
Achieving accurate & context-sensitive timing

for code optimization

or

How do we measure success for tuning &

performance?

R. Clint Whaley
whaley@cs.utsa.edu

www.cs.utsa.edu/∼whaley

Anthony M. Castaldo
castaldo@cs.utsa.edu

University of Texas at San Antonio
Department of Computer Science

July 9, 2008

R. Clint Whaley (UTSA-CS) timers July 9, 2008 1 / 18



Timer Presentation Outline

I. Motivation

II. Introduction: Näıve kernel and timer implementations

III. Flushing caches when calling kernel once per sample

IV. Flushing caches when calling kernel multiple times per sample

V. Timer refinements/misc timing techniques

VI. Further Information

VII. Response to mandatory questions/red meat to dogs

R. Clint Whaley (UTSA-CS) timers July 9, 2008 2 / 18



I(a). Problem Motivation
Why do context-sensitive timings matter?

Problem Definition
Literature contains much discussion of optimizations, little
discussion on how to measure transformation results

Performance of optimization usually measured by home-grown
timer

If timer does not replicate the calling context found in target
application(s), timer results are often misleading

Most important context is probably cache state

Does Lack of Context Sensitivity Matter?

Changes magnitude of speedup enormously (next slide)

Changes best parameters for most optimizations

Changes viability of many optimizations altogether

R. Clint Whaley (UTSA-CS) timers July 9, 2008 3 / 18



I(b). Impact of Timer Method. on Speedup
Performance of DDOT using flushed & non-flushed timers

100

300

500

700

1000

2000

3000

4000

5000

6000

7000

8000

9000

10000

50000

100000

200000

300000

400000

500000

600000

700000

800000

900000

1000000

0

200

400

600

800

1000

1200

1400

1600

1800

2000

2200

no flush flushed

Vector length (N)

M
FL

O
P

R. Clint Whaley (UTSA-CS) timers July 9, 2008 4 / 18



I(c). Timing Methodology and Autotuning
Does changing timers change best optimizations?

Demonstrated strong effect of in- vs. out-of-cache timing
on all considered optimizations in:

R. Clint Whaley and David B. Whalley, “Tuning High
Performance Kernels through Empirical Compilation”, In The
2005 International Conference on Parallel Processing, June 2005.

Less formally, consider:

Optimizations like: load/use pipelining, data prefetch, tiling

⇒ All may show no benefit, slowdown, get wrong param value
when timed in-cache, but used out-of-cache

→ All may be critical for out-of-cache performance

Does this actually occur (yes, next slide)?

R. Clint Whaley (UTSA-CS) timers July 9, 2008 5 / 18



I(d). Wrong Timer’s Impact on Autotuning
ATLAS DGEMM performance when installed with/without flushing

20 40 60 80 100 200 400 600 800 1000 1200 1400 1600 1800 2000
0

200

400

600

800

1000

1200

1400

1600

1800

2000

2200

Flush tune No-flush tune

Matrix Order (N)

M
FL

O
PS

R. Clint Whaley (UTSA-CS) timers July 9, 2008 6 / 18



II. Näıve Kernel and Timer

DDOT kernel
double dotprod(

const int N,
const double *X,
const double *Y)

{
int i;
double dot=0.0;
for (i=0; i<N; i++)

dot += X[i] * Y[i];
return(dot);

}

Näıve timer
for (i=0; i < N; i++)
{ // Init operands

X[i] = rand();
Y[i] = rand();

}
//
// Perform timing
//

t0 = my_time();
dot = dotprod(N, X, Y);
t1 = my_time();

Init preloads operands to any cache large enough to hold them

R. Clint Whaley (UTSA-CS) timers July 9, 2008 7 / 18



III. Portable Cache Flushing for One Call
Cache flushing when kernel is called only once per sample

LRU-based cache flush
dsz = sizeof(double)
cs = cacheKB*1024/dsz;
flush = calloc(cs,dsz);
for (i=0; i < N; i++) {

X[i] = rand(); // Init
Y[i] = rand();

}
for (i=0; i < cs; i++)

tmp += flush[i]; //flsh
assert(tmp < 10.0);
t0 = my_time();
dot = dotprod(N, X, Y);
t1 = my_time();

OneCallFlushLRU Notes
⇒ Access unrelated area ≥

cache size to force flush

Relies on LRU for flush

→ For non-LRU caches,
increase cacheKB

Vary flush level wt cacheKB

Allow specific ops in-cache
by initing after flush

Paper has x86-specific
method using explicit
cache-flush instructions

R. Clint Whaley (UTSA-CS) timers July 9, 2008 8 / 18



IV(a). Cache Flushing for Multiple Calls
Timing when each measurement contains multiple kernel invokations

When kernel call below repeatable clock resolution, can time loop
that invokes kernel nrep times to get timing interval above resolution:

Cannot start & stop timers inside loop
→ each interval below resolution, so timing mostly error

→ adding them up gives erroneous time

⇒ Must start timer before nrep loop, stop after:

If you call with same operands, will be in-cache
If you use prior technique, last nrep − 1 calls in-cache
If you put flush inside loop, flush time added to kernel time

→ Cannot time flush only loop and subtract, since flush time may
vary strongly depending on external access

⇒ Must lay out operands in mem, and move so that each kernel
invocation uses out-of-cache data (next slide)

R. Clint Whaley (UTSA-CS) timers July 9, 2008 9 / 18



IV(b). What not to do
Timing when each measurement contains multiple kernel invocations

bad idea1 - no resolution
dsz = sizeof(double)
flush = calloc(cs,dsz);
for (j=0; j < nrep; j++)
{

for (i=0; i < cs; i++)
tmp += flush[i];

assert(tmp < 10.0);
t0 = my_time();
dot = dotprod(N, X, Y);
t1 += my_time() - t0;

}

bad idea2 - flush prob
t0 = my_time();
for (j=0; j < nrep; j++) {

for (i=0; i < cs; i++)
tmp += flush[i];

assert(tmp < 10.0);
dot = dotprod(N, X, Y);

}
t1 = my_time() - t0;
t0 = my_time();
for (j=0; j < nrep; j++) {

for (i=0; i < cs; i++)
tmp += flush[i];

}
t1 -= my_time() - t0;

R. Clint Whaley (UTSA-CS) timers July 9, 2008 10 / 18



IV(c). Cache Flushing for Multiple Calls
Cache flushing when kernel called multiple times in one sample

op2
op1

. . .
opN

op2
op1

. . .
opN

↑
wrk
set
2
↓

↑
wrk
set
1
↓

...

...
↑

wrk
set
N
↓

op2
op1

. . .
opN

6

?

c
a
c
h
e
f
l
u
s
h
a
r
e
a

Multiple call dot product timer
cs = cacheKB*(1024/sizeof(double));
setsz = N + N; // 2 N-length ops in wrk set
nset = (cs + setsz-1)/setsz;
if (nset < 1) nset=1;
Nt = nset * setsz;
X = vp = malloc(sizeof(double)*Nt);
X += Nt - setsz; Y = X + N;
for (x=vp,i=Nt-1; i >= 0; i--)

x[i] = my_drand();
x=X; y=Y; k=0; alpha = 1.0;
t0 = my_time();
for (i=0; i < nrep; i++) {

dot += alpha*dotprod(N, X, Y)
if (++k != nset) {x -= setsz; y -= setsz;}
else {x=X;y=Y;k=0;alpha = -alpha;}

}
time = (my_time()-t0)/((double)nrep);

R. Clint Whaley (UTSA-CS) timers July 9, 2008 11 / 18



V. Timer Refinements
List of additional timing techniques/tips covered in paper

Paper provides techniques for avoiding:

Floating point over/under-flow,

Lazy page zeroing,

Virtual memory instruction load,

Incorrect timings due to CPU throttling.

Paper discusses methods for:
Choosing best system timer

Getting more repeatable results using both CPU and WALL
timers,

Varying type and thoroughness of flush,

Enforcing memory (mis)alignment,

Adapting cache flushing for parallel timings.

R. Clint Whaley (UTSA-CS) timers July 9, 2008 12 / 18



VI. Further Information

Presenter homepage: www.cs.utsa.edu/~whaley/

Timing paper: Clint Whaley and Anthony M. Castaldo,
“Achieving accurate and context-sensitive timing for code
optimization”, accepted for publication in Software: Practice &
Experience

→ www.cs.utsa.edu/~whaley/papers/timing_SPE08.pdf

ATLAS homepage: math-atlas.sourceforge.net

iFKO paper: R. Clint Whaley and David B. Whalley, “Tuning
High Performance Kernels through Empirical Compilation”, In
The 2005 International Conference on Parallel Processing, June
2005.

→ www.cs.utsa.edu/~whaley/papers/icpp05_8.ps

R. Clint Whaley (UTSA-CS) timers July 9, 2008 13 / 18



Picking losing fights
Self-tuned libraries will always outperform compiler-generated code

⇒ In theory, no, in practice, yes.
→ Probably will compete on selected benchmarks, but be crushed

for actual use.

R. Clint Whaley (UTSA-CS) timers July 9, 2008 14 / 18



Picking losing fights
Self-tuned libraries will always outperform compiler-generated code

⇒ In theory, no, in practice, yes.
→ Probably will compete on selected benchmarks, but be crushed

for actual use.

Why: Three anti-HPC Compiler Traditions
1 My assumptions trump your experimental results

Libraries eventually have users wt. applications

→ keeps them honest to some degree

2 All problems solved 20 years ago → nothing works today

HPC weak, but does reward raw performance improvement
We haven’t solved this prob in serial:

⇒ Let’s solve it on heterogeneous massively parallel machine!

3 10,000 front-ends, 0 HPC backends

CISC compaction, front-end (arch) optimization, inst alignment,
inst selection & sched

R. Clint Whaley (UTSA-CS) timers July 9, 2008 15 / 18


