Parallel Computing for Nucleon-Nucleus Scattering

Ian Thompson

Nuclear Theory and Modeling Group, Lawrence Livermore National Laboratory

UCRL-PRES-235658

This work was performed under the auspices of the U.S. Department of Energy by Lawrence Livermore National Laboratory under Contract DE-AC52-07NA27344, and under SciDAC Contract DE-FC02-07ER41457

1

Coupled Channels Sets

- Coupled Channels Set
 - For each total spin J and parity $\boldsymbol{\pi}$
 - For each target spin state I
 - For partial wave combination | (Is)j, I, $J\pi >$
- Solve coupled second-order differential equations
 - Each $J\pi$ set is independent \Leftarrow parallel computations
 - <u>No exchange</u>: local couplings (so far)
 - With exchange and/or transfers: nonlocal couplings (iteration, or basis expansion)

Complexity Estimates

- RPA ⁹⁰Zr states up to 10, 30, 60 MeV
 - Core states: # 19, 279, 7216
 - Partial wave sets: # 97, 1281, 43487
- Spreading of RPA states should be tested:
 - Estimate: 30000 core states, 500 000 partial waves
 - Scaling as N^3 , so now ~ 6 000 000 hours.

Methods and Options

- Coupling matrices take up the space:
 - N*N full matrices for each radius!
 - Need parallel methods for data generation & flow on multi-threaded nodes
- Basis expansion methods, for non-local couplings
 - R-matrix methods have been tested (M functions/channel)
 - NM-square square matrix to solve:
 - Linear equations for single energy, otherwise full diagonalisation needed
 - Conjugate-gradient methods usable for single energy
- Replace N coupled 2nd-order equations by 2N-parameter non-linear search optimisation (suggested recently)
 - Derivatives from reverse-direction adjoint solutions
 - Need best quadratic search methods
 - Find: convergence not also reliable.
- Simplified methods for main contributions
 - Parallel computation of just two-step contributions from 'doorway states'.

