
Nonlinear Shallow Water 
Testbed Model

Chris Eldred, Colorado State University



A) Project Overview
Subset of the Global Circulation Model development 
being done at the Center for Multiscale Modeling of 
Atmospheric Processes (CMMAP)
Global cloud resolving model based on a system of 
equations that filters vertically propagating sound 
waves. The vorticity and divergence are predicted, 
and the model is implemented on a geodesic grid.
CSU Team Members: David Randall, Celal Konor, 
Ross Heikes, Don Dazlich, many others
We have had SciDAC support since 2000. Ario 
Arakawa was involved until the current grant.
My funding comes from the DOE Computational 
Science Fellowship
Going to restrict myself to what I am working on



B) Science Lesson

• Nonlinear Shallow Water Testbed Model (NTM)
– Has two components: Shallow Water Model and Eigensolver
– Shallow Water Model

• Solves the nonlinear shallow water equations on an f-plane 
(soon to be beta-plane and sphere as well)

• Variety of different schemes implemented (all finite-
volume/finite-difference)

• Variety of different variable staggerings implemented 
(A,C,Z,Z*)

• Variety of different grids implemented (planar square, 
hexagon, triangle) under a generic Voronoi mesh framework

– Eigensolver
• Determines the eigenstructure of the linear shallow water 

equations for a given grid and variable staggering
• Important for understanding the effects of discretization on 

waves in the atmosphere



C) Parallel Programming Model + 
Computational Methods

 Written in Fortran 90 with Cheetah as a templating language 
(code-autogeneration, controlled with cfg files)

 Fortran namelists used to control run-time behavior
 Uses PETSC and SLEPC for:

– Parallel vector management (decomposition, indexing, 
etc.)

– Linear solver (Poisson problem, associed with vorticity-
divergence formulation)

– Sparse eigenvalue solver (SLEPC)
• Python is used as an analysis and visualization system

– Uses Numpy, Scipy and Matplotlib
– Scripts written to parse output (text right now, soon to be 

CF-compliant NetCDF) and generate plots and reports
• Would like scalability out to ~1000 cores (past that not useful)
• Currently only tested on my workstation



E) I/O Patterns and Strategy

• Right now write 1 file per MPI process
– Python scripts put it back together

• Need to explore pNetCDF, probably using specific 
MPI I/O processes to overlap I/O and computation

• No input files (other than namelist)
• Output size is controlled by size of grid and number 

of variables used by the scheme, typically <1GB for 
the grids I have been testing 

• No checkpoint/restart capabilities right now
– Would like to put this in later



F) Visualization and Analysis

• How do you explore the data generated?
– Python scripts produce plots and generate reports
– Plotting is automated based on the variables defined by 

the scheme
– Generic Voronoi mesh plotting code written on top of 

Matplotlib

• Do you have a visualization workflow?
– 1 script does everything at this point

• Would like to use a cfg file to control what is 
plotted/analyzed and how

• Plans to incorporate movies of field evolution



G/I) Performance and Scaling

• Haven't had an issue with speed using workstation 
for test cases (small though)

• Unsure of performance/scaling bottlenecks
• PETSC has proven scalability well beyond what I 

need
– Just need to make sure my code doesn't slow it down

• Need to start profiling (Tau?)
• This is something I haven't really explored yet
• Would like to be scalable out to ~1000 cores in the 

next year



H) Tools

• Debugging:
– Gdb for single-core stuff
– Combo of gdb and print statements for parallel stuff

• Need a better debugging solution here

• Other tools
– Use makefiles for compilation
– Uses Cheetah (python templating engine) to auto-generate 

code based on scheme/variable configuration

• Plans to move project to GitHub or Google Code and 
use Git for code management and bug-tracking



J) Roadmap

• Primary: need to finish parallelization of shallow 
water model and eigensolver

• Long-Term: Want to have shallow water model and 
eigensolver fully implemented for scalable, 1000 
core performance in the next year

• Would like to add cubed-sphere grids and finite 
element-type methods (spectral element, 
discontinuous Galerkin)

• NTM should be a useful framework for testing and 
evaluating different schemes and grids for the non-
linear shallow water equations


	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9

