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Increasing parallelism

• Advanced numerical simulations harness higher degrees 
of parallelism
– Multiple cores instead of higher clock speeds

• Tens of thousands of processors
– Higher application complexity

• Multi-physics & multi-scale

• Scalability hard to achieve
– Overhead for managing 

concurrency at large scale
– Hierarchy of latencies and 

bandwidths
– Load balance 
– Access to shared resources 



Why tracing?

• Traces preserve temporal and spatial relationships 
among individual runtime events
– Suitable to study interactions among different processes
– Allows identification of wait states

• Two approaches
– Visual analysis 
– Automatic analysis 

Discovery of 
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Why not tracing?

• Trace size is impediment to scalability
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Scalability of tracing

• Excessive storage requirements
– Especially during trace generation and in-memory analysis

• Intrusion when flushing event data to disk at runtime
• Costly file I/O when merging many potentially large 

process-local trace files
• Excessive processing times during analysis
• Failure, extended response times, and size of graphical 

displays
• Unexpected problems

– Building robust and scalable tools is hard…



Automatic off-line trace analysis

• Idea:
– Automatic search for patterns of inefficient behavior
– Classification of behavior
– Quantification of significance

• Quicker than manual (visual) analysis
• Guaranteed to cover the entire event trace
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Example patterns
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(a) Late sender

(c) Late sender / wrong order

(b) Late receiver

(d) Wait at n-to-n



SCALASCA

• Follow-up project of KOJAK
• Started in January 2006
• Funded by Helmholtz Initiative and Networking Fund

– Developed in partnership with University of Tennessee

• Objective: develop a scalable version of KOJAK
– Basic idea: parallelization of analysis
– Current focus: single-threaded MPI-1 applications

• http://www.scalasca.org/



Sequential trace analysis (KOJAK)
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Parallel trace analysis (SCALASCA)
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Parallel pattern analysis

• Analyze separate local trace files in parallel
– Exploit distributed memory and processing capabilities
– Often allows keeping whole trace in main memory

• Parallel replay of target application‘s communication 
behavior
– Analyze communication with an operation of the same type
– Traverse local traces in parallel
– Exchange data at synchronization points of target application



Example: Late Sender

Sender
• Triggered by send event
• Determine enter event
• Send both events to receiver

Receiver
• Triggered by receive event
• Determine enter event
• Receive remote events
• Detect Late Sender situation
• Calculate & store waiting time
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Example: Wait at N x N

• Triggered by collective exit event
• Determine enter events
• Determine & distribute latest enter event (max-reduction)
• Calculate & store waiting time
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Test applications

• Scalability
– ASCI SMG2000 benchmark

• Semi-coarsening multi-grid solver
• Fixed problem size per process - weak scaling behavior

– ASCI SWEEP3D benchmark
• 3D Cartesian (XYZ) geometry neutron transport model 
• Fixed problem size per process - weak scaling behavior

• Analysis results
– XNS fluid dynamics code

• FE simulation on unstructured meshes
• Constant overall problem size – strong scaling behavior



Test platforms

• IBM Blue Gene/L (JUBL) in Jülich
– 8 Racks with 8192 dual-core nodes
– 288 I/O nodes
– GPFS parallel file system

• Cray XT3/4 (Jaguar) in Oak Ridge
– 11706 dual core nodes
– Lustre parallel file system
– Time provided by PEAC end station, 

(Performance Evaluation and Analysis
Consortium), Pat Worley



SMG2000 trace analysis on BG/L

SMG2000 on 16,364 CPUs
• 230 GB trace data
• > 40 * 109 events



SWEEP3D trace analysis on BG/L



SMG2000 trace analysis on Cray XT3/4



Display of analysis results (SWEEP 3D)

Which problem? Which call path? Which process?



XNS CFD application

• Academic computational fluid dynamics code for 
simulation of unsteady flows
– Developed by Computational Analysis of Technical Systems 

Group, RWTH Aachen University
– Exploits finite-element techniques, unstructured 3D meshes, 

iterative solution strategies
– >40,000 lines of Fortran90
– Portable parallel implementation based on MPI



Wait states in XNS

40% wait states



Conclusion

• Wait states addressed by our analysis can be a 
significant performance problem – especially at larger 
scales

• Scalability of the analysis can be improved by 
parallelization
– Process local trace files in parallel
– Replay original communication 

• Promising results with prototype implementation
– Analysis scales up to 16,384 processes

• Previously impractical 
– Potential for further scaling



Future work

• Reduce number of events per process (trace length)
– Trace selectively
– Eliminate redundancy 

• Find causes of wait states
– Derive hypotheses from measurements
– Validate hypotheses using simulation

• Extend (scalable) approach to other programming 
models

Aren’t we 
supposed to talk 

about 
interfaces?



Data formats, interfaces, and components

• Data formats
– Binary trace format (EPILOG) and archive directory structure  
– XML-based call-path profile format (CUBE) 

• Interfaces
– Serial low-level trace read interface (not beautiful) 
– Parallel low-level trace read interface (planned) 
– Parallel high-level trace read interface (PEARL)
– Profile read/write interface (CUBE)
– Profiling interface for OpenMP (POMP) 

• Reusable components
– Tracing and (call-path) profiling library (EPIK)
– Profile browser (CUBE)
– Source-to-source instrumenter for OpenMP (OPARI)



Parallel high-level trace read interface

• Provided by separate library written in C++ (PEARL)
– Parallel version of EARL

• Efficient performance-transparent random access
– Local traces kept in main memory
– (Generous) limit for amount of local trace data
– Different data structures for event storage

• Linear list, complete call graph (CCG)

• Higher-level abstractions
– Local execution state
– Local pointer attributes (can point backward & forward)

• Global abstractions established by parallel replay
– E.g., repeating message matches SEND with RECV event



Parallel high-level trace read interface (2)

• Services for cross-process analysis
– Serialization of events for transfer
– Remote event 

• Two modes of exchanging events
– Point-to-point & collective

• Current applications
– Pattern search 
– Time correction utility (in progress)
– (Simple) statistical trace analysis (in progress)
– Simulator (in progress)



Call-path profile browser

• CUBE
– Browser based on tree widgets & topological display
– Data model and format
– Operations to manipulate & analyze instances

• Difference, mean, merge, cut, rank

• New version on the horizon
– Client server architecture
– Improved scalability & portability

• Applications
– SCALASCA trace analysis results 

& runtime summaries
– TAU call-path profiles
– MAMRMOT runtime errors
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Vision: integrated tool environment

SCALASCA 
Automatic trace analysis

Unified runtime performance measurement system
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Interfaces

• Trace read / write interface
– Define common parallel low-level read interface 

• EPILOG & OTF 
• Joint high-level event model
• Later mapping onto low-level model?

– Joint format?!

• Profile read / write interface
– Error data and performance data requirements

• Trace browser ↔ profile browser
– Profile browser client of trace browser
– Trace browser client of profile browser?

• Hardware counter read interface
– Access to network counters / temperature sensors 



Conclusion (2)

• Expected benefit of standardization
– Makes a user’s life easier
– Makes our life as a community easier

• Challenges
– Documentation 
– Robustness
– Funding
– Licensing

• What SCALASCA has to offer 
– Parallel high-level trace read interface, profile browser

• What SCALASCA needs
– Integration with time-line browsers
– Flexible and portable instrumentation technologies 



Recent work on integrating automatic with visual 
trace analysis…



Thank you!

For more information, visit
our project home page:

http://www.scalasca.org


