OSKI: Autotuned sparse matrix kernels

Richard Vuduc LLNL / Georgia Tech [Work in this talk: Berkeley]

James Demmel, Kathy Yelick, ... UCB [BeBOP group]

CScADS Autotuning Workshop

What does the sparse case add to our conversation?

- Additional class of apps, *e.g.*, PageRank
- Data structure transformation at run-time
 - Change is "semi-static"
 - How to manage run-time cost? Code gen?
 - Extra flops pay-off
 - Approach: Off-line benchmark + cheap run-time analysis & model
- Historical trends & snapshots "over time"
- Workloads and higher-level kernels
- Application adoption

(Personal) Historical Note

- Inspiration for OSKI has Bay Area roots
 - Profiling and feedback-directed compilation
 - Knuth (Stanford) '71: "An empirical study of FORTRAN programs"
 - Graham, Kessler, McKusick (UCB) '83: gprof
 - Memory hierarchy optimizations
 - Lam, Rothberg, Wolf (Stanford) '91
 - Pinar (LBL via UIUC), Heath 99 for sparse mat-vec specifically
 - Automatic performance tuning
 - Bilmes, Asanovic, Chin, Demmel (UCB) '97: PHiPAC for dense matrix multiply
 - Im and Yelick (UCB) '99: SPARSITY for sparse mat-vec
- OSKI contributors
 - A. Gyulassy (UCD via UCB), S. Kamil (LBL/UCB), B. Lee (Harvard via UCB), HJ Moon (UCLA via UCB), R. Nishtala (UCB), ...
 - A. Jain, S. Williams (UCB)

Why "autotune" sparse kernels?

- Sparse matrix-vector multiply < 10% peak, decreasing</p>
 - Indirect, irregular memory access
 - Low computational intensity vs. dense linear algebra
 - Depends on matrix (run-time) and machine
- Tuning is becoming more important
 - 2× speedup from tuning, will increase
 - Manual tuning is difficult, getting harder
 - Tune target app, input, machine using automated experiments

OSKI: Optimized Sparse Kernel Interface

- Autotuned kernels for user's matrix & machine
 - BLAS-style interface: mat-vec (SpMV), tri. solve (TrSV), ...
 - Hides complexity of single-core run-time tuning
 - Includes fast locality-aware kernels: $A^T A \cdot x$, $A^k \cdot x$, ...
 - {32b, 64b}-int x {single, double} x {real, complex}
- Fast in practice
 - Standard SpMV < 10% peak, vs. up to 31% with OSKI</p>
 - Up to $\mathbf{4} \times$ faster SpMV, $\mathbf{1.8} \times$ triangular solve, $\mathbf{4x} A^T A \cdot x$, ...
- For "advanced" users & solver library writers
 - OSKI-PETSc; Trilinos (Heroux)
 - Adopted by ClearShape, Inc. for shipping product (2× speedup)

SpMV crash course: Compressed Sparse Row (CSR) storage

Matrix-vector multiply: v = A*x
 for all A(i, j): y(i) = y(i) + A(i, j) + x(j)
 Irregular, indirect: x[ind[...]]
 Dominant cost: Compress?

Trends: My predictions from 2003

- Need for "autotuning" will increase over time
 - So kindly approve my dissertation topic
- Example: SpMV, 1987 to present
 - Untuned: 10% of peak or less, decreasing
 - Tuned: 2× speedup, increasing over time
 - Tuning is getting harder (qualitative)
 - More complex machines & workloads
 - Parallelism

Trends in Single-Core SpMV Performance 10[~] 1.97 10⁴ æ \mathbb{A} 1.90 Ö 10³ . _. . . . _. 2.16 Ο Mflop/s 10² ⋇ 10¹ 10⁰ 0 \odot Scalar: Tuned (r=1.90) Ο Vector: Tuned (4.08) ▼ *Scalar: Ref (2.16) \bigtriangleup Scalar: Peak (1.97) **10**⁻¹ '05 '89 '88 '90 '98 '99 '00 '03<mark>'</mark> '06 '87 '91 '92 '94 '95 '96 '97 '01 '02 '04 '07 '93 year

Trends in Single-Core SpMV Performance

Experiment: How hard is SpMV tuning?

Matrix 02-raefsky3

- Exploit 8×8 blocks
 - Store blocks & unroll
 - Compresses data
 - Regularizes accesses

Speedups on Itanium 2: The need for search

333 MHz Sun Ultra 2i, Sun C v6.0: ref=35 Mflop/s

column block size (c) 2 GHz Pentium M, Intel C v8.1: ref=308 Mflop/s

900 MHz Ultra 3, Sun CC v6: ref=54 Mflop/s

column block size (c)

1.91

1.00

1

1

1.3 GHz Power4, IBM xlc v6: ref=577 Mflop/s

280

2 column block size (c)

2.54

1.12

4

2.23

1.39

8

2.52

1.35

Better, worse, or about the same?

Better, worse, or about the same? Itanium 2, 900 MHz \rightarrow 1.3 GHz

* Reference improves *

* Best possible worsens slightly *

Better, worse, or about the same? Power4 \rightarrow Power5

* Reference worsens! *

* Relative importance of tuning increases *

Better, worse, or about the same? Pentium M \rightarrow Core 2 Duo (1-core)

* Reference & best improve; relative speedup improves (~1.4 to 1.6×)
* Best decreases from 11% to 9.6% of peak *

More complex structures in practice

- Example: 3×3 blocking
 - Logical grid of 3×3 cells

Extra work can improve efficiency!

- Example: 3×3 blocking
 - Logical grid of 3×3 cells
 - Fill-in explicit zeros
 - Unroll 3x3 block multiplies
 - "Fill ratio" = 1.5
- On Pentium III: 1.5×
 - *i.e.*, 2/3 time

How OSKI tunes (Overview)

Heuristic model example: Select block size

- Idea: Hybrid off-line / run-time model
 - Characterize machine with off-line benchmark
 - Precompute Mflops(r, c) using dense matrix for all r, c
 - Once per machine
 - Estimate matrix properties at run-time
 - Sample *A* to estimate **Fill(r, c)**
 - Run-time "search"
 - Select r, c to maximize Mflops(r, c) / Fill(r, c)
- In practice, selects (r, c) yielding perf. within 10% of best
- Run-time costs ~ 40 SpMVs
 - 80%+ = time to convert to new r × c format

Tunable optimization techniques

- Optimizations for SpMV
 - **Register blocking** (RB): up to 4× over CSR
 - Variable block splitting: 2.1× over CSR, 1.8× over RB
 - Diagonals: 2× over CSR
 - Reordering to create dense structure + splitting: 2× over CSR
 - **Symmetry**: 2.8× over CSR, 2.6× over RB
 - Cache blocking: 3× over CSR
 - Multiple vectors (SpMM): 7× over CSR
 - And combinations...
- Sparse triangular solve
 - Hybrid sparse/dense data structure: 1.8× over CSR
- Higher-level kernels
 - $AA^{T} \cdot x$ or $A^{T}A \cdot x$: 4× over CSR, 1.8× over RB
 - $A^2 \cdot x$: 2× over CSR, 1.5× over RB

Structural splitting for complex patterns

- Idea: Split $A = A_1 + A_2 + ...$, and tune A_i independently
 - Sample to detect "canonical" structures
 - Saves time and/or storage (avoid fill)
- Tuning knobs
 - Fill threshold, $.5 \le \theta \le 1$
 - Number of splittings, $2 \le s \le 4$
 - Ordering of block sizes, $r_i \times c_i$; $r_s \times c_s = 1 \times 1$

12-raefsky4.rua in VBR Format: 51×51 submatrix beginning at (715,715)

Example: Row-segmented diagonals

Dense sub-triangles for triangular solve

Cache optimizations for $AA^T \cdot x$

• Idea: Interleave multiplication by A, A^{T}

$$AA^{T}x = (a_{1} \cdots a_{n}) \begin{pmatrix} a_{1}^{T} \\ \vdots \\ a_{n}^{T} \end{pmatrix} x = \sum_{i=1}^{n} a_{i} \begin{pmatrix} a_{i}^{T}x \end{pmatrix}$$

"axpy" dot product

• Combine with register optimizations: $a_i = r \times c$ block row

OSKI tunes for workloads

- Bi-conjugate gradients equal mix of $A \cdot x$ and $A^T \cdot y$
 - 3×1 : $A \cdot x$, $A^T \cdot y = 1053$, 343 Mflop/s \rightarrow 517 Mflop/s
 - 3×3 : $A \cdot x$, $A^T \cdot y = 806$, 826 Mflop/s \rightarrow 816 Mflop/s
- Higher-level operation $(A \cdot x, A^T \cdot y)$ kernel
 - 3×1:757 Mflop/s
 - 3×3: 1400 Mflop/s
- Workload tuning
 - Evaluate weighted sums of empirical models
 - Dynamic programming to evaluate alternatives

int* ptr = ..., *ind = ...; double* val = ...; /* Matrix A, in CSR format */
double* x = ..., *y = ...; /* Vectors */

/* Compute y = β·y + α·A·x, 500 times */
for(i = 0; i < 500; i++)
 my_matmult(ptr, ind, val, α, x, β, y);
r = ddot (x, y); /* Some dense BLAS op on vectors */</pre>

int* ptr = ..., *ind = ...; double* val = ...; /* Matrix A, in CSR format */
double* x = ..., *y = ...; /* Vectors */

```
/* Step 1: Create OSKI wrappers */
oski_matrix_t A_tunable = oski_CreateMatCSR(ptr, ind, val, num_rows,
    num_cols, SHARE_INPUTMAT, ...);
oski_vecview_t x_view = oski_CreateVecView(x, num_cols, UNIT_STRIDE);
oski_vecview_t y_view = oski_CreateVecView(y, num_rows, UNIT_STRIDE);
```

```
/* Compute y = β·y + α·A·x, 500 times */
for( i = 0; i < 500; i++ )
    my_matmult( ptr, ind, val, α, x, β, y );
r = ddot (x, y);</pre>
```

int* ptr = ..., *ind = ...; double* val = ...; /* Matrix A, in CSR format */
double* x = ..., *y = ...; /* Vectors */

```
/* Step 1: Create OSKI wrappers */
oski_matrix_t A_tunable = oski_CreateMatCSR(ptr, ind, val, num_rows,
    num_cols, SHARE_INPUTMAT, ...);
oski_vecview_t x_view = oski_CreateVecView(x, num_cols, UNIT_STRIDE);
oski vecview t y view = oski CreateVecView(y, num rows, UNIT_STRIDE);
```

```
/* Step 2: Call tune (with optional hints) */
oski_SetHintMatMult(A_tunable, ..., 500);
oski_TuneMat (A_tunable);
```

```
/* Compute y = β·y + α·A·x, 500 times */
for( i = 0; i < 500; i++ )
    my_matmult( ptr, ind, val, α, x, β, y );
r = ddot (x, y);</pre>
```

int* ptr = ..., *ind = ...; double* val = ...; /* Matrix A, in CSR format */
double* x = ..., *y = ...; /* Vectors */

```
/* Step 1: Create OSKI wrappers */
oski_matrix_t A_tunable = oski_CreateMatCSR(ptr, ind, val, num_rows,
    num_cols, SHARE_INPUTMAT, ...);
oski_vecview_t x_view = oski_CreateVecView(x, num_cols, UNIT_STRIDE);
oski_vecview_t y_view = oski_CreateVecView(y, num_rows, UNIT_STRIDE);
```

```
/* Step 2: Call tune (with optional hints) */
oski_SetHintMatMult(A_tunable, ..., 500);
oski_TuneMat (A_tunable);
```

/* Compute y = β·y + α·A·x, 500 times */
for(i = 0; i < 500; i++)
 oski_MatMult(A_tunable, OP_NORMAL, α, x_view, β, y_view);// Step 3
r = ddot (x, y);</pre>

Other OSKI features

- Implicit tuning mode
- OSKI-Lua
 - Embedded scripting language w/ light footprint
 - Lists the sequence of data structure transformations used
- Get/set values
- "Plug-in" extensibility of new data structures

Examples of OSKI's early impact

- Integrating into major linear solver libraries
 - PETSc
 - Trilinos R&D100 (Heroux)
- Early adopter: ClearShape, Inc.
 - Core product: lithography process simulator
 - 2× speedup on full simulation after using OSKI
- Proof-of-concept: SLAC T3P accelerator design app
 - SpMV dominates execution time
 - Symmetry, 2×2 block structure
 - 2× speedups over parallel PETSc on a Xeon cluster

SLAC T3P Matrix

General theme: Aggressively exploit structure

- Application- and architecture-specific optimization
 - *E.g.*, Sparse matrix patterns
 - Robust performance in spite of architecture-specific peculiarities
 - Augment static models with benchmarking and search
- Short-term OSKI extensions
 - Integrate into large-scale apps, full-solver contexts
 - Accelerator design, plasma physics (DOE)
 - Geophysical simulation based on Block Lanczos (*A^TA**X; LBL)
 - PRIMME eigensolver
 - Other kernels: Matrix triple products
 - Parallelism

How to best generate all this code? Runtime?

{Data structure} x {kernel} x {low-level opt.}

- **Register blocking** (RB): up to 4× over CSR
- Variable block splitting: 2.1× over CSR, 1.8× over RB
- Diagonals: 2× over CSR
- Reordering to create dense structure + splitting: 2× over CSR
- **Symmetry**: 2.8× over CSR, 2.6× over RB
- Cache blocking: 3× over CSR
- Multiple vectors (SpMM): 7× over CSR
- And combinations...
- Sparse triangular solve
 - Hybrid sparse/dense data structure: 1.8× over CSR
- Higher-level kernels
 - $AA^{T} \cdot x$ or $A^{T}A \cdot x$: 4× over CSR, 1.8× over RB
 - $A^2 \cdot x$: 2× over CSR, 1.5× over RB

End

NOTE: "Fair" flops used (ops on explicit zeros not counted as "work")

ו מרמחוו חו ווומרווווב נתמי

NOTE: "Fair" flops used (ops on explicit zeros not counted as "work")

Quick-and-dirty Parallelism: OSKI-PETSc

Extend PETSc's distributed memory SpMV (MATMPIAIJ)

