Targeting Multi-Core systems In
Linear Algebra applications

terpstra@cs.utk.edu

CScADS Autotuning Workshop
Snowbird, Utah, July 9 - 12, 2007

icL S or ras UNIVERSITYof
INNOVATIVE COMPUTING TENNESSEE
Computer Science Department

LABORATORY

The free lunch is over
Hardware

e power consumption reduce clock and
* heat dissipation iIncrease execution
* piNs units = Multicore

Software

Conseqguence

Non-parallel software won't run any faster. A
new approach to programming is required.

Lo muUNIVERSITYo
ADS Autotuning Workshop INNOVAT m TENNE-SSEé

What is a Multicore processor, BTW?

“a processor that combines two or more independent
processors into a single package” (wikipedia)

What about:

e types of core?
> homogeneous (AMD Opteron, Intel Woodcrest...)
> heterogeneous (STI Cell, Sun Niagara, NVIDIA...)

e memory?

> how is it arranged?
* bus?

> IS it going to be fast enough?
e cache?

> Shared? (Intel/AMD)
> nhot present at all? (STI Cell)

e COMMunications?

ADS Autotuning Workshop

What's the Multicore timeline?

Many-core Era
Massivaly parallal
applications

_ 100-
Increasing HW
Threads

Per Socket Multi-core Era

Scalar and
parallal applications

2003 2005 2007 2009 2011 2013

* Source: Platform 2015: Intel® Processor and Platform Evolution for
the Next Decade, Intel White Paper (via LaBarta, et. al. SC06)

CSCADS Autotuning Workshop

Parallelism in Linear Algebra software so far

Shared Memory Distributed Memory

LAPACK ScalLAPACK

parallelism

PThreads

ADS Autotuning Workshop

Computer Sciance Department

Parallelism in Linear Algebra software so far

Shared Memory Distributed Memory
parallelism

LAPACK ScalLAPACK

PThreads

ADS Autotuning Workshop

Computer Sciance Department

Parallelism in LA

ADS Autotuning Workshop

PACK: Cholesky factorization

DPOTF2: BLAS-2
non-blocked factorization of the panel

DTRSM: BLAS-3
updates by applying the u=L"
transformation computed in DPOTF2

DGEMM (DSYRK): BLAS-3
updates trailing submatrix

Parallelism in LAPACK: Cholesky factorization

BLAS?2 operations cannot
be efficiently parallelized
because they are

/ \ o

e strict synchronizations
e poor parallelism
e poor scalability

:-T:-‘.':.’:- r Tre[) RSITYof
ADS Autotuning Workshop INNOVATIVE COMPUTING TENN%

Parallelism in LAPACK: Cholesky factorization

The execution flow if filled with stalls due to
synchronizations and sequential operations.

et or meUNIVERSITYof

CADS Autotuning Workshop " ~ INNOVATIVE COMPUTING TENNESSEE

LABORATORY Computer Stience Department

Parallelism in LAPACK: Cholesky factorization

Tiling operations:

do DPOTF2 on

for all
do DTRSM on
end

for all
do DGEMM on

ADS Autotuning Workshop

Parallelism in LAPACK: Cholesky factorization

2:1

5:1 5:2 5:3 5:4 H-)

Cholesky can be represented as a
Directed Acyclic Graph (DAG) where
nodes are subtasks and edges are

dependencies among them.

As long as dependencies are not

violated, tasks can be scheduled in any
order.

SUNIVERSITYof
ADS Autotuning Workshop e o TL%N:%_TLE

. Computer Science Department

Parallelism in LAPACK: Cholesky factorization
higher flexibility
some degree of adaptativity
no idle time
better scalability

mel INIVERSIT Yof
TENNESSEE
partment

Computer Stience Departme;

Parallelism in LAPACK: block data layout

Column-Major Block data layout

ADS Autotuning Workshop

Parallelism in LAPACK: block data layout

Column-Major Block data layout

ADS Autotuning Workshop

Parallelism in LAPACK: block data layout

Column-Major Block data layout

ADS Autotuning Workshop

Parallelism in LAPACK: block data layout

The use of block data layout storage can
significantly improve performance

Blocking Speedup

DGEMM
DTRSM

128
block size

ADS Autotuning Workshop

iceor rusUNIVERSITYof

INNOVATIVE COMPUTING "TENNESSEE

. Computer Science Department

Cholesky: performance

Cholesky -- Dual Clovertown

A’/_/_/_-

/ S
async. 2d blocking
LAPACK + Th. BLAS

AN AN

\ \ \
4000 6000 8000 10000

problem size

CSCADS Autotuning Workshop

Cholesky: performance

Cholesky -- 8-way Dual Opteron

/ \

e
pd

/ async. 2d blocking

LAPACK + Th.
BLAS

/

I
5000 7500 10000 12500 15000
problem size

CSCADS Autotuning Workshop

Parallelism in LAPACK: LU/QR factorizations

DGETF2: BLAS-2
non-blocked panel

factorization

/\ DTRSM: BLAS-3

updates U with

transformation computed in
DGETF2

DGEMM: BLAS-3
updates the trailing
submatrix

ADS Autotuning Workshop

Parallelism in LAPACK: LU/QR factorizations

CSCADS Autotuning Workshop

The LU and QR factorizations
algorithms in LAPACK don't allow
for 2D distribution and block
storage format.

. LU: pivoting takes into account
the whole panel and cannot be
split in a block fashion.

. QR: the computation of

Householder reflectors acts on
the whole panel.

. The application of the
transformation can only be
sliced but not blocked.

Parallelism in LAPACK: LU/QR factorizations

LU

Time

: - et or ru UNIVERSITYof
tADS Autotuning Workshop - INNOVATI ¢ | TENNESSEE
Dl BO X nt

Computer Stience Departme;

LU factorization:

performance

LU -- Dual Clovertown

async. 1D
LAPACK + Th. BLAS

CSCADS Autotuning Workshop

4000 6000
problem size

Multicore friendly, “delightfully
parallel*”, algorithms

Computer Science can't go any further on old algorithms.
We need some math...

msUNIVERSITYof
ovsrvecomruring | IENNESSEE

The QR factorization in LAPACK

The QR transformation factorizes a matrix A into the
factors Q and R where Q is unitary and R is upper
triangular. It is based on Householder reflections.

Assume that IS the part
of the matrix that has been
already factorized and
contains the Householder

reflectors that determine the
matrix Q.

:.T:-‘.. , THE|] RSITYo
CSCADS Autotuning Workshop INNOVATIVE COMPUTING IE—QN&I\]E——‘EL&

The QR factorization in LAPACK

The QR transformation factorizes a matrix A into the
factors Q and R where Q is unitary and R is upper
triangular. It is based on Householder reflections.

N

=DGEQR2(

CSCADS Autotuning Workshop

The QR factorization in LAPACK

The QR transformation factorizes a matrix A into the
factors Q and R where Q is unitary and R is upper
triangular. It is based on Householder reflections.

=DLARFB(

meUNIVERSITYof
- 'TENNESSEE

CSCADS Autotuning Workshop

The QR factorization in LAPACK

The QR transformation factorizes a matrix A into the
factors Q and R where Q is unitary and R is upper
triangular. It is based on Householder reflections.

How does it compare to LU?

. It Is stable because it uses
Householder transformations
that are orthogonal

. It is more expensive than LU
because its operation count is
4/3n° versus 2/3n°

icedSor SEUNIVERSITYo
CScEADS Autotuning Workshop INNOVATIVE COMPUTING jm—%_‘}z—é

) Computer Science Department

Multicore friendly algorithms: QR

A different algorithm can be used where operations
can be broken down into tiles.

—— P\ | =DGEQR2(

The QR factorization of the
upper left tile is performed.
This operation returns

a small R factor:

and the corresponding
Householder reflectors:

L Sor zsUNIVERSITYo
CScADS Autotuning Workshop INNOVATIVE COMPUTING m

Multicore friendly algorithms: QR

A different algorithm can be used where operations
can be broken down into tiles.

=DLARFB([\

All the tiles in the first block-
row are updated by

pplying the transformation
1 computed at the
previous step.

L neUNIVERSITYof
CSEADS Autotuning Workshop Inovarvecomruting | JENNESSEE

Multicore friendly algorithms: QR

A different algorithm can be used where operations
can be broken down into tiles.

CSCADS Autotuning Workshop

=—— 1 | =DGEQR2(

The R factor computed at
the first step is coupled with
one tile in the block-column
and a QR factorization is
computed. Flops can be saved
due to the shape of the matrix
resulting from the coupling.

Multicore friendly algorithms: QR

A different algorithm can be used where operations
can be broken down into tiles.

=DLARFB(1

Each couple of tiles along
the corresponding block rows is
updated by applying the
transformations computed in
the previous step. Flops can be
saved considering the shape of
the Householder vectors.

CSCADS Autotuning Workshop

Multicore friendly algorithms: QR

A different algorithm can be used where operations
can be broken down into tiles.

=—— 1 |=DGEQR2(

The last two steps are

repeated for all the tiles in the
first block-column.

CSCADS Autotuning Workshop

Multicore friendly algorithms: QR

A different algorithm can be used where operations
can be broken down into tiles.

=DLARFB(1

The last two steps are
repeated for all the tiles in the
first block-column.

CSCADS Autotuning Workshop

Multicore friendly algorithms: QR

A different algorithm can be used where operations
can be broken down into tiles.

=DLARFB(1

The last two steps are
repeated for all the tiles in the
first block-column.

25% more Flops than the LAPACK version!!!*

LLor SEUNIVERSITYof
OVATIVE COMPUTING M
PR Compstar Scunce Department

Multicore friendly algorithms: QR

(]
202046 20060
éaesd 6®8¢
©0060 0086
6066 2006
00000 0000
O....ﬁ....

$6® 66
0000 00000000-000 000 000
0066-00000:000 000 000
000000000 000 s08 ©8e
002000 © 000:°000
00 00000 00000000
6o oe08s 60
600 0000:°00 ©
oo 2000 @
000000 ©
00 00
e e
o o
o

ADS Autotuning Workshop

Multicore friendly algorithms: QR

. Very fine granularity

. Few dependencies, I.e.,
high flexibility for the
scheduling of tasks

. Block data layout is
possible

ADS Autotuning Workshop

Multicore friendly algorithms: QR

Execution flow on a 8-way dual core Opteron.

o NIVERSITYof

ADS Autotuning Workshop R ovarveComeuting | JTENNESSEE

- LABORATORY Computer Science Department

Multicore friendly algorithms: QR

QR Factorization: Scaling -- 8-way Dual Opteron
22000
20000
18000
16000
14000
24010]0)
10000

ts1010]0)

10]10]0)

\\ LAPACK + Th.BLAS
async. 1D
4000 async. 2D blocking

2000
0

9 10 11 12
n. of processes

CSCADS Autotuning Workshop

Multicore friendly algorithms: QR

QR Factorization: Scaling -- 8-way Dual Opteron
22000
20000
18000
16000
14000
24010]0)
10000

8000
6000 // \. LAPACK + Th. BLAS

async. 1D
4000 async. 2D blocking

2000
0

11 12

CSCADS Autotuning Workshop

Multicore friendly algorithms: QR

OR Factorization -- 8-way Dual Opteron

//

’—/

\l LAPACK + Th. BLAS
async. 1D
async 2D blocking

I I T I I I T I I
1000 2000 3000 4000 5000 6000 7000 8000 9000 1000
0

problem size

CSCADS Autotuning Workshop

Multicore friendly algorithms: QR

0

QR Factorization -- Dual Clovertown

async. 2D blocking

async. 1D

. LAPACK+ Th. BLAS

0

1000 2000 3000 4000 5000 6000 7000 8000 9000

problem size

CSCADS Autotuning Workshop

Current work and future plans

ADS Autotuning Workshop

Current work and future plans

. Implement LU factorization on multicores

. Is it possible to apply the same approach to two-
sided transformations (Hessenberg, Bi-Diag, Tri-
Diag)?

. Explore techniques to avoid extra flops

. Implement the new algorithms on distributed
memory architectures (J. Langou and J. Demmel)
. Implement the new algorithms on the Cell
processor

« Explore automatic exploitation of parallelism
through graph driven programming environments

L or nusUNIVERSITYof
CSEADS Autotuning Workshop Innovarvecomruring | LTENNESSEE

CeIISuperScaIar and SMPSuperScalar

i mwmm

http //www _bsc. es/cellsuperscalar

. Uses source-to-source translation to determine
dependencies among tasks

. scheduling of tasks is performed automatically
by means of the features provided by a library

. it Is easily possible to explore different
scheduling policies

. all of this is obtained by decorating the code
with pragmas and, thus, Is transparent to other
compilers

CScADS Autotuning Workshop INNOVATIVE COMPUTING ']-L——NiN—;EE—T—Eé

Compilation Eniroent

M-mnh - -
mmmmmm

app_spe.c

CSS
compiler

app_ppe.c

CSCADS Autotuning Workshop

Ilib_css-ppe.so

Ilib_css-spe.so

SPE Compilerr® aPP_SP€.0

PPE Compile

e INIVERSIT Yof
TENNESSEE

Computer Science Department

SPE Linker

PPE Linker

SPE Embedde

CellSuperScalar and SMPSuperScalar

1 Supercomputing
Canter
3 Caniro Nackonal de Suparcomputa cion

for (1 = 0; 1 < DIM; 1++) {
for (g= 0; j< i-1; j++){
for (k = 0; k < j-1; k++) {
sgemm_tile(ALi1[k]l. ADOILK]. ALiI0O]):
+

strsm_tile(C ALJ10I1. ALIL])
}
for (j =0; j < i-1; j++v) {
ssyrk_tile(C A1, AL1]1L1]);
}
spotrf_tile(ALT][1]);
}

void sgemm_tile(float *A, float *B, float *C)

void strsm_tile(float *T, float *B)

void ssyrk _tile(float *A, float *C)

CSCADS Autotuning Workshop

CellSuperScalar and SMPSuperScalar

iC

CS

Barcelona
Supercomputing

for (1 = 0; 1 < DIM; 1++) {
for (= 0; j< i-1; j++){
for (k = 0; k < j-1; k++) {
sgemm_tile(ALi1[K]., ALILK]. ALi1Li]);
+

strsm_tile(C ALJ10I1. ALIL])
}
for (j =0; j < i-1; j++v) {
ssyrk_tile(C A1, AL1]1L1]);
}
spotrf_tile(ALT][1]);
}

#pragma css task 1nput(A[64][64], B[64][64]) 1nout(C[64][64])
void sgemm_tile(float *A, float *B, float *C)

#pragma css task input (T[64][64]) 1nout(B[64][64])
void strsm_tile(float *T, float *B)

#pragma css task i1nput(A[64][64], B[64][64]) 1nout(C[64][64])
void ssyrk _tile(float *A, float *C)

o NIVERSITYof

ADS Autotuning Workshop o : TENNESSEE

Empirical Tuning
of MADNESS

Haihang You and Keith Seymour

| £ UNIVERSITYor
ADS Autotuning Workshop INNOVATIVE COMPUTING IE_NB__L%

What's MADNESS?

SciDAC code by Robert Harrison @
ORNL

Framework for adaptive multiresolution
methods in multiwavelet bases

Collaborative optimization effort as part
of UTK's participation in PERI, the
Performance Engineering Research
Institute

ADS Autotuning Workshop

GCO Framework

Pentium M 1700 MHz Matrix-Vector Multiply

CSCADS Autotuning Workshop

MADNESS Kernel Tuning

e GCO didn't work!

e |[nstead:

— Extract matrix-vector multiplication
kernel from doitgen routine

— Design and hand-code a specific code
generator for small size matrix-vector
multiplication

— Tune optimal block size and unrolling
factor separately for each input size

CSCADS Autotuning Workshop

MFLOPS Opteron(1.8 GHz)

—e— auto-tuned C matrix-
vector kernel

—m— hand-tuned Fortran
multi-resolution kernel

reference kernel in C

n
o
@)
—l
LL
=

atlas matrix-vector C
kernel

ADS Autotuning Workshop

MFLOPS Pentium 4(1.7 GHz)

—e— auto-tuned C matrix-
vector kernel

—=— hand-tuned Fortran
multi-resolution kernel

reference Kernel in C

0]
ol
O
1
LL
=

atlas matrix-vector C
kernel

ADS Autotuning Workshop

MFLOPS Woodcrest(3.0 GHz)

—e— auto-tuned C matrix-
vector kernel

—m— hand-tuned Fortran
multi-resolution kernel

reference kernel in C

n
o
@)
—l
LL
=

atlas matrix-vector C
kernel

ADS Autotuning Workshop

« We have demonstrated an effective
empirical tuning strategy for optimizing
the doitgen computational kernel code

— less effort than hand tuning
— better performance than either:

 hand-tuned or
e general purpose optimization
e Future

— Aggressive code generator for MV
multiplication

— Parallelize parameter search

CSCADS Autotuning Workshop

Thank you

http://icl.cs.utk.edu

CSCADS Autotuning Workshop

AllReduce algorithms

The QR factorization of a long and skinny matrix with its
data partitioned vertically across several processors arises
In @ wide range of applications.

Input: Output:
A is block distributed by rows Q is block distributed by rows
R is global

Q| | R

A

CSCADS Autotuning Workshop

AllReduce algorithms

They are used in:

.in iterative methods with multiple right-hand sides (block iterative
methods:)

> Trilinos (Sandia National Lab.) through Belos (R. Lehoucq, H. Thornquist, U. Hetmaniuk).
>BlockGMRES, BlockGCR, BlockCG, BlockQMR, ...

.in iterative methods with a single right-hand side
»S-step methods for linear systems of equations (e.g. A. Chronopoulos),
sLGMRES (Jessup, Baker, Dennis, U. Colorado at Boulder) implemented in PETSc,
sRecent work from M. Hoemmen and J. Demmel (U. California at Berkeley).

. in iterative eigenvalue solvers,
>PETSc (Argonne National Lab.) through BLOPEX (A. Knyazev, UCDHSC),
>HYPRE (Lawrence Livermore National Lab.) through BLOPEX,
> Trilinos (Sandia National Lab.) through Anasazi (R. Lehoucq, H. Thornquist, U. Hetmaniuk),
>PRIMME (A. Stathopoulos, Coll. William & Mary)

o o oy mu NIVERSITYoj
ADS Autotuning Workshop INNOY IE_QN&I\]E—__ELI%

AllReduce algorithms

n
Q
)
0
Q
Y
(©)
—_
o

_ it or rUNIVERSITYof
ADS Autotuning Workshop "TENNESSEE
NNOVATIVECOMP

Computer Science Department

AllReduce algorithms

n
)]
(%))
n
]
O
(@]
o
o

ADS Autotuning Workshop

Computer Science Department

AllReduce algorithms

n
)]
(%))
n
]
O
(@]
o
o

ADS Autotuning Workshop

Computer Science Department

AllReduce algorithms

n
)]
(%))
n
]
O
(@]
o
o

_ ictSor muUNIVERSITYof
ADS Autotuning Workshop INNOVA ATIVECOMPUTING ‘TENNESSEE

Computer Science Department

AllReduce algorithms

n
)]
(%))
n
]
O
(@]
o
o

ADS Autotuning Workshop

Computer Science Department

AllReduce algorithms

n
)]
(%))
n
]
O
(@]
o
o

ADS Autotuning Workshop

Computer Science Department

AllReduce algorithms

n
)]
(%))
n
]
O
(@]
o
o

ADS Autotuning Workshop

Computer Science Department

AllReduce algorithms

(1)

——VQR(‘(1) —V (‘

n
]
9]
(]
]
O
(@]
o
o

. e Sor s UNIVERSITYof
ADS Autotuning Workshop Amggommm TENNESSEE

‘Computer Science Department

AllReduce algorithms: performance

Weak Scalability Strong Scalability

N=50, locM=100.000 -- Pentiumlll + Dolphin N=50, M=100000 -- Pentiumlll + Dolphin

130 120
120 110 \
110 100 \~
100
90
80
70
60
50
I 40

30 30
20 20
10 T 10 T T T T

40 15 20
of processors # of processors

90
80

70 —
rhh_qr3
60 qrf =

10)

Mflop/s per processor
Mflops/s per processor

ADS Autotuning Workshop

