
CScADS Autotuning ‘07

Center for Scalable Application
Development Software (CScADS):

Automatic Performance Tuning Workshop
http://cscads.rice.edu/

Discussion and Feedback

2CScADS Autotuning ’07

Top Priority Questions for Discussion

• What are the tuning parameters? Are there a small fixed list
of about 10, or does the list grow with each algorithm?
− (Tiling, unrolling, prefetch, dma-list construction… are

there more?)

• What should be the next set of challenge problems for
compilers? Should we have library-oriented benchmarks for
library-specific issues (as opposed to whole programs)?

• What kind of infrastructure could we share and how?

• What are other things to tune for besides performance?

• What architectures should we tune for? And how can this
community feedback to architects?

3CScADS Autotuning ’07

Questions on Libraries

• What language / IR for code generators
− Perl, Ruby (Cray), OCAML (FFTW), Lua (OSKI), GAP &

SPL (Spiral), Python (Merrimac), Mathematica (Flame), C
(Atlas), POET

• At what level should one autotune?
− E.g., BLAS, LAPACK, applications
− E.g., 1D Serial FFT, 3D FFT, applications

• Cache oblivious vs. aware
− Does this depend on computational intensity?

• Can we eliminate empirical analysis through recursion or
through model?

4CScADS Autotuning ’07

More questions

• Should we tune full applications (and if so how) or
libraries/kernels?

• What are the performance (or productivity) difference that
come from autotuning vs. tuning?

• Can autotuning help with non-obvious applications (i.e.,
when can it beat hand-tuning in performance or productivity)

• What are the tuning parameters? (Tiling, unrolling, prefetch,
dma-list construction… are there more?)

• Heisenberg problem: how intrusive is measurement?

• What about applications where you don’t have a fixed kernel
or execution path? (e.g., sorting)

5CScADS Autotuning ’07

More Questions

• What about Petascale? Tuning for interconnect or MPI

• Do lessons learned at 8 apply to 100K cores?

• Are these very specialized tuning, or is it very general?

• Mutable and dynamic data structures vs. static?

• How could architecture make tuning easier or vice versa?

• Should the autotuning community use RAMP?

• Role of domain-specific languages in algorithm generation?

• How to do the things you can’t get published? Boring but
important and/or negative.

6CScADS Autotuning ’07

Questions

• What kind of infrastructure could we share and how?
− Performance data
− Performance counters
− Reproducible results (Martin Vetterli from EPFL)
− Test problems (e.g., matrices, kernels)

• What are other things to tune for besides performance?
− Power (max heat)
− Energy
− Reliability
− Multiple tuning parameters where one is held constant

(e.g., sharing memory bus)

7CScADS Autotuning ’07

Questions on Compilers

• Compilers: what they can/should do?
− Matteo: register allocation of straight-line code, but not scheduling
− Keith: scheduling and more (NP-hard may be OK)

• If we only need roughly 8-10 transforms to get hand-tuned performance,
why is this not already solved?

• Should we have library-oriented benchmarks for library-specific issues
(as opposed to whole program).
− In many common benchmarks (eg. spec), structures are declared

statically, allowing compilers to fully analyze the code.
− In libraries, we typically take unbounded arguments (i.e. matrices

whose dimensions are only known at run time).

• Is there a role for compiler directed hardware counter information
collection (via something like PAPI) to explore options for optimization
during the compilation process?

8CScADS Autotuning ’07

Questions for Tuning and Parallelism

• Can autotuners help get us over the multicore hurdle?

• How much parallelism can autotuners handle? Does search
space get too large?

• If cores get simpler, will autotuning be less important

• Performance models: are they predictive enough?

• Are multicore chips easier/harder to get performance from
than multi-socket shared memory multiprocessors?

• What architectures should we tune for? And how can this
community feedback to architects?

9CScADS Autotuning ’07

Infrastructure to Share

• Cache flush
− Atlas BlAS1 self-flush: allocate multiple vectors
− Context-sensitive timing; GEMV in or out of cache

10CScADS Autotuning ’07

Dinner/Reception Level (B)

11CScADS Autotuning ’07

Cliff House Registration Level (C)

12CScADS Autotuning ’07

Plans for Next Year

• Role of runtime adaptation

• Petascale vendors who tune application

• A lot of tuning that wasn’t autotuning

• Groups to include next time
− Advance Execution Systems crowd (NSF)
− Embedded systems folks

• Tuning for other performance parameters:
− Power
− Bandwidth
− Energy
− Reliability
− Memory size
− Quality of Service and/or Worst case execution time
− Accuracy

13CScADS Autotuning ’07

Benchmarks

• Beyond dense matrix multiply

• Beyond SPEC: testing what we used to run

• Formulation of problem statements, rather than code

• What autotuners are the highest priority
− Sorting, graph algorithms, graphical models
− Complex mutable data structures: mesh generation, K-d

tree build, sparse LU,

14CScADS Autotuning ’07

Success Metrics

• Metrics
− Percent of memory bandwidth (or throughput)
− Utilization of a particular part of the system
− Productivity (use vs. time to write)

• Reproducible results
− Including version numbers
− Processor (CPU) ID; chipset and its setting; BIOS

revision, DRAM parameters; clock speed,
− Microbenchmarks for load/store bandwidth, latency, e.g.,

XRay, Atlas (very general and portable), GPU bench
− FutureMark

15CScADS Autotuning ’07

What Hardware?

• Relying on shared memory with coherence will run out
− E.g., local stores or caches without coherence
− GPU will converge with CPU
− We had: 1) superscalar multicore 2) streaming multicore;

3) multithreading multicore (don’t count on #1)
− 1-2 big cores + smaller is hard to schedule;

multiprogramming will lead to homogeneity

• General issues:
− Minimizing the number of messages
− Hiding latency
− Hierarchical memory systems
− Optimizing DRAM (large transfers) cost of opening a

page his high

16CScADS Autotuning ’07

More on hardware

• Machines optimized for throughput will have worse latency

• Local bandwidth will scale maybe with optical global on-chip
will scale

• Off-chip bandwidth
− Stacking (L4, L5,…L8 caches)
− Can use as aggregation buffer for slower memory

• Non-uniform caches will come soon:
− Currently have stacked hierarchy
− Each core will have L2, but will act as coherent L2
− Single large with different costs to hit (partition cache by

addresses)

17CScADS Autotuning ’07

Driving Applications

• What are the driving applications
− Single threaded applications (“no” controversial)
− What is good enough? Not in single thread performance, it’s in

multidata (video, media) many small cores

• Exercise: Assume
− Single thread (no parallelism)
− 95% cache hit rate
− How do you make it scale?

• Games
− Speech recognition, AI, …
− Willing to give up order of magnitude in performance for ease of

programming
− Game is a 4-5 year commitment (get Tim Sweeney from EPIC

Games or Gabe Newell from Valve)

18CScADS Autotuning ’07

Algorithms in Games

• Object collision (on variable tree structures)

• Particle systems (trees, n^2 with cutoff)

• Transport algorithms

• Geometric deformation (unstructured grids, AMR)

• Stencil computations (convolutions, etc.)

19CScADS Autotuning ’07

Short vs. Long-term Focus

• Mostly < 5-year picture

• Need longer term vision

• How to influence *future* hardware

• Bring numbers

20CScADS Autotuning ’07

Theory Question

• Given a computation DAG, with weighted nodes
(computation) and edges (communication)

• Parallelism is partitioning

• Sequential case on memory hierarchy is scheduling

• Replication is a standard way to transform the DAG to avoid
communication in parallelism

• These are all discrete problems; can you transform to
something continuous?

21CScADS Autotuning ’07

What Data Structures?

• What Data Structures can compilers analyzing?

• Should it be data-structure focused rather than algorithm
focused

• Parallel data structure problem: too much locking

• Using prefix instead of locking and things in between

