
Scalable Performance Analysis of
Large-Scale Applications

Felix Wolf
Forschungszentrum Jülich

July 16th 2007

Outline

• Motivation
• Pattern search in event traces
• Parallel approach
• Experimental results
• Data formats, interfaces, and components
• Ongoing tool integration efforts

People involved

• Research Group
Performance Analysis of Parallel Programs
– Focus: scalability, grids, Cell, SCALASCA
– Teaching at RWTH Aachen University
– Felix Wolf, Ralph Altenfeld, Daniel Becker, Markus Geimer,

Björn Kuhlmann, Matthias Pfeiffer, Brian Wylie, Liang Yang

• Research Group
Performance Optimization and Programming
Environments
– Focus: multithreading, OpenMP, KOJAK
– Bernd Mohr, Sebastian Flott, Christoph Geile, Marc-André

Hermanns

Increasing parallelism

• Advanced numerical simulations harness higher degrees
of parallelism
– Multiple cores instead of higher clock speeds

• Tens of thousands of processors
– Higher application complexity

• Multi-physics & multi-scale

• Scalability hard to achieve
– Overhead for managing

concurrency at large scale
– Hierarchy of latencies and

bandwidths
– Load balance
– Access to shared resources

Why tracing?

• Traces preserve temporal and spatial relationships
among individual runtime events
– Suitable to study interactions among different processes
– Allows identification of wait states

• Two approaches
– Visual analysis
– Automatic analysis

Discovery of
wait states

zoom in

Why not tracing?

• Trace size is impediment to scalability

t

t

disabled

full

partial

Temporal coverage Number of event parameters

t

many

few

Granularity / event rate

t

t

high

low

Problem size

t

t

t

large

small

Number of processes

t

w
id

th

Scalability of tracing

• Excessive storage requirements
– Especially during trace generation and in-memory analysis

• Intrusion when flushing event data to disk at runtime
• Costly file I/O when merging many potentially large

process-local trace files
• Excessive processing times during analysis
• Failure, extended response times, and size of graphical

displays
• Unexpected problems

– Building robust and scalable tools is hard…

Automatic off-line trace analysis

• Idea:
– Automatic search for patterns of inefficient behavior
– Classification of behavior
– Quantification of significance

• Quicker than manual (visual) analysis
• Guaranteed to cover the entire event trace

Low-level
event trace

High-level
profile

Reduction

Call tree
Problem

System

≡

Example patterns

time

pr
oc

es
s

time

pr
oc

es
s

time

pr
oc

es
s

time

pr
oc

es
s

ENTER EXIT SEND RECV COLLEXIT

(a) Late sender

(c) Late sender / wrong order

(b) Late receiver

(d) Wait at n-to-n

SCALASCA

• Follow-up project of KOJAK
• Started in January 2006
• Funded by Helmholtz Initiative and Networking Fund

– Developed in partnership with University of Tennessee

• Objective: develop a scalable version of KOJAK
– Basic idea: parallelization of analysis
– Current focus: single-threaded MPI-1 applications

• http://www.scalasca.org/

Sequential trace analysis (KOJAK)

Source Code Automatic multilevel
instrumentation

Executable

Global unified
trace file Sequential analyzer

Trace analysis
reportUnify & merge

Execution on
parallel machine

Local trace files

Instrumentation

Measurement

Analysis

Timeline browser
Paraver / VAMPIR

Profile browser
CUBE

Parallel trace analysis (SCALASCA)

Trace analysis
report

Source Code Automatic multilevel
instrumentation

Executable

Runtime
summary reportReport analysis

Execution on
parallel machine

Instrumentation

Measurement

Analysis

C
on

fig
ur

at
io

n
/ r

ef
in

em
en

t

Parallel trace
analyzer

Local trace files

Unified defs +
mappings

Profile browser
CUBE

Parallel pattern analysis

• Analyze separate local trace files in parallel
– Exploit distributed memory and processing capabilities
– Often allows keeping whole trace in main memory

• Parallel replay of target application‘s communication
behavior
– Analyze communication with an operation of the same type
– Traverse local traces in parallel
– Exchange data at synchronization points of target application

Example: Late Sender

Sender
• Triggered by send event
• Determine enter event
• Send both events to receiver

Receiver
• Triggered by receive event
• Determine enter event
• Receive remote events
• Detect Late Sender situation
• Calculate & store waiting time

time

pr
oc

es
s

ENTER EXIT SEND RECV

… …

… …

Example: Wait at N x N

• Triggered by collective exit event
• Determine enter events
• Determine & distribute latest enter event (max-reduction)
• Calculate & store waiting time

time

pr
oc

es
s

ENTER COLLEXIT

2

1 1… …

3… …

2… …

1

2

3

22

1

2

3

3

Test applications

• Scalability
– ASCI SMG2000 benchmark

• Semi-coarsening multi-grid solver
• Fixed problem size per process - weak scaling behavior

– ASCI SWEEP3D benchmark
• 3D Cartesian (XYZ) geometry neutron transport model
• Fixed problem size per process - weak scaling behavior

• Analysis results
– XNS fluid dynamics code

• FE simulation on unstructured meshes
• Constant overall problem size – strong scaling behavior

Test platforms

• IBM Blue Gene/L (JUBL) in Jülich
– 8 Racks with 8192 dual-core nodes
– 288 I/O nodes
– GPFS parallel file system

• Cray XT3/4 (Jaguar) in Oak Ridge
– 11706 dual core nodes
– Lustre parallel file system
– Time provided by PEAC end station,

(Performance Evaluation and Analysis
Consortium), Pat Worley

SMG2000 trace analysis on BG/L

SMG2000 on 16,364 CPUs
• 230 GB trace data
• > 40 * 109 events

SWEEP3D trace analysis on BG/L

SMG2000 trace analysis on Cray XT3/4

Display of analysis results (SWEEP 3D)

Which problem? Which call path? Which process?

XNS CFD application

• Academic computational fluid dynamics code for
simulation of unsteady flows
– Developed by Computational Analysis of Technical Systems

Group, RWTH Aachen University
– Exploits finite-element techniques, unstructured 3D meshes,

iterative solution strategies
– >40,000 lines of Fortran90
– Portable parallel implementation based on MPI

Wait states in XNS

40% wait states

Conclusion

• Wait states addressed by our analysis can be a
significant performance problem – especially at larger
scales

• Scalability of the analysis can be improved by
parallelization
– Process local trace files in parallel
– Replay original communication

• Promising results with prototype implementation
– Analysis scales up to 16,384 processes

• Previously impractical
– Potential for further scaling

Future work

• Reduce number of events per process (trace length)
– Trace selectively
– Eliminate redundancy

• Find causes of wait states
– Derive hypotheses from measurements
– Validate hypotheses using simulation

• Extend (scalable) approach to other programming
models

Aren’t we
supposed to talk

about
interfaces?

Data formats, interfaces, and components

• Data formats
– Binary trace format (EPILOG) and archive directory structure
– XML-based call-path profile format (CUBE)

• Interfaces
– Serial low-level trace read interface (not beautiful)
– Parallel low-level trace read interface (planned)
– Parallel high-level trace read interface (PEARL)
– Profile read/write interface (CUBE)
– Profiling interface for OpenMP (POMP)

• Reusable components
– Tracing and (call-path) profiling library (EPIK)
– Profile browser (CUBE)
– Source-to-source instrumenter for OpenMP (OPARI)

Parallel high-level trace read interface

• Provided by separate library written in C++ (PEARL)
– Parallel version of EARL

• Efficient performance-transparent random access
– Local traces kept in main memory
– (Generous) limit for amount of local trace data
– Different data structures for event storage

• Linear list, complete call graph (CCG)

• Higher-level abstractions
– Local execution state
– Local pointer attributes (can point backward & forward)

• Global abstractions established by parallel replay
– E.g., repeating message matches SEND with RECV event

Parallel high-level trace read interface (2)

• Services for cross-process analysis
– Serialization of events for transfer
– Remote event

• Two modes of exchanging events
– Point-to-point & collective

• Current applications
– Pattern search
– Time correction utility (in progress)
– (Simple) statistical trace analysis (in progress)
– Simulator (in progress)

Call-path profile browser

• CUBE
– Browser based on tree widgets & topological display
– Data model and format
– Operations to manipulate & analyze instances

• Difference, mean, merge, cut, rank

• New version on the horizon
– Client server architecture
– Improved scalability & portability

• Applications
– SCALASCA trace analysis results

& runtime summaries
– TAU call-path profiles
– MAMRMOT runtime errors

Virtual Institute
High-Productivity Supercomputing

Forschungszentrum Jülich
• Central Institute for Applied Mathematics

RWTH Aachen University
• Center for Computing and Communication

Technische Universität Dresden
• Center for Information Services and

High Performance Computing

University of Tennessee
• Innovative Computing Laboratory

Sponsored by

http:www.vi-hps.org

Vision: integrated tool environment

SCALASCA
Automatic trace analysis

Unified runtime performance measurement system

PAPI
Access to CPU and network hardware counters

Tracing Profiling

MARMOT
Runtime error

detection

Zoom in on relevant spot

Refined measurement configuration

Automatic
profile

analysis

Error
profile

Trace analysis
profile

Runtime
profile

Event
trace

VAMPIR Trace browser
CUBE Profile browser

Interfaces

• Trace read / write interface
– Define common parallel low-level read interface

• EPILOG & OTF
• Joint high-level event model
• Later mapping onto low-level model?

– Joint format?!

• Profile read / write interface
– Error data and performance data requirements

• Trace browser ↔ profile browser
– Profile browser client of trace browser
– Trace browser client of profile browser?

• Hardware counter read interface
– Access to network counters / temperature sensors

Conclusion (2)

• Expected benefit of standardization
– Makes a user’s life easier
– Makes our life as a community easier

• Challenges
– Documentation
– Robustness
– Funding
– Licensing

• What SCALASCA has to offer
– Parallel high-level trace read interface, profile browser

• What SCALASCA needs
– Integration with time-line browsers
– Flexible and portable instrumentation technologies

Recent work on integrating automatic with visual
trace analysis…

Thank you!

For more information, visit
our project home page:

http://www.scalasca.org

