
F

Scalasca components with reuse potential

M
it
g

lie
d

 d
e

r
H

e
lm

h
o

lt
z
-G

e
m

e
in

s
c
h

a
ft

July 21th 2008

Bernd Mohr, Felix Wolf

June 7th 2008

Outline

• Overview of Scalasca

• Components with reuse potential

 OPARI OpenMP source-code instrumenter

 MPI tracing wrappers and wrapper generator

 Compiler event adapters

 Library for efficient parallel file I/O

 Profile browser

• Ongoing and planned collaborations

June 7th 2008

• Started in January 2006

• Scalable performance-analysis toolset for parallel codes

 Emphasis on detection of wait states

• Designed for large-scale systems

such as IBM Blue Gene or Cray XT

• Funded through Helmholtz

Impulse and Networking Funds

• Developed in cooperation with the

University of Tennessee

• http://www.scalasca.org/

http://www.scalasca.org/

June 7th 2008

Functionality

• Integrated performance analysis procedure

 Runtime summaries (i.e., profiles)

 Overview of performance behavior

 Refinement of instrumentation

 In-depth study of application behavior via event traces

 Localization and quantification of wait states

 Switching between both options without recompilation or re-

linking

• Programming models supported

 MPI-1

 MPI-2 + other one-sided models (in progress)

 OpenMP (in progress)

June 7th 2008

Parallel pattern

search

Summary

report

Instrumenter

compiler /

linker

Pattern

report

Instrumented

executable

Instr.

target

application

Measurement

library

HWC

R
e

p
o

rt

m

a
n

ip
u

la
ti
o

n

Report

explorer

Report

explorer

Performance data flow

Local event

traces

Source

modules

Optimized measurement configuration

KOJAK

Pattern

report
Global trace

Property

trace

Exported

trace

Sequential

pattern search

Trace

browser

Merge

Conversion

= Third-party component

June 7th 2008

OPARI OpenMP source-code instrumenter

• Instruments Fortran, C, C++ OpenMP 2.5 codes with

POMP instrumentation calls

• Used by KOJAK, Scalasca, TAU, VampirTrace, ompP

• Not perfect, but works for us

• Ongoing work

 Removal of limitations

 Nested and dynamic threading

 Inter-compilation units dependencies

 Support for OpenMP 3.0 features

June 7th 2008

MPI tracing wrappers and wrapper generator

• Complete MPI-2 tracing wrappers

 Enter, Exit, Send, Recv, Collective, Get, Put events

 C/C++ and Fortran support

• Basis also for Vampirtrace

• Very flexible wrapper generator

• Testsuite

June 7th 2008

Compiler event adapters

• Many compilers have (sometimes unsupported and

undocumented) options for user function instrumentation

 GNU, Intel, PGI, Pathscale, IBM XL, Sun f90, NEC, Hitachi

• Used by KOJAK, Scalasca, Vampirtrace

• Compiler event adapter component

 Translates compiler specific events to generic enter/exit

 Function filtering at run-time

• Planned

 Function filtering at compile time (GNU, IBM XL)

June 7th 2008

Efficient parallel I/O with sionlib

• Scalable I/O library for native parallel file access

• Efficiently reading and writing binary files from thousands

of processes, e.g.,

 Process-local scratch/restart files

 Process-local trace files (Scalasca)

• Simplified file handling

 Only one large file instead of thousands of small files

• Optimized I/O

 Alignment to file system blocks

• Minimal source code changes

 Allows use of standard file pointer (FILE* fp)

June 7th 2008

Typical use case: parallel I/O to separate files

MPI_Init() /* n tasks */

…

fileptr=fopen(file_###)

…

fwrite(buffer,fileptr)

…

fclose(fileptr)

…

MPI_Finalize()

outdir/
file_001

file_002

file_n-1

file_n

…

Problem 1: file handling (backup, HSM)  number of files

Problem 2: slow create & open of files  Lock on outdir (serialization)

data1

data2

data n-1

data n

…

June 7th 2008

Example: native parallel direct access

MPI_Init() /* n tasks */

…

fileptr=fopen(file_common)

…

fseek(mypos)

fwrite(buffer,fileptr)

…

fclose(fileptr)

…

MPI_Finalize()

outdir/

file_common

Initial Problem solved: fast open, only one file

New Problem 1: meta data handling, start positions and length not stored

New Problem 2: file system locks on blocks, overlapping parallel access to blocks

Restriction: space required by each process must be known in advance

data1

data2

data n-1

data n

…
…

filesystem blocks

(GPFS: 2 MB)

June 7th 2008

Access with sionlib

MPI_Init() /* n tasks */

…

sid=sion_paropen_mpi(fname,

localsize, fsblocksize,…, &fileptr)

…

sion_ensure_free_space(sid, nbytes)

fwrite(buffer,fileptr)

…

sion_ensure_free_space(sid, nbytes)

fwrite(buffer,fileptr)

…

sion_parclose(sid)

…

MPI_Finalize()

outdir/

file_common

Problems solved: simple file handling, fast open and fast I/O (fs block alignment)

Restriction: space required by each process must be known in advance

 new allocation at the end of the file if writing more data than

initially allocated

data1

data2

data n-1

data n

… …

filesystem blocks

(GPFS: 2 MB)

metadata

June 7th 2008

sionlib: internal file format

metadata I

task 1

task 2

task n-1

task n

…

task 1

task 2

task n-1

task n

…

block of chunks 1

…

metadata II

endianness

of file system

number of tasks

global ranks

file format id

requested chunk size

0001

blocksize

numpe

global_rk[n]

size_rk[n]

'sion'

maxchunks max. # chunks

block of chunks n
ptrmetadata II

chunks of each task

chunk sizes block 1

chunk sizes block 2

chunks[n]

chunksize[n]

chunksize[n]

… …

June 7th 2008

sionlib: comand line tools

siondump [-a] <sionfile>

• prints on stdout all information from the first meta data block , with -a also all

chunk sizes from the second meta data block

siondefrag [-q blksize] [-s chunksize] <sionfile> <new_sionfile>

• generates a new sion file from an existing sion file

• the new file will have only one chunk per task which contains the data of all

chunks of this task in the old sion file

• generates with “–q 1” a compact sion file without gaps

sionsplit [-d digits] <sionfile> <prefix>

• extracts task related files from a sion file

• a file will be generated for each task with a filename starting with <prefix>

• the task number will be appended to the <prefix>

June 7th 2008

Measurement on 16 rack Blue Gene/P

• BG/P connected to file server with 128 x 10 GiE

GPFS file system bandwidth: ~ 6GB/s

• Parallel test: (file server in production)

 Writing and reading 2 TB data, 32 MB from each task

 65536 MPI-tasks, 128 I/O-nodes

 Parallel open of one SION file  ~ 1s

 Overall write bandwidth  3.7 GB/s

550s for writing 2 TB

 Overall read bandwidth  5.4 GB/s

380s for reading 2 TB

June 7th 2008

CUBE - Call-path profile browser

• Browser based on tree widgets & topological display

• Data model and format to store call-path profiles

• Utilities to manipulate & analyze instances

 Difference, mean, merge, cut, rank

• New version based on Qt

• Current applications

 Scalasca trace analysis results

& runtime summaries

 TAU call-path profiles

 MARMOT runtime errors

June 7th 2008

Improvements of new version

• More configuration options

 Order of trees

 Color spectrum

 Format and precision

of numbers

 Fonts

• Optimized to handle large

data sets

 Fast parser

 No 3rd-party XML library

 Dynamic loading of

individual metrics

 Faster aggregation algorithms

• More flexible and user-friendly topology widget

 E.g., rotation of topology via mouse

June 7th 2008

Ongoing and planned collaborations

• Vampir & Scalasca

 Unified parallel read interface for OTF & EPILOG traces

 Unified tracing library (planned)

• TAU & Scalasca

 Unified instrumentation facilities

 Unified profiling runtime (planned)

June 7th 2008

Thank you!

www.scalasca.org

Please download and try

Version 1.0

http://www.scalasca.org/
http://www.scalasca.org/

