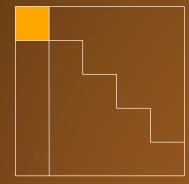
CScADS Autotuning Workshop

ICL C UT INNOVATIVE COMPUTING LABORATORY

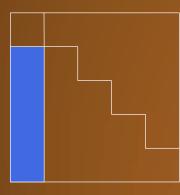


Parallelism in Linear Algebra software so far

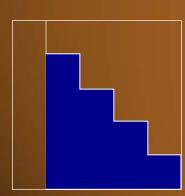




DPOTF2: BLAS-2 non-blocked factorization of the panel



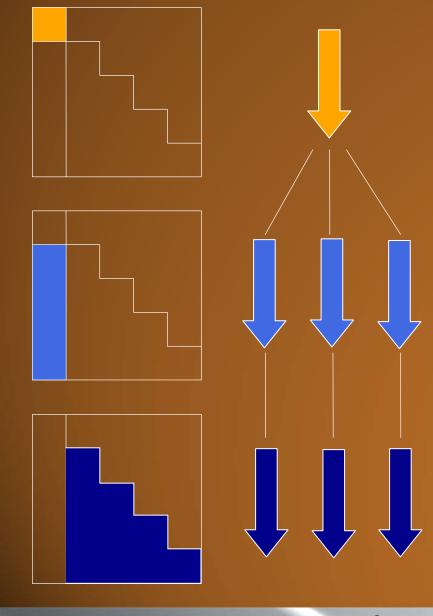
DTRSM: BLAS-3 updates by applying the $U=L^{T}$ transformation computed in DPOTF2



DGEMM (DSYRK): BLAS-3 updates trailing submatrix

CScADS Autotuning Workshop

ICL C UT INNOVATIVE COMPUTING LABORATORY



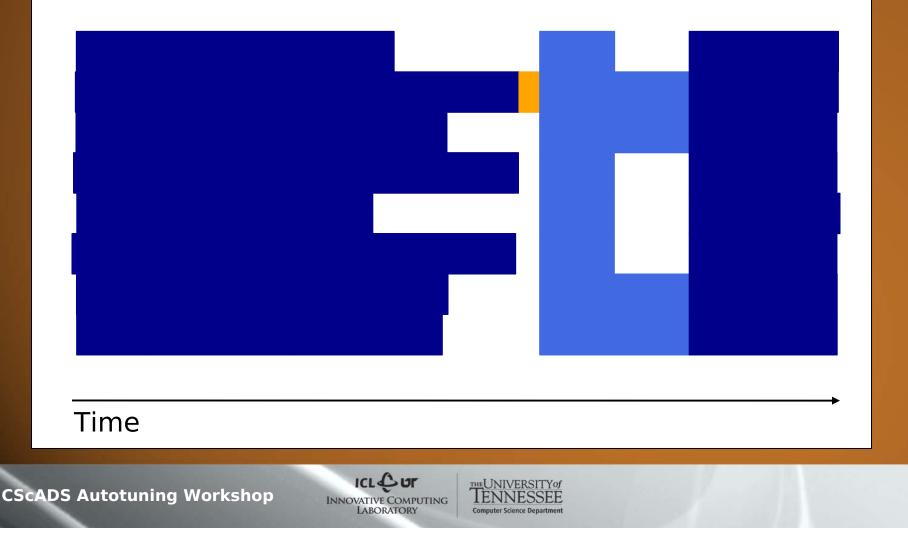
BLAS2 operations cannot be efficiently parallelized because they are bandwidth bound.

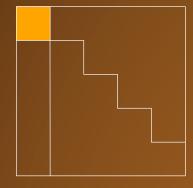
strict synchronizations
poor parallelism
poor scalability

CScADS Autotuning Workshop

ICL C UT INNOVATIVE COMPUTING LABORATORY

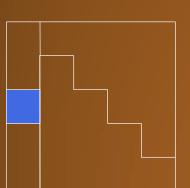
The execution flow if filled with stalls due to synchronizations and sequential operations.





Tiling operations:

do DPOTF2 on



for all do DTRSM on end

for all do DGEMM on end

end

CScADS Autotuning Workshop

ICL C UT INNOVATIVE COMPUTING LABORATORY

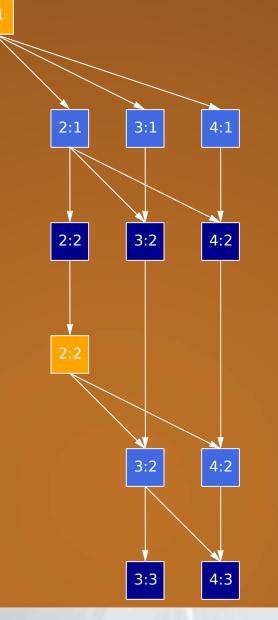
1:1				
2:1	2:2			
3:1	3:2	3:3		
4:1	4:2	4:3	4:4	
5:1	5:2	5:3	5:4	5:5

Cholesky can be represented as a Directed Acyclic Graph (DAG) where nodes are subtasks and edges are dependencies among them.

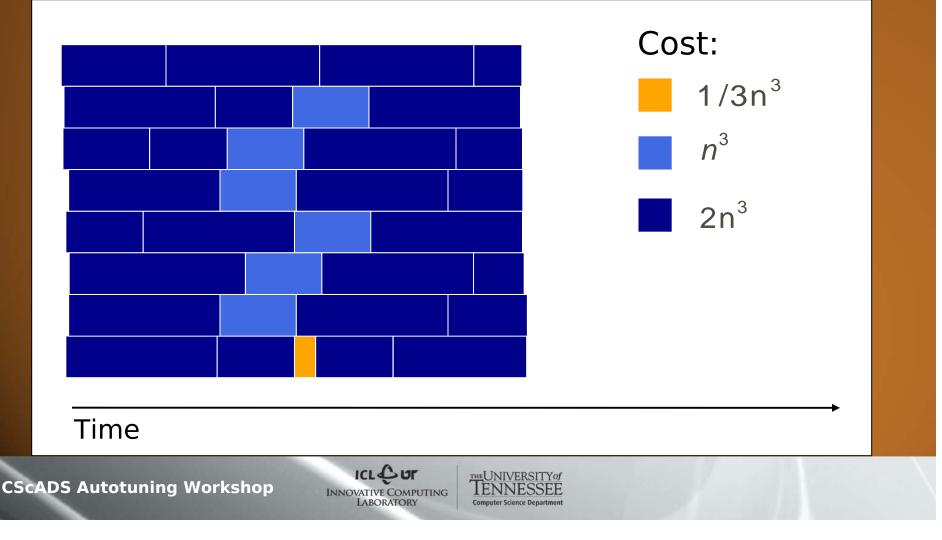
As long as dependencies are not violated, tasks can be scheduled in any order.

CScADS Autotuning Workshop

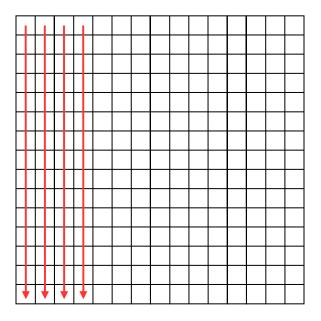
ICL C UT INNOVATIVE COMPUTING LABORATORY



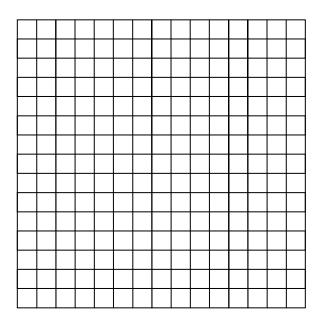
- higher flexibility
- some degree of adaptativity
- no idle time
- better scalability



Column-Major



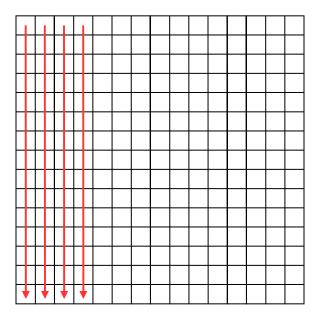
Block data layout



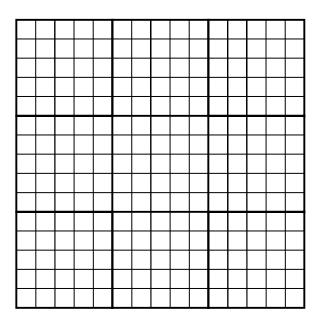
CScADS Autotuning Workshop

ICL C UT INNOVATIVE COMPUTING LABORATORY

Column-Major



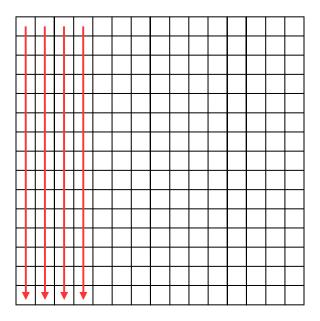
Block data layout



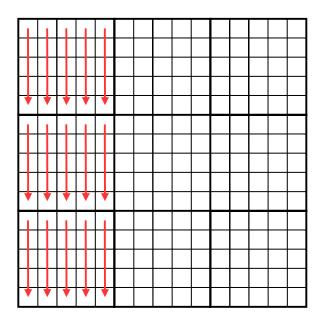
CScADS Autotuning Workshop

ICL C UT INNOVATIVE COMPUTING LABORATORY

Column-Major



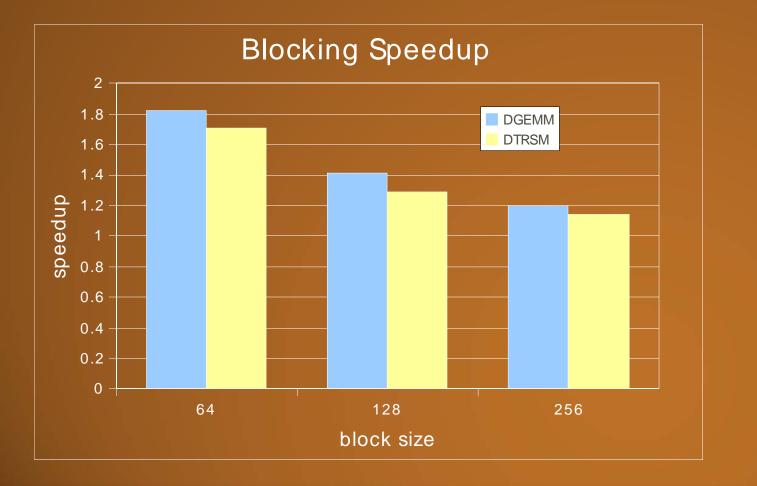
Block data layout



CScADS Autotuning Workshop

ICL C UT INNOVATIVE COMPUTING LABORATORY

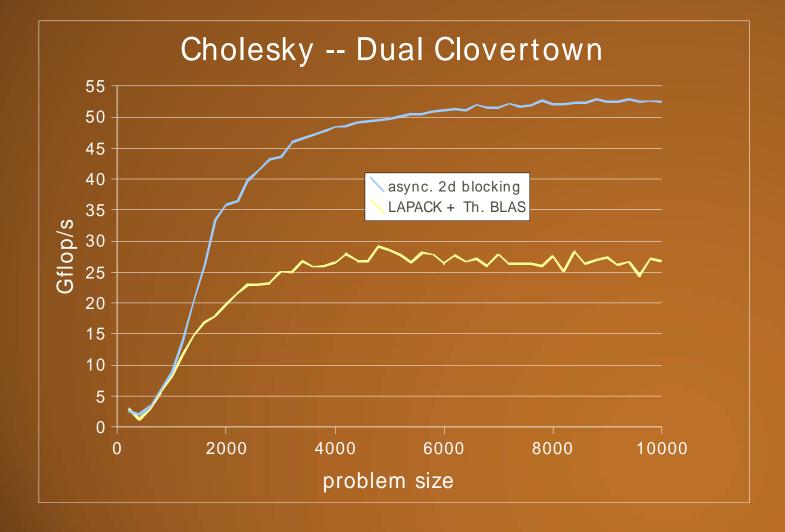
The use of block data layout storage can significantly improve performance



CScADS Autotuning Workshop

ICL OUT INNOVATIVE COMPUTING LABORATORY

Cholesky: performance



CScADS Autotuning Workshop

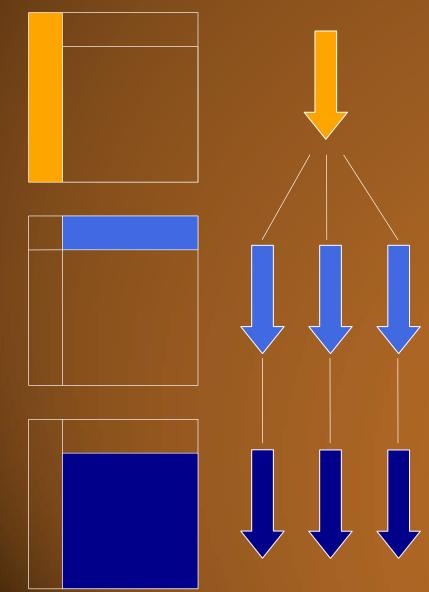
ICL C UT INNOVATIVE COMPUTING LABORATORY

Cholesky: performance

CScADS Autotuning Workshop

ICL C UT INNOVATIVE COMPUTING LABORATORY

Parallelism in LAPACK: LU/QR factorizations



DGETF2: BLAS-2 non-blocked panel factorization

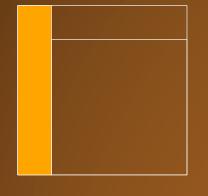
DTRSM: BLAS-3 updates U with transformation computed in DGETF2

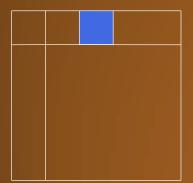
DGEMM: BLAS-3 updates the trailing submatrix

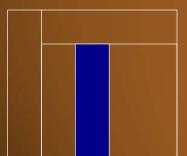
CScADS Autotuning Workshop

ICL & UT INNOVATIVE COMPUTING LABORATORY

Parallelism in LAPACK: LU/QR factorizations





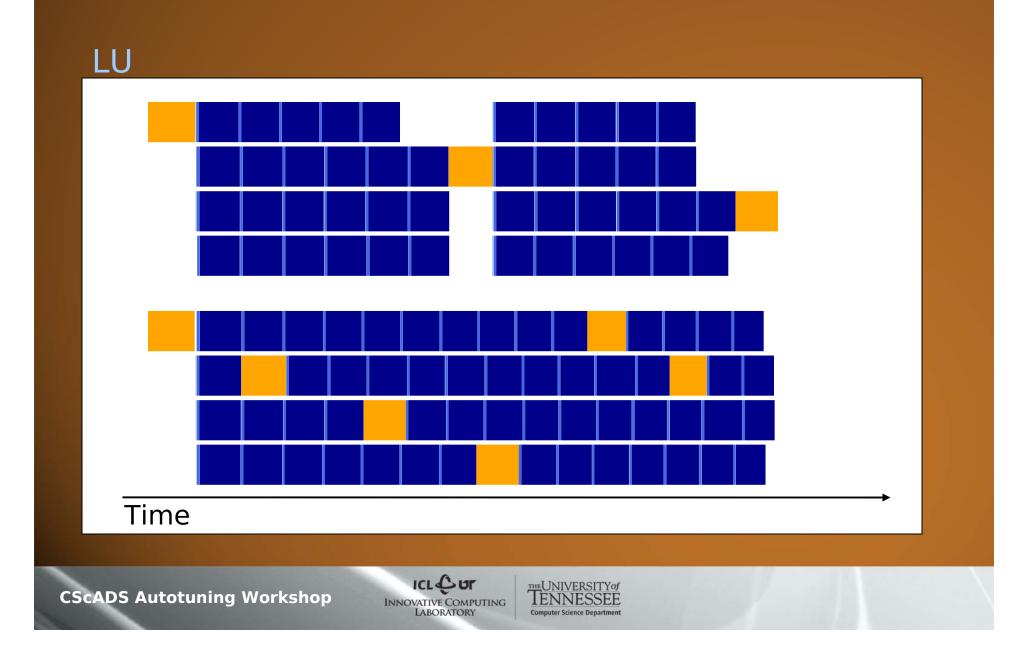


The LU and QR factorizations algorithms in LAPACK don't allow for 2D distribution and block storage format. • LU: pivoting takes into account the whole panel and cannot be split in a block fashion. • QR: the computation of Householder reflectors acts on the whole panel. The application of the transformation can only be sliced but not blocked.

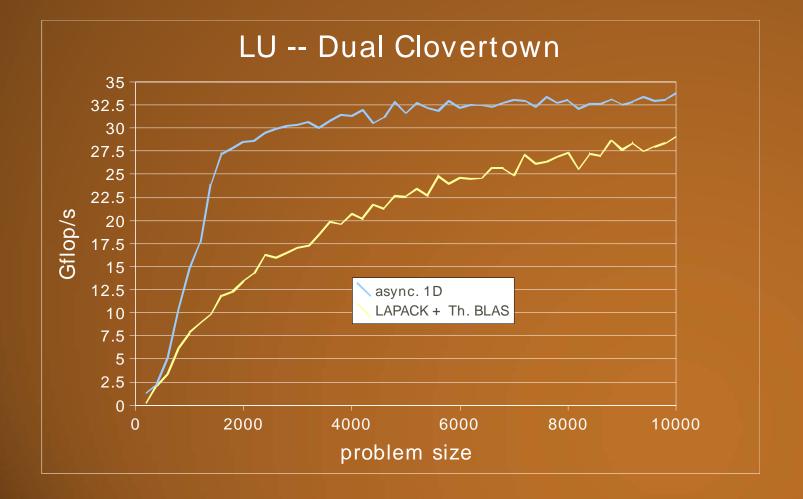
CScADS Autotuning Workshop

ICL OF NNOVATIVE COMPUTING LABORATORY

Parallelism in LAPACK: LU/QR factorizations



LU factorization: performance



CScADS Autotuning Workshop

ICL C UT INNOVATIVE COMPUTING LABORATORY

Multicore friendly, "*delightfully* parallel^{*}", algorithms

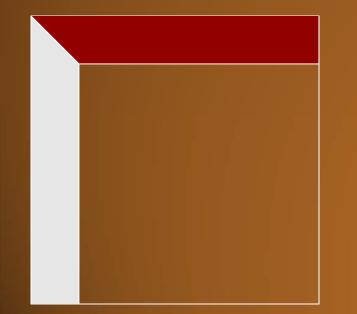
Computer Science can't go any further on old algorithms. We need some math...

* quote from Prof. S. Kale

CScADS Autotuning Workshop

ICL CUT INNOVATIVE COMPUTING LABORATORY

The QR transformation factorizes a matrix A into the factors Q and R where Q is unitary and R is upper triangular. It is based on Householder reflections.



Assume that is the part of the matrix that has been already factorized and contains the Householder reflectors that determine the matrix Q.

CScADS Autotuning Workshop

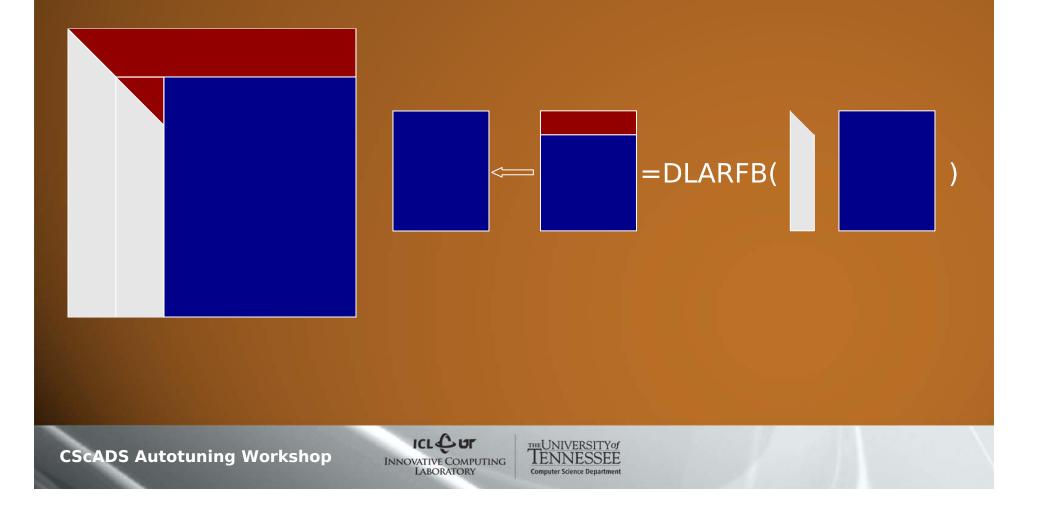
ICL C UT NOVATIVE COMPUTING LABORATORY

The QR transformation factorizes a matrix A into the factors Q and R where Q is unitary and R is upper triangular. It is based on Householder reflections.

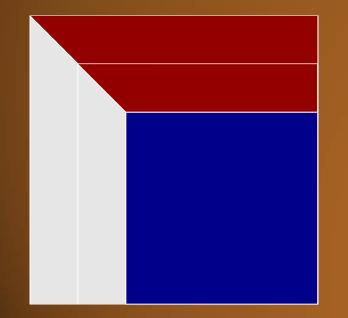
CScADS Autotuning Workshop

ICL OUT INNOVATIVE COMPUTING LABORATORY

The QR transformation factorizes a matrix A into the factors Q and R where Q is unitary and R is upper triangular. It is based on Householder reflections.



The QR transformation factorizes a matrix A into the factors Q and R where Q is unitary and R is upper triangular. It is based on Householder reflections.

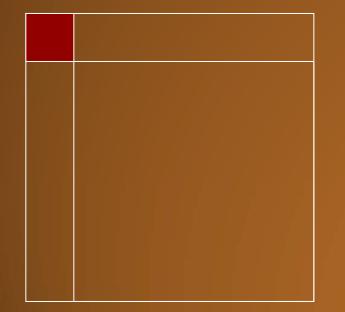


How does it compare to LU?
It is stable because it uses Householder transformations that are orthogonal
It is more expensive than LU because its operation count is 4/3 n³ versus 2/3 n³

CScADS Autotuning Workshop

ICL OUT NNOVATIVE COMPUTING LABORATORY

A different algorithm can be used where operations can be broken down into tiles.



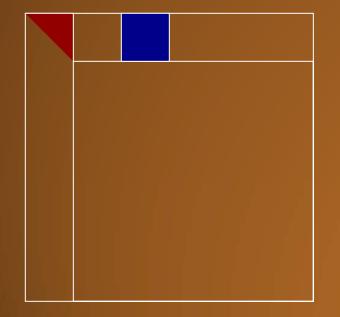
____ =DGEQR2(____)

The QR factorization of the upper left tile is performed. This operation returns a small R factor: and the corresponding Householder reflectors:

CScADS Autotuning Workshop

ICL OUT NOVATIVE COMPUTING LABORATORY

A different algorithm can be used where operations can be broken down into tiles.



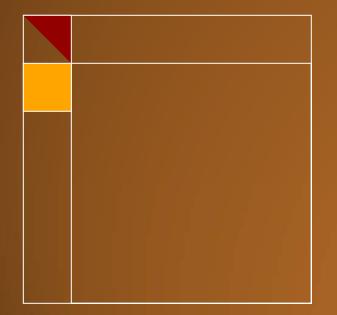
____ =DLARFB(_____)

All the tiles in the first blockrow are updated by applying the transformation computed at the previous step.

CScADS Autotuning Workshop

ICL C UT NOVATIVE COMPUTING LABORATORY

A different algorithm can be used where operations can be broken down into tiles.



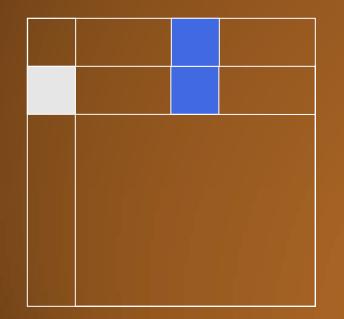
→ 1 =DGEQR2()

The R factor computed at the first step is coupled with one tile in the block-column and a QR factorization is computed. Flops can be saved due to the shape of the matrix resulting from the coupling.

CScADS Autotuning Workshop

ICL OUT NNOVATIVE COMPUTING LABORATORY

A different algorithm can be used where operations can be broken down into tiles.



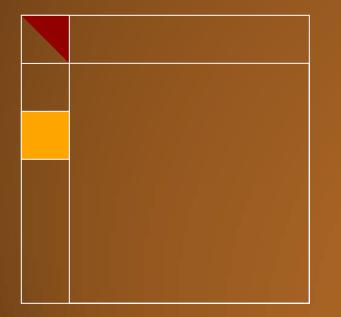
=DLARFB(1

Each couple of tiles along the corresponding block rows is updated by applying the transformations computed in the previous step. Flops can be saved considering the shape of the Householder vectors.

CScADS Autotuning Workshop

ICL OUT NNOVATIVE COMPUTING LABORATORY

A different algorithm can be used where operations can be broken down into tiles.

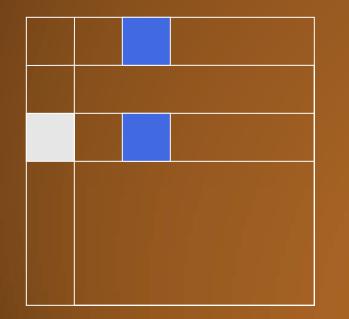


The last two steps are repeated for all the tiles in the first block-column.

CScADS Autotuning Workshop

ICL OUT

A different algorithm can be used where operations can be broken down into tiles.

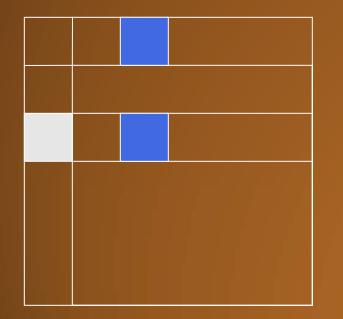


The last two steps are repeated for all the tiles in the first block-column.

CScADS Autotuning Workshop

ICL OUT

A different algorithm can be used where operations can be broken down into tiles.



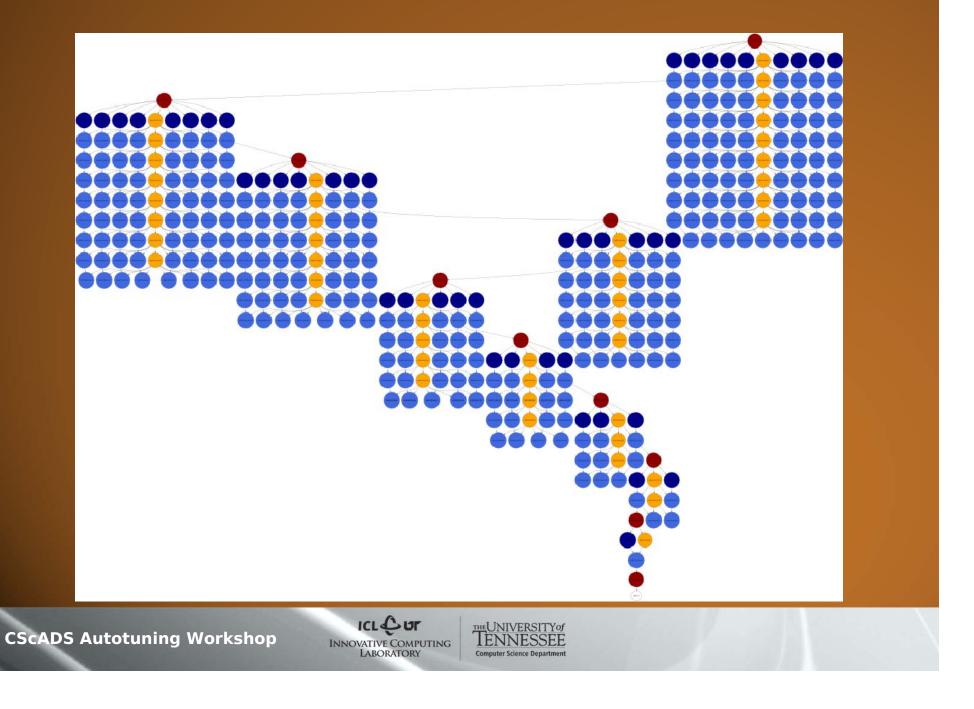
The last two steps are repeated for all the tiles in the first block-column.

25% more Flops than the LAPACK version!!!*

*we are working on a way to remove these extra flops.

CScADS Autotuning Workshop

ICL C UT INNOVATIVE COMPUTING LABORATORY

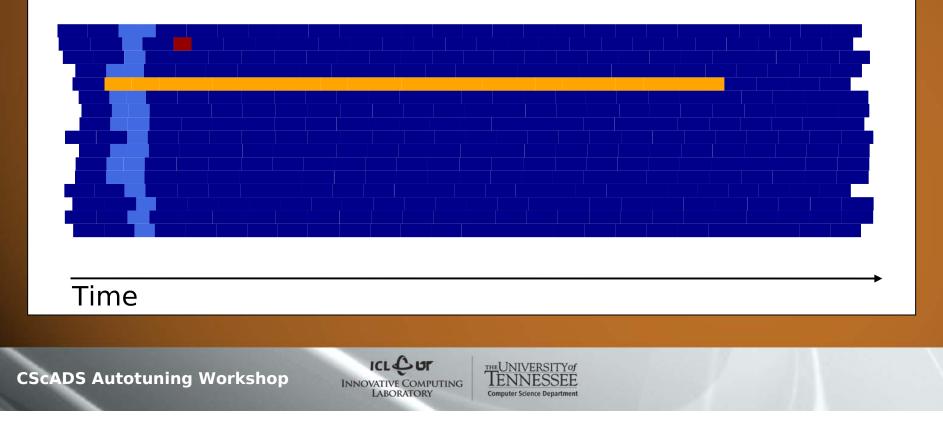


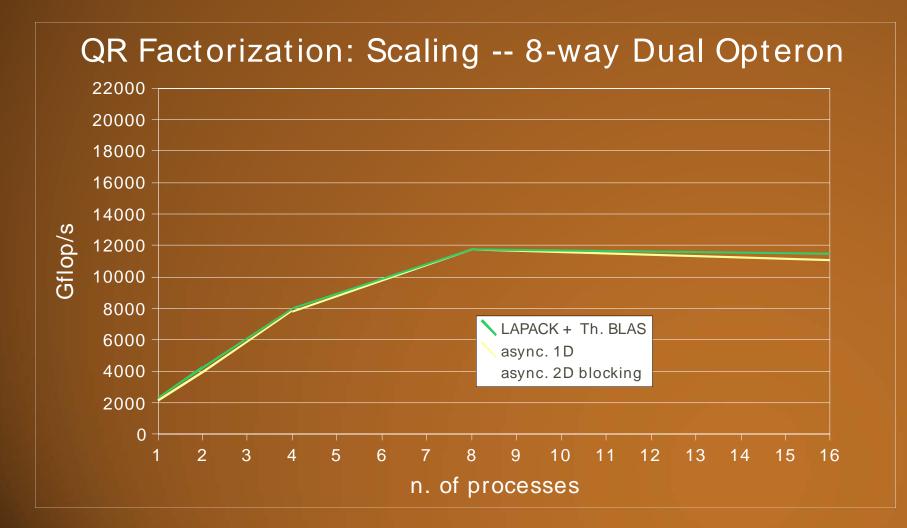
Very fine granularity
Few dependencies, i.e., high flexibility for the scheduling of tasks
Block data layout is possible

CScADS Autotuning Workshop

ICL C UT INNOVATIVE COMPUTING LABORATORY

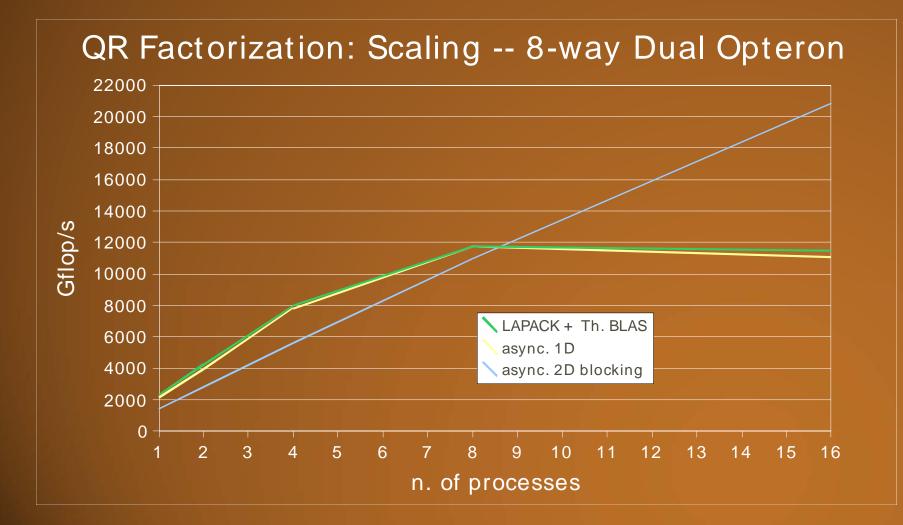
Execution flow on a 8-way dual core Opteron.





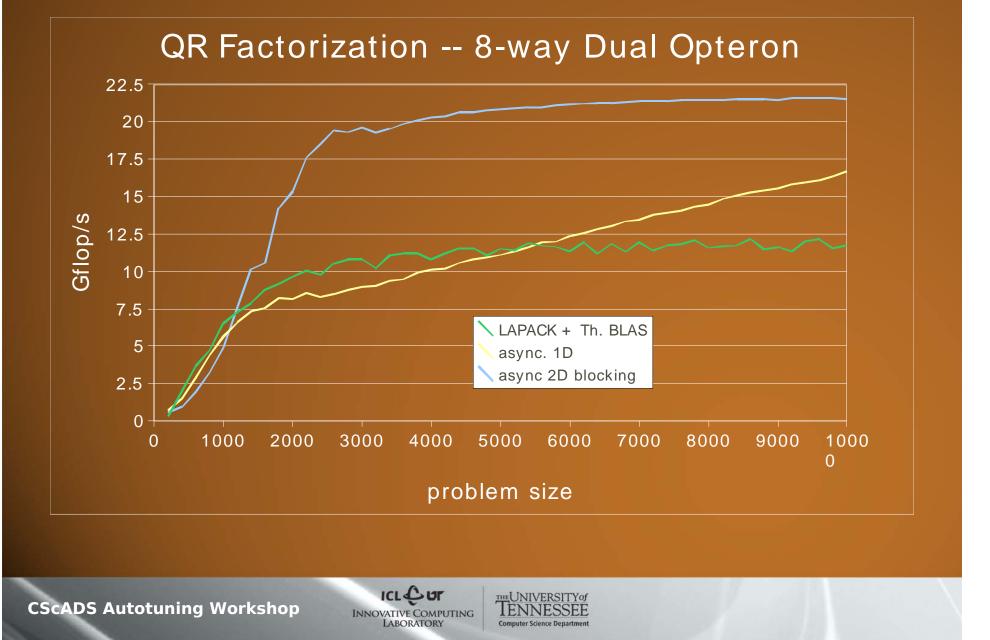
CScADS Autotuning Workshop

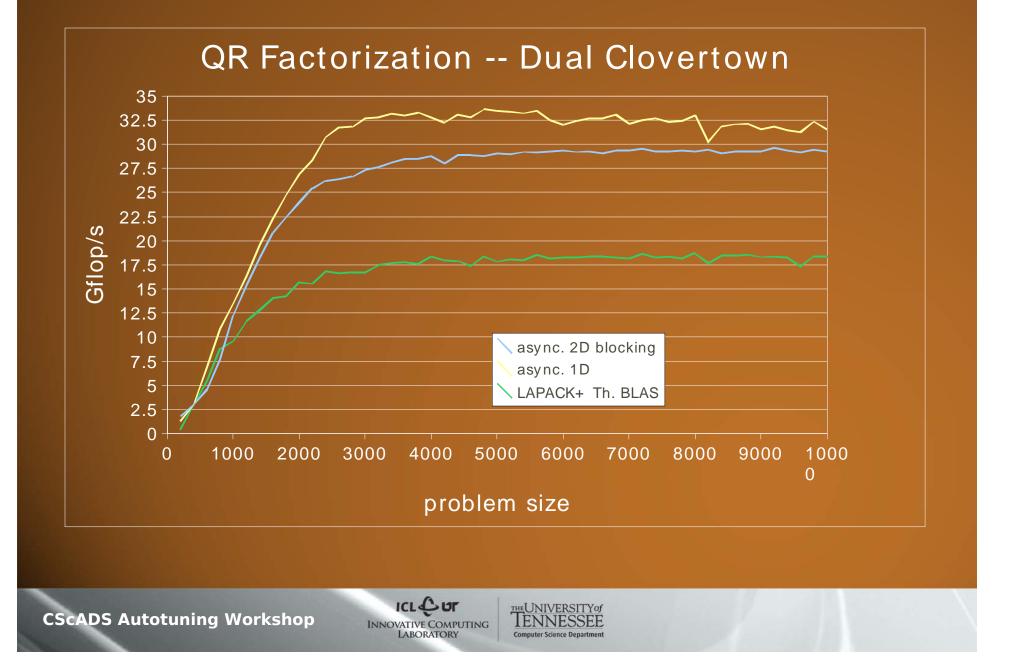
ICL C UT INNOVATIVE COMPUTING LABORATORY



CScADS Autotuning Workshop

ICL C UT INNOVATIVE COMPUTING LABORATORY





Current work and future plans

CScADS Autotuning Workshop

ICL C UT INNOVATIVE COMPUTING LABORATORY

Current work and future plans

- Implement LU factorization on multicores
- Is it possible to apply the same approach to twosided transformations (Hessenberg, Bi-Diag, Tri-Diag)?
- Explore techniques to avoid extra flops
- Implement the new algorithms on distributed memory architectures (J. Langou and J. Demmel)
- Implement the new algorithms on the Cell processor

 Explore automatic exploitation of parallelism through graph driven programming environments

ICL OUT INNOVATIVE COMPUTING LABORATORY

CellSuperScalar and SMPSuperScalar

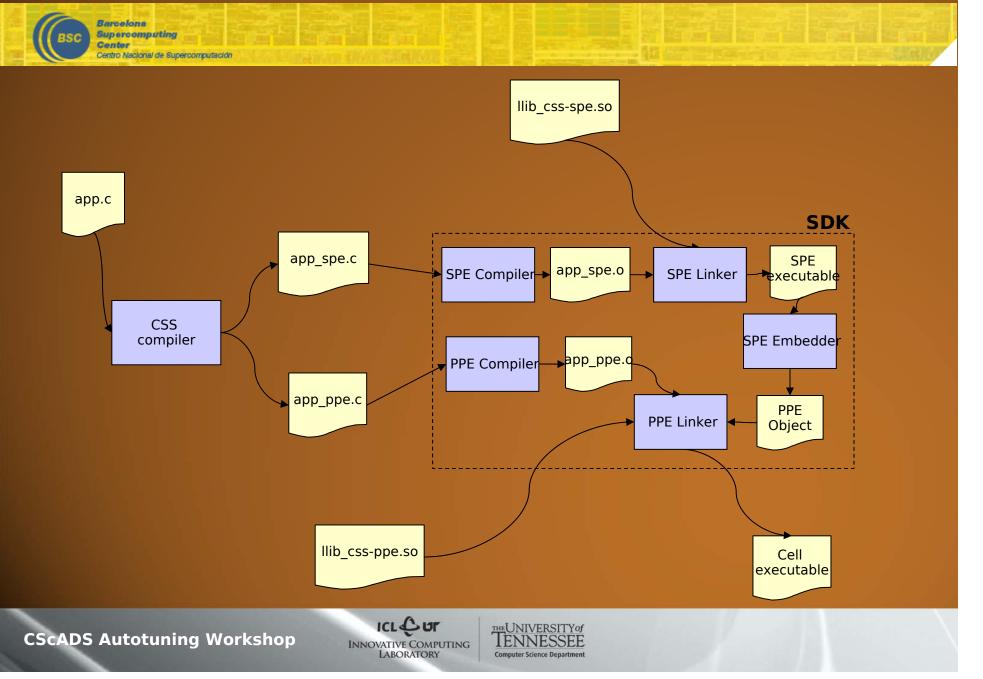
http://www.bsc.es/cellsuperscalar

- uses source-to-source translation to determine dependencies among tasks
- scheduling of tasks is performed automatically by means of the features provided by a library
- it is easily possible to explore different scheduling policies
- all of this is obtained by decorating the code with pragmas and, thus, is transparent to other compilers

Barcelona Supercomputing Center

Centro Nacional de Supercomputación

Compilation Environment



CellSuperScalar and SMPSuperScalar

```
for (i = 0; i < DIM; i++) {
  for (j = 0; j < i-1; j++)
     for (k = 0; k < j-1; k++) {
         sgemm_tile( A[i][k], A[j][k], A[i][j] );
     strsm tile( A[j][j], A[i][j] );
  for (j = 0; j < i-1; j++) {
     ssyrk_tile( A[i][j], A[i][i] );
  spotrf tile( A[i][i] );
void sgemm_tile(float *A, float *B, float *C)
void strsm tile(float *T, float *B)
void ssyrk tile(float *A, float *C)
```

CScADS Autotuning Workshop

Barcelons Supercomputing Center

Centro Nacional de Supercomputación

ICL C UT INNOVATIVE COMPUTING LABORATORY

CellSuperScalar and SMPSuperScalar

```
for (i = 0; i < DIM; i++) {
  for (j=0; j< i-1; j++)
     for (k = 0; k < j-1; k++) {
         sgemm_tile( A[i][k], A[j][k], A[i][j] );
     strsm tile( A[j][j], A[i][j] );
  for (j = 0; j < i-1; j++) {
     ssyrk_tile( A[i][j], A[i][i] );
  spotrf_tile( A[i][i] );
#pragma css task input(A[64][64], B[64][64]) inout(C[64][64])
void sgemm tile(float *A, float *B, float *C)
#pragma css task input (T[64][64]) inout(B[64][64])
void strsm tile(float *T, float *B)
#pragma css task input(A[64][64], B[64][64]) inout(C[64][64])
void ssyrk tile(float *A, float *C)
```

CScADS Autotuning Workshop

Barcelona Supercomputing Center

Centro Nacional de Supercomputación

ICL CUT INNOVATIVE COMPUTING LABORATORY

Empirical Tuning of MADNESS

Haihang You and Keith Seymour

CScADS Autotuning Workshop

ICL C UT INNOVATIVE COMPUTING LABORATORY

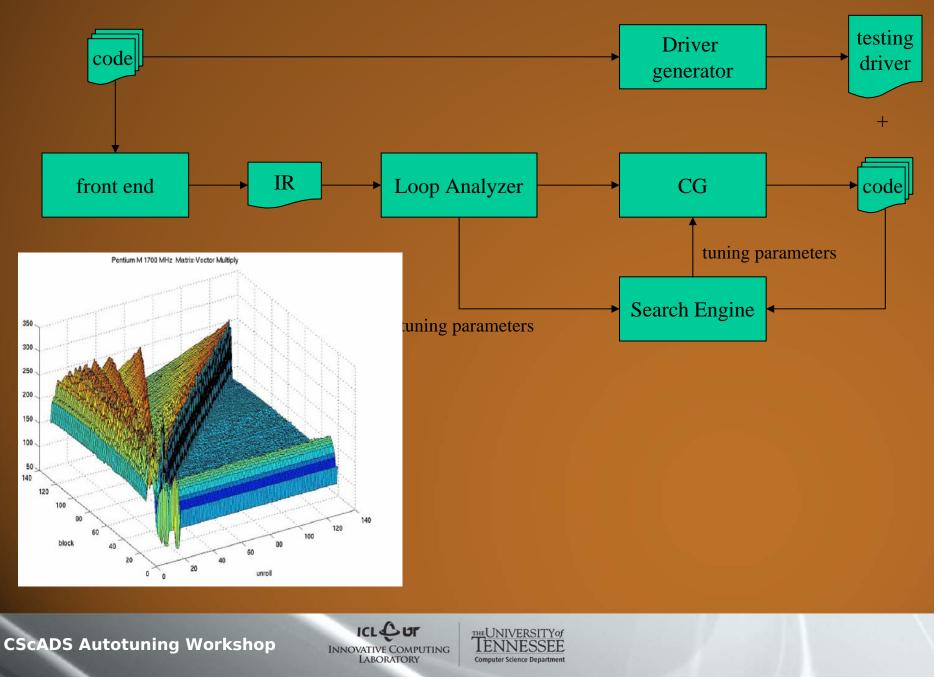
What's MADNESS?

- SciDAC code by Robert Harrison @ ORNL
- Framework for adaptive multiresolution methods in multiwavelet bases
- Collaborative optimization effort as part of UTK's participation in PERI, the Performance Engineering Research Institute

CScADS Autotuning Workshop

ICL CUT INNOVATIVE COMPUTING LABORATORY

GCO Framework



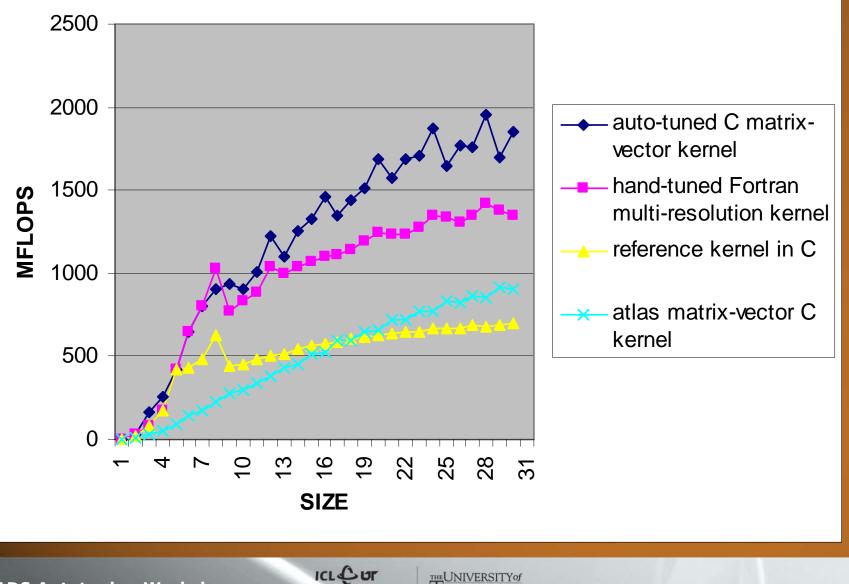
MADNESS Kernel Tuning

- GCO didn't work!
- Instead:
 - Extract matrix-vector multiplication kernel from **doitgen** routine
 - Design and hand-code a specific code generator for small size matrix-vector multiplication
 - Tune optimal block size and unrolling factor separately for each input size

CScADS Autotuning Workshop

ICL C UT INNOVATIVE COMPUTING LABORATORY

MFLOPS Opteron(1.8 GHz)

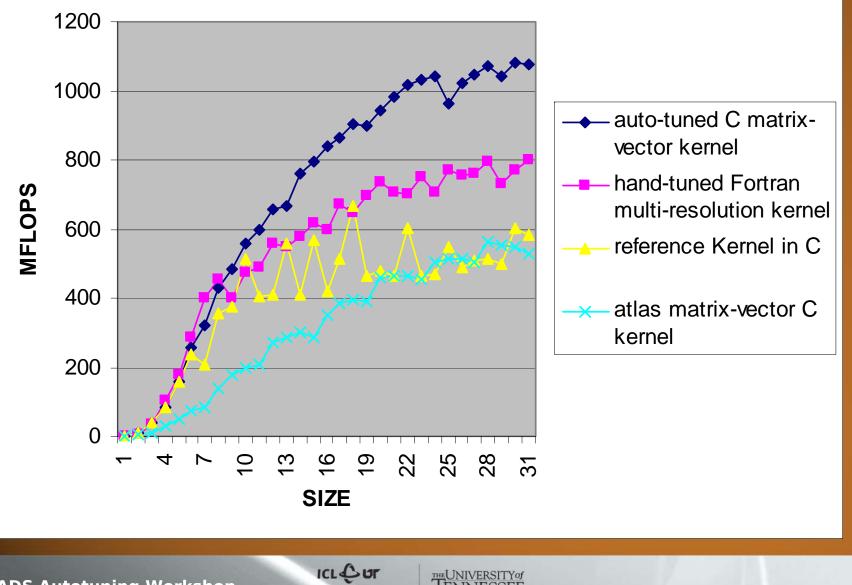


CScADS Autotuning Workshop

INNOVATIVE COMPUTING LABORATORY

TENNESSEE Computer Science Department

MFLOPS Pentium 4(1.7 GHz)

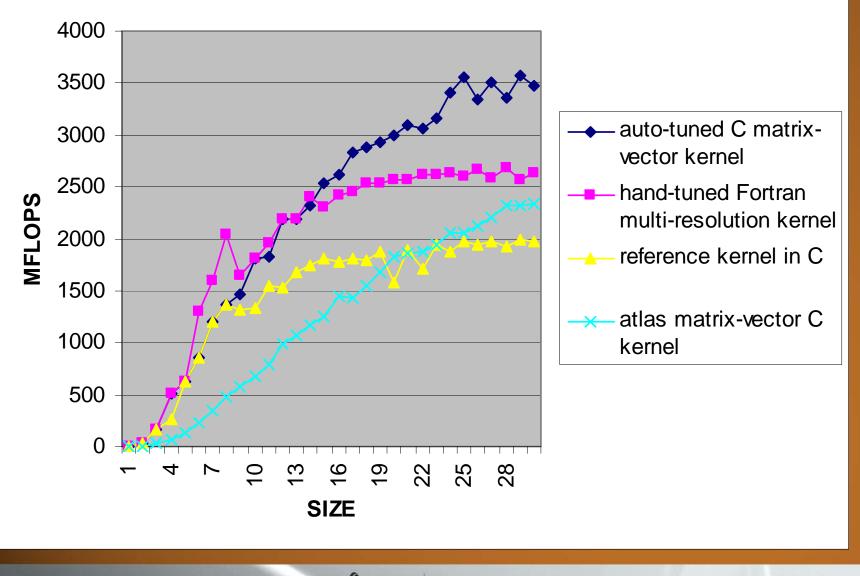


CScADS Autotuning Workshop

INNOVATIVE COMPUTING LABORATORY

TENNESSEE Computer Science Department

MFLOPS Woodcrest(3.0 GHz)



CScADS Autotuning Workshop

ICL C UT INNOVATIVE COMPUTING LABORATORY

MADNESS Conclusions

- We have demonstrated an effective empirical tuning strategy for optimizing the doitgen computational kernel code
 - less effort than hand tuning
 - better performance than either:
 - hand-tuned or
 - general purpose optimization
- Future
 - Aggressive code generator for MV multiplication
 - Parallelize parameter search

CScADS Autotuning Workshop

ICL OUT INNOVATIVE COMPUTING LABORATORY

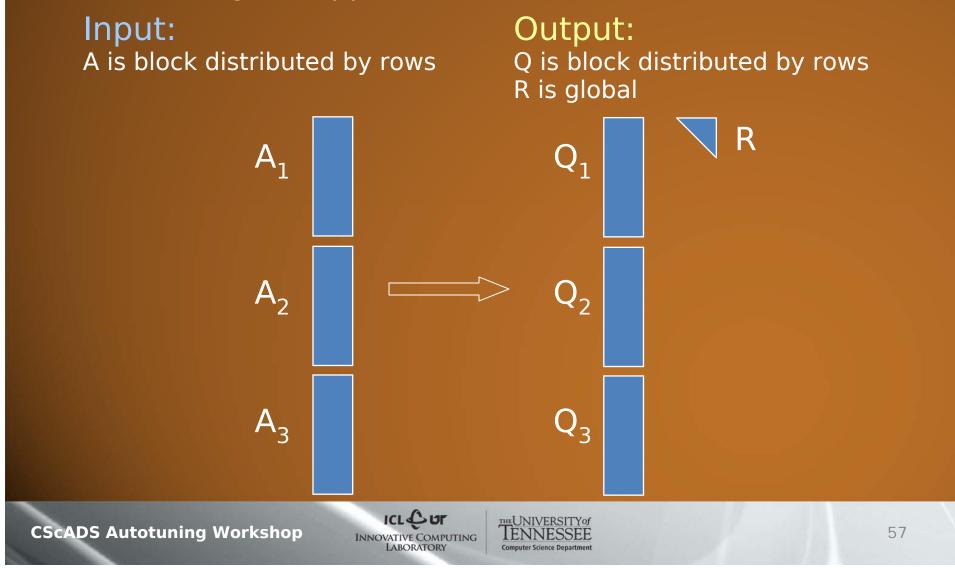
Thank you

http://icl.cs.utk.edu

CScADS Autotuning Workshop

ICL C UT INNOVATIVE COMPUTING LABORATORY

The QR factorization of a long and skinny matrix with its data partitioned vertically across several processors arises in a wide range of applications.



They are used in:

•in iterative methods with multiple right-hand sides (block iterative methods:)

→Trilinos (Sandia National Lab.) through Belos (R. Lehoucq, H. Thornquist, U. Hetmaniuk).
 →BlockGMRES, BlockGCR, BlockCG, BlockQMR, …

in iterative methods with a single right-hand side

→s-step methods for linear systems of equations (e.g. A. Chronopoulos),

→LGMRES (Jessup, Baker, Dennis, U. Colorado at Boulder) implemented in PETSc,

→Recent work from M. Hoemmen and J. Demmel (U. California at Berkeley).

in iterative eigenvalue solvers,

→PETSc (Argonne National Lab.) through BLOPEX (A. Knyazev, UCDHSC),

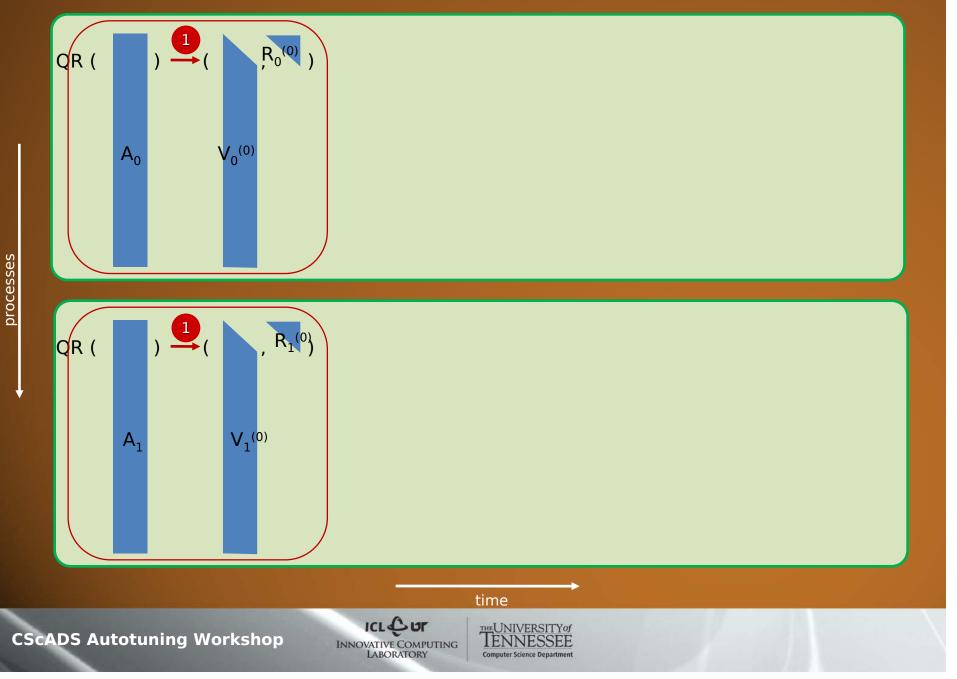
→HYPRE (Lawrence Livermore National Lab.) through BLOPEX,

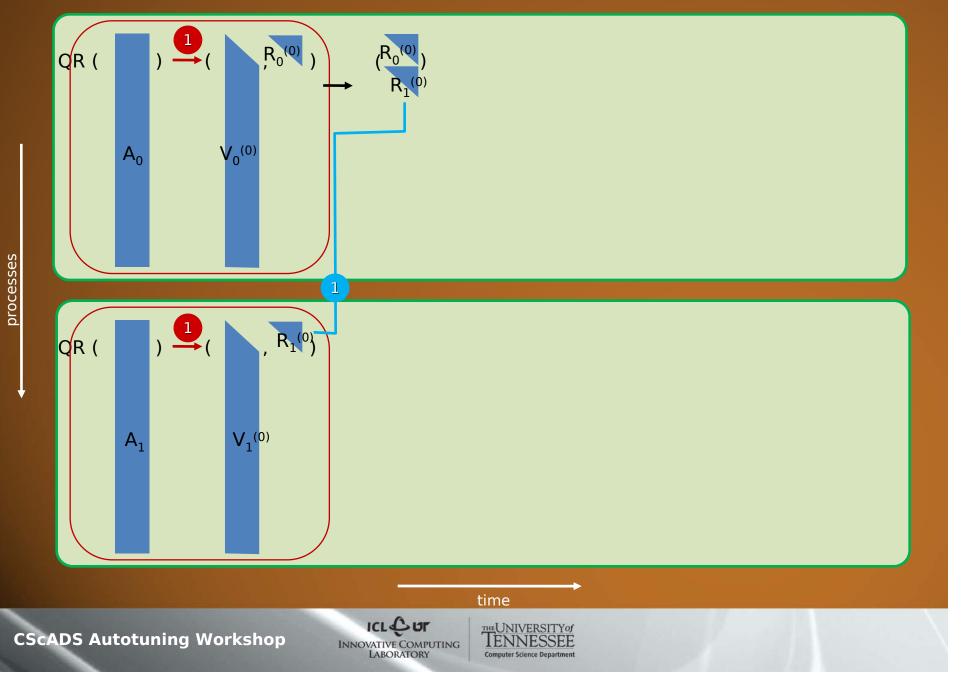
→Trilinos (Sandia National Lab.) through Anasazi (R. Lehoucq, H. Thornquist, U. Hetmaniuk),

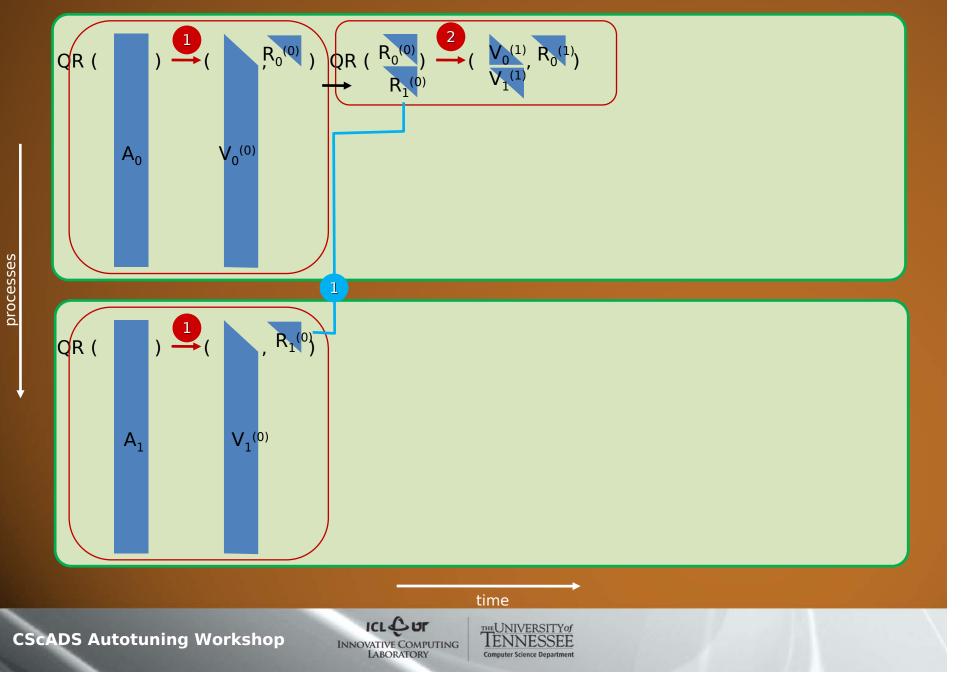
→PRIMME (A. Stathopoulos, Coll. William & Mary)

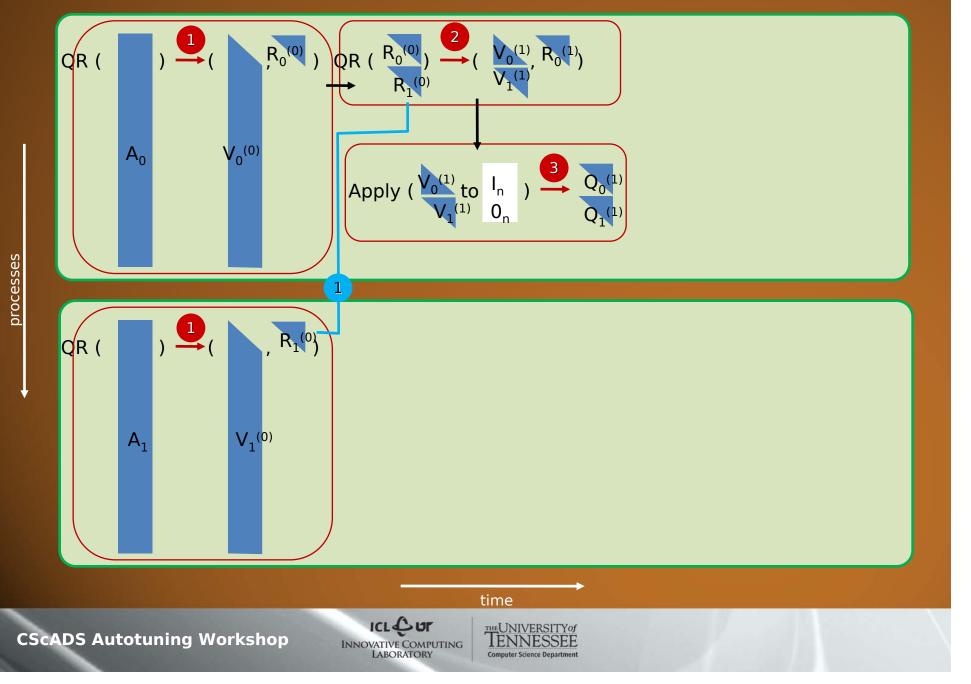
CScADS Autotuning Workshop

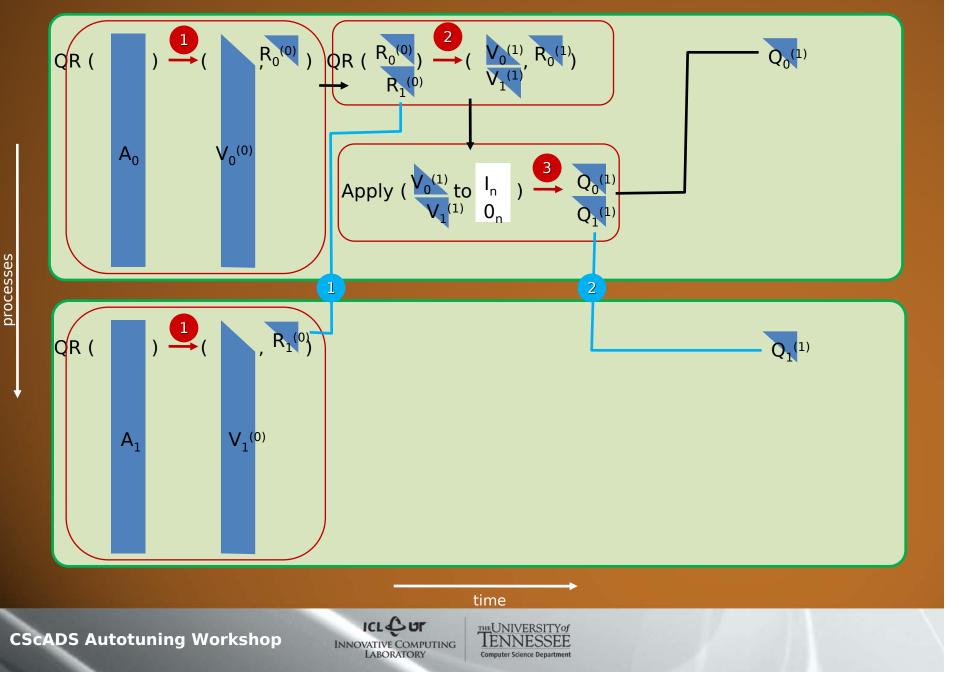
ICL C UT INNOVATIVE COMPUTING LABORATORY

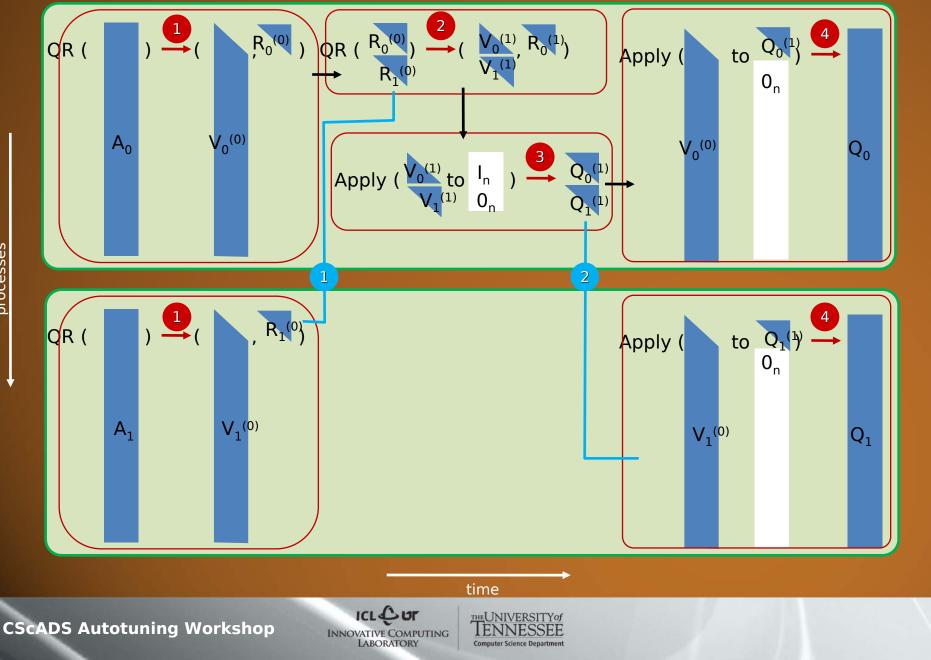




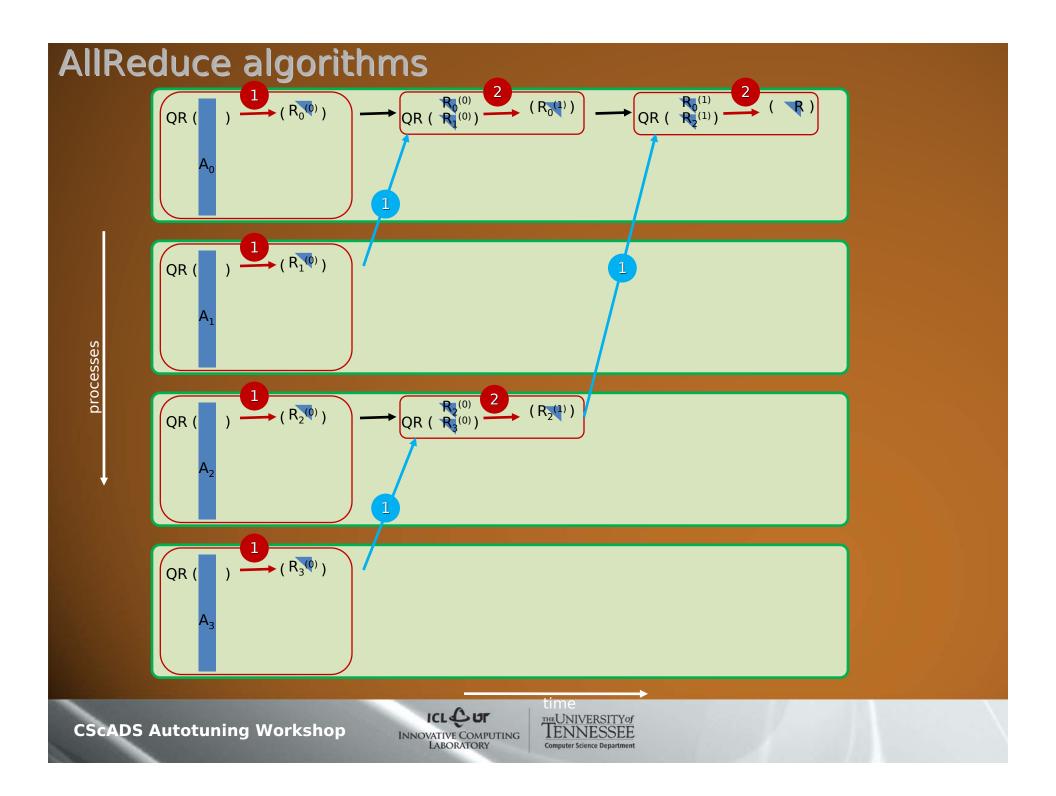








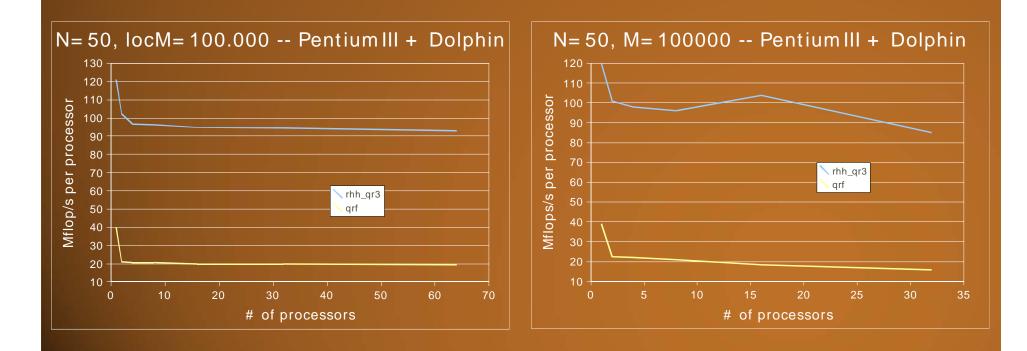
processes



AllReduce algorithms: performance

Weak Scalability

Strong Scalability



CScADS Autotuning Workshop

ICL & UT INNOVATIVE COMPUTING LABORATORY