
OSKI: Autotuned sparse matrix kernels

Richard Vuduc
LLNL / Georgia Tech [Work in this talk: Berkeley]

James Demmel, Kathy Yelick, …
UCB [BeBOP group]

CScADS Autotuning Workshop

OSKI

What does the sparse case add to our
conversation?

Additional class of apps, e.g., PageRank
Data structure transformation – at run-time

Change is “semi-static”
How to manage run-time cost? Code gen?
Extra flops pay-off
Approach: Off-line benchmark + cheap run-time analysis & model

Historical trends & snapshots “over time”
Workloads and higher-level kernels
Application adoption

OSKI

(Personal) Historical Note

Inspiration for OSKI has Bay Area roots
Profiling and feedback-directed compilation

Knuth (Stanford) ‘71: “An empirical study of FORTRAN programs”
Graham, Kessler, McKusick (UCB) ‘83: gprof

Memory hierarchy optimizations
Lam, Rothberg, Wolf (Stanford) ‘91
Pinar (LBL via UIUC), Heath 99 - for sparse mat-vec specifically

Automatic performance tuning
Bilmes, Asanovic, Chin, Demmel (UCB) ‘97: PHiPAC for dense matrix multiply
Im and Yelick (UCB) ‘99: SPARSITY for sparse mat-vec

OSKI contributors
A. Gyulassy (UCD via UCB), S. Kamil (LBL/UCB), B. Lee (Harvard via
UCB), HJ Moon (UCLA via UCB), R. Nishtala (UCB), …
A. Jain, S. Williams (UCB)

OSKI

Why “autotune” sparse kernels?

Sparse matrix-vector multiply < 10% peak, decreasing
Indirect, irregular memory access
Low computational intensity vs. dense linear algebra
Depends on matrix (run-time) and machine

Tuning is becoming more important
2× speedup from tuning, will increase
Manual tuning is difficult, getting harder
Tune target app, input, machine using automated experiments

OSKI

OSKI: Optimized Sparse Kernel Interface

Autotuned kernels for user’s matrix & machine
BLAS-style interface: mat-vec (SpMV), tri. solve (TrSV), …
Hides complexity of single-core run-time tuning
Includes fast locality-aware kernels: ATA·x, Ak·x, …
{32b, 64b}-int x {single, double} x {real, complex}

Fast in practice
Standard SpMV < 10% peak, vs. up to 31% with OSKI
Up to 4× faster SpMV, 1.8× triangular solve, 4x ATA·x, …

For “advanced” users & solver library writers
OSKI-PETSc; Trilinos (Heroux)
Adopted by ClearShape, Inc. for shipping product (2× speedup)

OSKI

SpMV crash course:
Compressed Sparse Row (CSR) storage

Matrix-vector multiply: y = A*x
for all A(i, j): y(i) = y(i) + A(i, j) * x(j)

Dominant cost: Compress?
Irregular, indirect: x[ind[…]]
“Regularize?”

OSKI

Trends: My predictions from 2003

Need for “autotuning” will increase over time
So kindly approve my dissertation topic

Example: SpMV, 1987 to present
Untuned: 10% of peak or less, decreasing
Tuned: 2× speedup, increasing over time
Tuning is getting harder (qualitative)

More complex machines & workloads
Parallelism

OSKI

Trends in uniprocessor SpMV performance
(Mflop/s), pre-2004

Trends in Single-Core SpMV Performance

OSKI

Trends in uniprocessor SpMV performance
(fraction of peak)

Trends in Single-Core SpMV Performance

OSKI

Experiment: How hard is SpMV tuning?

Exploit 8×8 blocks
Store blocks & unroll
Compresses data
Regularizes accesses

As r×c ↑, speed ↑

OSKI

Speedups on Itanium 2: The need for search

Reference
Mflop/s
(7.6%)

Mflop/s
(31.1%)

Best: 4×2

OSKI

SpMV Performance—raefsky3

OSKI

SpMV Performance—raefsky3

OSKI

Better, worse, or about the same?

OSKI

Better, worse, or about the same?
Itanium 2, 900 MHz 1.3 GHz

* Reference improves * * Best possible worsens slightly *

OSKI

Better, worse, or about the same?
Power4 Power5

* Reference worsens! *
* Relative importance of tuning increases *

OSKI

Better, worse, or about the same?
Pentium M Core 2 Duo (1-core)

* Reference & best improve; relative speedup improves (~1.4 to 1.6×)
** Best decreases from 11% to 9.6% of peak *

OSKI

More complex structures in practice

Example: 3×3 blocking
Logical grid of 3×3 cells

OSKI

Extra work can improve efficiency!

Example: 3×3 blocking
Logical grid of 3×3 cells

Fill-in explicit zeros
Unroll 3x3 block multiplies
“Fill ratio” = 1.5

On Pentium III: 1.5×
i.e., 2/3 time

OSKI

How OSKI tunes (Overview)

Library Install-Time (offline) Application Run-Time

Benchmark
data

1. Build for
Target
Arch.

2. Benchmark

Generated
code

variants

Heuristic
models

1. Evaluate
Models

Workload
from program

monitoring History
Matrix

2. Select
Data Struct.

& Code

To user:
Matrix handle
for kernel
calls

OSKI

Heuristic model example: Select block size

Idea: Hybrid off-line / run-time model
Characterize machine with off-line benchmark

Precompute Mflops(r, c) using dense matrix for all r, c
Once per machine

Estimate matrix properties at run-time
Sample A to estimate Fill(r, c)

Run-time “search”
Select r, c to maximize Mflops(r, c) / Fill(r, c)

In practice, selects (r, c) yielding perf. within 10% of best
Run-time costs ~ 40 SpMVs

80%+ = time to convert to new r × c format

OSKI

Tunable optimization techniques

Optimizations for SpMV
Register blocking (RB): up to 4× over CSR
Variable block splitting: 2.1× over CSR, 1.8× over RB
Diagonals: 2× over CSR
Reordering to create dense structure + splitting: 2× over CSR
Symmetry: 2.8× over CSR, 2.6× over RB
Cache blocking: 3× over CSR
Multiple vectors (SpMM): 7× over CSR
And combinations…

Sparse triangular solve
Hybrid sparse/dense data structure: 1.8× over CSR

Higher-level kernels
AAT·x or ATA·x: 4× over CSR, 1.8× over RB
A2·x: 2× over CSR, 1.5× over RB

OSKI

Structural splitting for complex patterns

Idea: Split A = A1 + A2 + …, and tune Ai independently
Sample to detect “canonical” structures
Saves time and/or storage (avoid fill)

Tuning knobs
Fill threshold, .5 ≤ θ ≤ 1
Number of splittings, 2 ≤ s ≤ 4
Ordering of block sizes, ri x ci; rs x cs = 1x1

OSKI

Example: Variable Block Row (Matrix #12)

2.1×
over CSR

1.8×
over RB

OSKI

Example: Row-segmented diagonals

2×
over CSR

OSKI

Dense sub-triangles for triangular solve

Dense trailing triangle:
dim=2268, 20% of total nz

Can be as high as 90+%!

Solve Tx = b for x, T triangular
Raefsky4 (structural problem) +
SuperLU + colmmd
N=19779, nnz=12.6 M

OSKI

Idea: Interleave multiplication by A, AT

Combine with register optimizations: ai = r × c block row

() ∑
=

=
⎟⎟
⎟
⎟

⎠

⎞

⎜⎜
⎜
⎜

⎝

⎛

=
n

i

T
ii

T
n

T

n
T xaax

a

a
aaxAA

1

1

1)(ML

Cache optimizations for AAT·x

dot product“axpy”

OSKI

OSKI tunes for workloads

Bi-conjugate gradients - equal mix of A·x and AT·y
3×1: A·x, AT·y = 1053, 343 Mflop/s 517 Mflop/s
3×3: A·x, AT·y = 806, 826 Mflop/s 816 Mflop/s

Higher-level operation - (A·x, AT·y) kernel
3×1: 757 Mflop/s
3×3: 1400 Mflop/s

Workload tuning
Evaluate weighted sums of empirical models
Dynamic programming to evaluate alternatives

OSKI

How to call OSKI in a “legacy” app
int* ptr = …, *ind = …; double* val = …; /* Matrix A, in CSR format */
double* x = …, *y = …; /* Vectors */

/* Compute y = β·y + α·A·x, 500 times */
for(i = 0; i < 500; i++)

my_matmult(ptr, ind, val, α, x, β, y);
r = ddot (x, y); /* Some dense BLAS op on vectors */

OSKI

How to call OSKI in a “legacy” app
int* ptr = …, *ind = …; double* val = …; /* Matrix A, in CSR format */
double* x = …, *y = …; /* Vectors */

/* Step 1: Create OSKI wrappers */
oski_matrix_t A_tunable = oski_CreateMatCSR(ptr, ind, val, num_rows,

num_cols, SHARE_INPUTMAT, …);
oski_vecview_t x_view = oski_CreateVecView(x, num_cols, UNIT_STRIDE);
oski_vecview_t y_view = oski_CreateVecView(y, num_rows, UNIT_STRIDE);

/* Compute y = β·y + α·A·x, 500 times */
for(i = 0; i < 500; i++)

my_matmult(ptr, ind, val, α, x, β, y);
r = ddot (x, y);

OSKI

How to call OSKI in a “legacy” app
int* ptr = …, *ind = …; double* val = …; /* Matrix A, in CSR format */
double* x = …, *y = …; /* Vectors */

/* Step 1: Create OSKI wrappers */
oski_matrix_t A_tunable = oski_CreateMatCSR(ptr, ind, val, num_rows,

num_cols, SHARE_INPUTMAT, …);
oski_vecview_t x_view = oski_CreateVecView(x, num_cols, UNIT_STRIDE);
oski_vecview_t y_view = oski_CreateVecView(y, num_rows, UNIT_STRIDE);

/* Step 2: Call tune (with optional hints) */
oski_SetHintMatMult(A_tunable, …, 500);
oski_TuneMat (A_tunable);

/* Compute y = β·y + α·A·x, 500 times */
for(i = 0; i < 500; i++)

my_matmult(ptr, ind, val, α, x, β, y);
r = ddot (x, y);

OSKI

How to call OSKI in a “legacy” app
int* ptr = …, *ind = …; double* val = …; /* Matrix A, in CSR format */
double* x = …, *y = …; /* Vectors */

/* Step 1: Create OSKI wrappers */
oski_matrix_t A_tunable = oski_CreateMatCSR(ptr, ind, val, num_rows,

num_cols, SHARE_INPUTMAT, …);
oski_vecview_t x_view = oski_CreateVecView(x, num_cols, UNIT_STRIDE);
oski_vecview_t y_view = oski_CreateVecView(y, num_rows, UNIT_STRIDE);

/* Step 2: Call tune (with optional hints) */
oski_SetHintMatMult(A_tunable, …, 500);
oski_TuneMat (A_tunable);

/* Compute y = β·y + α·A·x, 500 times */
for(i = 0; i < 500; i++)

oski_MatMult(A_tunable, OP_NORMAL, α, x_view, β, y_view);// Step 3
r = ddot (x, y);

OSKI

Other OSKI features

Implicit tuning mode
OSKI-Lua

Embedded scripting language w/ light footprint
Lists the sequence of data structure transformations used

Get/set values
“Plug-in” extensibility of new data structures

OSKI

Examples of OSKI’s early impact

Integrating into major linear solver libraries
PETSc
Trilinos – R&D100 (Heroux)

Early adopter: ClearShape, Inc.
Core product: lithography process simulator
2× speedup on full simulation after using OSKI

Proof-of-concept: SLAC T3P accelerator design app
SpMV dominates execution time
Symmetry, 2×2 block structure
2× speedups over parallel PETSc on a Xeon cluster

OSKI

SLAC T3P Matrix

OSKI

OSKI-PETSc Performance: Accel. Cavity

(7%
peak)

OSKI

General theme: Aggressively exploit
structure

Application- and architecture-specific optimization
E.g., Sparse matrix patterns
Robust performance in spite of architecture-specific peculiarities
Augment static models with benchmarking and search

Short-term OSKI extensions
Integrate into large-scale apps, full-solver contexts

Accelerator design, plasma physics (DOE)
Geophysical simulation based on Block Lanczos (ATA*X; LBL)
PRIMME eigensolver

Other kernels: Matrix triple products
Parallelism

OSKI

How to best generate all this code? Run-
time?
{Data structure} x {kernel} x {low-level opt.}

Optimizations for SpMV
Register blocking (RB): up to 4× over CSR
Variable block splitting: 2.1× over CSR, 1.8× over RB
Diagonals: 2× over CSR
Reordering to create dense structure + splitting: 2× over CSR
Symmetry: 2.8× over CSR, 2.6× over RB
Cache blocking: 3× over CSR
Multiple vectors (SpMM): 7× over CSR
And combinations…

Sparse triangular solve
Hybrid sparse/dense data structure: 1.8× over CSR

Higher-level kernels
AAT·x or ATA·x: 4× over CSR, 1.8× over RB
A2·x: 2× over CSR, 1.5× over RB

End

OSKI

Accuracy of the Tuning Heuristics (1/4)

NOTE: “Fair” flops used (ops on explicit zeros not counted as “work”)

DGEMV

OSKI

Accuracy of the Tuning Heuristics (2/4)DGEMV

NOTE: “Fair” flops used (ops on explicit zeros not counted as “work”)

OSKI

Quick-and-dirty Parallelism: OSKI-PETSc

Extend PETSc’s distributed memory SpMV (MATMPIAIJ)

p0

p1

p2

p3

PETSc
Each process stores diag
(all-local) and off-diag
submatrices

OSKI-PETSc:
Add OSKI wrappers
Each submatrix tuned
independently

