Tool Issues at Scale

Working Group Report CScADS '12

29 June 2012

Problem: Dimensions of Scale

- Application space/concurrency
 - o size of input data
 - o size of output data
 - # of processes/cores/GPUs etc.
 - execution time (also a factor in other dimensions)
 - o environmental and resource issues

Application code

- o binary size
- mixed-language or mixed-paradigm
- # of libraries
- # of functions / symbols / templated classes
- # of instructions / floating-point operations
- Tool space/concurrency
 - o analysis workload
 - o profiling data/output
 - o presentation/visualization

Approaches to Tool Development

Traditional paradigm

- Develop for and test at small scale
- Then scale up to large scale

• New paradigm

- Develop for and test at large scale
- Keep all scaling dimensions in mind

Techniques

- Processing collection data
 - o "in-situ"/online filtering and analysis of profiling data
 - temperature monitoring example
 - feedback to tool for focused collection
 - global coordination points refine collection process
 - look for patterns (local vs. global)
 - equivalence classes for profiling output
- Continuous monitoring
 - o feedback to tool front-end or auto-tuning system
 - o selecting interesting areas / areas of stress
- Environmental infrastructure integration
 - collaborate with vendors (example CDTI)

Possible Solutions

- Frameworks
 - o can provide deployment environment at scale
 - o integration from other environmental resources (monitoring)
 - o target scenarios or scale dimension metrics
- Virtualization/emulation for scaling tests
 - must have models for all affecting variables (FS contention, etc.)
 - o can be hard to know without at-scale testing
 - o chicken-and-egg problem
- Running on big-iron
 - o phased approach to getting to this point