Flow Visualization Research @ IDAV

Christoph Garth

CScADS Workshop on Scientific Data Analysis and Visualization for Petascale Computing
August 6, 2009
Flow Illustration with Integral Surfaces

(with Hari Krishnan, Ken Joy)
Integration-Based Flow Vis

Integral Curve

Intuitive interpretation: path of a massless particle
Computation in datasets: numerical integration
Integral Surfaces

- Generalization: path surfaces

- Interpretation: surface spanned by a family of integral curves, originating from a common curve
Integral Surfaces

Flow over a car, 38M unstructured cells

seeding curve
Integral Surfaces

• Step 1: Compute initial approximation, points on t_1 are advected from t_0
Integral Surfaces

- Step 1: Compute initial approximation, points on t_1 are advected from t_0
Integral Surfaces

• Step 2: Apply refinement predicate on adjacent point triples to determine where better resolution is needed.
Integral Surfaces

• Step 2:
 Apply refinement predicate on adjacent point triples to determine where better resolution is needed
Step 2: Apply refinement predicate on adjacent point triples to determine where better resolution is needed.
Integral Surfaces

- Step 2: Apply refinement predicate on adjacent point triples to determine where better resolution is needed.
Integral Surfaces

- Step 3:
 Insert new points
Integral Surfaces

• Step 3:
 Insert new points
Integral Surfaces

- Repeat at Steps 2 and 3 until no further refinement is needed
Integral Surfaces

- Approximate sequence of timelines going from t_i to t_{i+1}
Integral Surfaces

- Approximate sequence of timelines going from t_i to t_{i+1}
Integral Surfaces

- Approximate sequence of timelines going from t_i to t_{i+1}
Integral Surfaces

- Result: Surface skeleton of integral curves + time lines
• Use adjacent integral curves and triangulate heuristically with shortest diagonals.
Phase 2: Surface Triangulation

- Use adjacent integral curves and triangulate heuristically with shortest diagonals.
Phase 2: Surface Triangulation

- Use adjacent integral curves and triangulate heuristically with shortest diagonals.
Phase 2: Surface Triangulation

- Use adjacent integral curves and triangulate heuristically with shortest diagonals.
Phase 2: Surface Triangulation

- Use adjacent integral curves and triangulate heuristically with shortest diagonals.
Integral Surfaces

Proposed method: (Vis 08)

- adaptive approximation
 - integral curve divergence/convergence
 - surface deformation (folding, shearing)

- temporal locality
 - allows streaming of large time-varying vector fields

- spatial locality
 - only considers neighboring curves, allows parallization
Integral Surfaces
Visualization / Rendering options

- Transparent
- Transparent with color
- Ambient occlusion

Turbulent CFD simulation, 200M unstructured cells
Integral Surfaces

Flow past an ellipsoid, 2.6M unstructured cells x 1000 timesteps

Vortex formation behind an ellipsoidal body
Integral Surfaces

Flow over a delta wing, 18M unstructured cells x 500 timesteps
Integral Surfaces

Ongoing work (Vis 09):

Time Surfaces (seed surface)
Streak Surfaces (continuous seeding from a curve)
Integral Surfaces
Integral Surfaces
Integral Surfaces

Performance:
- require 100 - 100,000 pathlines, depending on complexity of data and surface
- computation times (1 CPU) can range up to hours for very complex surfaces
- time spent integrating pathlines > 90%
- parallelization is in the works

We provide tools for interactive viewing, spatial + temporal navigation
Lagrangian Flow Visualization
(with Xavier Tricoche, Mario Hlawitschka, Ken Joy)
Lagrangian Flow Visualization

- Lagrangian Flow Vis - look at what particles do
- Finite-Time Lyapunov Exponent
- Measures exponential separation rate between neighboring particles
- Identifies Lagrangian Coherent Structures
Lagrangian Flow Visualization

- Computation: dense particles + derivatives

- Interpretation of FTLE:
 - separation forward in time: indicates divergence
 - separation backward in time: indicates convergence
Lagrangian Flow Visualization

Time-dependent vs. time-independent FTLE fields
Lagrangian Flow Visualization

3D Visualization: DVR of FTLE fields using a 2D transfer function

Computation is extensive, but we use GPUs for small data, and adaptive computation for medium-sized data.
Lagrangian Flow Visualization

Often effective visualizations with relatively little application knowledge.

Wish list:

• feature identification
• feature tracking
Lagrangian Flow Visualization

Visualization tool:
section plane FTLE +
user interaction

Pathlines seeded
according user brushing

Delta Wing

Section plane orthogonal to main flow direction
Lagrangian Flow Visualization

• Application to DT-MRI / tensor data
• Interest in coherent fiber bundles / bundle separation

joint work with X. Tricoche (Purdue), M. Hlawitschka
Lagrangian Flow Visualization

- Hamiltonian Systems (Fusion, Astrophysics, ...)
- Coherent Structures: Island Chain Boundaries

Standard Map
Tokamak Simulation
10^6–10^9 integral curves
Improved Integration

(with Dave Pugmire, Sean Ahern, Hank Childs, Gunther Weber, Eduard Deines)
Improved Integration

• Integrating many curves is a hard problem
 – non-linear
 – data-dependent
 – requires fast interpolation in arbitrary meshes

• Strong need for parallelization
 – large data (petascale)
 – large seed set (millions of integral curves)
 – correct handling difficult mesh types (e.g. AMR)
Improved Integration

• Wish list for improved integration:
 – parallelize over both data and seed point set
 – avoid bad performance in corner cases
 • large data, small seed set
 • small data, large seed set
 • precludes any kind of static partitioning
 – handle data in existing format, no repartitioning or expensive up-front analysis, general use case

• Ongoing work: adaptive load balancing using a master-slave approach and distribution heuristics (SC09 paper: comparison of different approaches)
Improved Integration

Ongoing: Correct handling of AMR meshes

- Problem 1: cell-centered data
 - need good interpolation scheme
 - cell-node averaging is **not** the right thing
 (too much smoothing)
 - dual mesh interpolation behaves much better
Correct handling of AMR meshes:

- Problem 2: discontinuities across AMR resolution boundaries
 - adaptive integration cannot handle this smoothly, or fails outright
 - “stopping” integration across boundary results in decreased numerical error

Integration should work out-of-the-box, without a user worrying about the details.
Improved Integration

ignored discontinuities + averaging

explicit disc. handling + dual mesh
• Where can I download this?
 – Nowhere, yet :-(

• Integration into Visit is underway
 – Improved integration in Visit very soon
 – Integral Surfaces + FTLE visualization are being incorporated
Acknowledgements

John Anderson,
Luke Gosink,
Hari Krishnan,
Alexy Agranovski,
Mauricio Hess-Flores,
Eduard Deines,
Ken Joy,
Markus Rütten,
SciDAC VACET,
Purdue University,
University of Kaiserslautern,
University of Leipzig,
DLR Germany,
German Research Foundation,
LBNL
LLNL
ORNL
Thanks!

Questions?