
Parallel I/O in Practice

Rob Ross
Mathematics and Computer Science Division
Argonne National Laboratory
rross@mcs.anl.gov

Thanks to Rob Latham, Rajeev Thakur,
Marc Unangst, and Brent Welch for their
help in preparing this material.

Argonne National
Laboratory

Computational Science

  Use of computer simulation as a tool for
greater understanding of the real world
–  Complements experimentation and theory

  Problems are increasingly computationally
challenging
–  Large parallel machines needed to perform

calculations
–  Critical to leverage parallelism in all phases

  Data access is a huge challenge
–  Using parallelism to obtain performance
–  Finding usable, efficient, portable interfaces
–  Understanding and tuning I/O

2

Visualization of entropy in Terascale
Supernova Initiative application. Image from
Kwan-Liu Ma’s visualization team at UC
Davis.

IBM BG/L system.

Argonne National
Laboratory

Large-Scale Data Sets
Application teams are beginning to generate 10s of Tbytes of data in a single
simulation. For example, a recent GTC run on 29K processors on the XT4
generated over 54 Tbytes of data in a 24 hour period [1].

PI Project On-Line DataOff-Line Data
Lamb, Don FLASH: Buoyancy-Driven Turbulent Nuclear Burning 75TB 300TB
Fischer, Paul Reactor Core Hydrodynamics 2TB 5TB
Dean, David Computational Nuclear Structure 4TB 40TB
Baker, David Computational Protein Structure 1TB 2TB
Worley, Patrick H. Performance Evaluation and Analysis 1TB 1TB
Wolverton, Christopher Kinetics and Thermodynamics of Metal and

Complex Hydride Nanoparticles
5TB 100TB

Washington, Warren Climate Science 10TB 345TB
Tsigelny, Igor Parkinson's Disease 2.5TB 50TB
Tang, William Plasma Microturbulence 2TB 10TB
Sugar, Robert Lattice QCD 1TB 44TB
Siegel, Andrew Thermal Striping in Sodium Cooled Reactors 4TB 8TB
Roux, Benoit Gating Mechanisms of Membrane Proteins 10TB 10TB

Data requirements for select 2008 INCITE applications at ALCF

[1] S. Klasky, personal correspondence, June 19, 2008.

3

Argonne National
Laboratory

“There is no physics without I/O.”
– Anonymous Physicist

SciDAC Conference
June 17, 2009

(I think he might have been kidding.)

4

Argonne National
Laboratory

This Talk

Part 1 (Today)

–  Describe the lower layers of parallel I/O systems (storage and
I/O middleware) and how these layers contribute to
performance and reliability

–  Provide an understanding of how these pieces fit together to
provide a resource for computational science applications

Part 2 (Tomorrow)

–  Detail the use of higher-level I/O libraries in computational
science applications and how these fit with lower layers

–  Discuss how I/O can be tuned and tools to facilitate
understanding of I/O in applications

5

Argonne National
Laboratory

Storage Hardware and
Parallel File Systems

6

Argonne National
Laboratory

Disk Access Rates over Time

Thanks to R. Freitas of IBM Almaden Research Center for providing much of the data for this graph.

7

Argonne National
Laboratory

Blue Gene/P Parallel Storage System

Architectural diagram of 557 TF Argonne Leadership Computing Facility Blue Gene/P I/O system.

Commodity
network primarily
carries storage traffic

900+ port 10 Gigabit
Ethernet Myricom switch
complex

Enterprise storage
controllers and large racks
of disks connected via
InfiniBand or Fibre
Channel
17 DataDirect S2A9900
controller pairs with 480�
1 Tbyte drives and 8
InfiniBand ports per pair

Storage nodes run
parallel file system
software and manage
incoming FS traffic
from gateway nodes
136 two dual core
Opteron servers with 8
Gbytes of RAM each

Gateway nodes run
parallel file system client
software and forward I/O
operations from HPC
clients
640 Quad core PowerPC
450 nodes with 2 Gbytes of
RAM each

Ethernet�
10 Gbit/sec

InfiniBand�
16 Gbit/sec

BG/P Tree�
6.8 Gbit/sec

Serial ATA�
3.0 Gbit/sec

HW bottleneck is
here. Controllers
can manage only�
4.6 Gbyte/sec.
Peak I/O system
bandwidth is �
78.2 Gbyte/sec.

8

Argonne National
Laboratory

Snapshot of Performance on Blue Gene/P

9

Maximum I/O rate of
300 Mbytes/sec per
I/O forwarding node
limits performance in
this region.

Effective BW out of
storage racks limits
performance in this
region (writing to
/dev/null achieves
around 65 Gbytes/sec).

We believe this drop
is due to a disk going
bad in a storage rack;
waiting on repeat
testing to confirm.

Low stat performance
relative to create may
be due to poor choice
of server-side cache
size (256 Kbytes)?

Lang et. al, “I/O Performance Challenges at Leadership Scale”, to appear in SC09, November 2009.

Argonne National
Laboratory

Parallel File Systems

  Building block for HPC I/O systems
–  Present storage as a single, logical storage unit
–  Stripe files across disks and nodes for performance

–  Tolerate failures (in conjunction with other HW/SW)
 User interface is POSIX file I/O interface, not very good for HPC

An example parallel file system, with large astrophysics checkpoints distributed across multiple I/O
servers (IOS) while small bioinformatics files are each stored on a single IOS.

C C C C C

Comm. Network

PFS PFS PFS PFS PFS

IOS IOS IOS IOS

H01

/pfs

/astro

H03 /bio H06

H02
H05

H04

H01

/astro

/pfs

/bio

H02
H03
H04

H05 H06

chkpt32.nc

prot04.seq prot17.seq

10

Argonne National
Laboratory

Data Distribution in Parallel File Systems

11

Argonne National
Laboratory

Locking in Parallel File Systems

Most parallel file systems use locks to manage concurrent
access to files
  Files are broken up into lock units
  Clients obtain locks on units that they will access before

I/O occurs
  Enables caching on clients as well (as long as client has a lock,

it knows its cached data is valid)
  Locks are reclaimed from clients when others desire access

12

If an access touches any
data in a lock unit, the
lock for that region must
be obtained before access
occurs.

Argonne National
Laboratory

Locking and Concurrent Access

13

Argonne National
Laboratory

Fault Tolerance and Parallel File Systems

Combination of hardware and software ensures continued
operation in face of failures:

–  RAID techniques hide disk failures
–  Redundant controllers and shared access to storage
–  Heartbeat software and quorum directs server failover

14

Argonne National
Laboratory

Computational Science and
Parallel I/O

15

Argonne National
Laboratory

Stressing the I/O System

 Computational science applications exhibit complex I/O
patterns that are unique, and how we describe these
patterns influences performance.

 Accessing from large numbers of processes has the potential
to overwhelm the storage system. How we describe the
relationship between accesses influences performance.

 In some cases we simply need to reduce the number of
processes accessing the storage system in order to match
number of servers or limit concurrent access.

16

Argonne National
Laboratory 17

Process 0 Process 0 Process 0 Process 0

Contiguous and Noncontiguous I/O

  Contiguous I/O moves data from a single memory block into a single file
region

  Noncontiguous I/O has three forms:
–  Noncontiguous in memory, noncontiguous in file, or noncontiguous in

both
  Structured data leads naturally to noncontiguous I/O (e.g. block

decomposition)
  Describing noncontiguous accesses with a single operation passes more

knowledge to I/O system

Contiguous Noncontiguous
in File

Noncontiguous
in Memory

Noncontiguous
in Both

Argonne National
Laboratory 18

Independent and Collective I/O

  Independent I/O operations specify only what a single process will do
–  Independent I/O calls obscure relationships between I/O on other processes

  Many applications have phases of computation and I/O
–  During I/O phases, all processes read/write data

  Collective I/O is coordinated access to storage by a group of processes
–  Collective I/O functions are called by all processes participating in I/O
–  Allows I/O layers to know more about access as a whole, more opportunities for

optimization in lower software layers, better performance

P0 P1 P2 P3 P4 P5 P0 P1 P2 P3 P4 P5

Independent I/O Collective I/O

Argonne National
Laboratory

I/O Aggregation

As the number of nodes on systems grows, the access patterns seen
by underlying file systems appear increasingly chaotic. Reducing the
apparent number of clients before hitting the file system layer can
significantly improve performance.

In this case we have 2K
nodes rendering and
compositing a 20482
image on the Blue Gene/P.

There are 64 compute
nodes per I/O node.
64 writers corresponds
to 2 writers per I/O node.

T. Peterka et al, “Assessing Improvements in the Parallel Volume Rendering Pipeline at Large Scale,” SC08
Ultrascale Visualization Workshop, November 2008.

19

Argonne National
Laboratory

The I/O Software Stack

 Additional I/O software provides improved performance and
usability over directly accessing the parallel file system. Reduces
or (ideally) eliminates need for optimization in application codes.

20

Argonne National
Laboratory

I/O Middleware

 Match the programming model (e.g. MPI)
 Facilitate concurrent access by groups

of processes
–  Collective I/O
–  Atomicity rules

 Expose a generic interface
–  Good building block for high-level libraries

 Efficiently map middleware operations into PFS ones
–  Leverage any rich PFS access constructs, such as
• Scalable file name resolution
• Rich I/O descriptions

21

Argonne National
Laboratory

MPI-IO

22

Argonne National
Laboratory

MPI-IO

 I/O interface specification for use in MPI apps
 Data model is a stream of bytes in a file

–  Same as POSIX and stdio
 Features:

–  Noncontiguous I/O with MPI datatypes and file views
–  Collective I/O
–  Nonblocking I/O
–  Fortran bindings (and additional languages)

23

Argonne National
Laboratory 24

Example: Noncontiguous I/O in MPI with
the subarray datatype

  MPI_Type_create_subarray can describe any N-dimensional subarray of
an N-dimensional array

  In this case we use it to pull out a 2-D tile
  Tiles can overlap if we need them to
  Separate MPI_File_set_view call uses this type to select the file region
  More arbitrary structures can be described with MPI datatypes as well

frame_size[1]

fra
m

e_
si

ze
[0

]

Tile 4

tile_start[1] tile_size[1]

tile_start[0] tile_size[0]

Argonne National
Laboratory

Noncontiguous I/O: Data Sieving

  Data sieving is used to
combine lots of small accesses
into a single larger one
–  Remote file systems (parallel or

not) tend to have high latencies
–  Reducing # of operations

important

  Similar to how a block-based
file system interacts with
storage

  Generally very effective, but
not as good as having a PFS
that supports noncontiguous
access

Buffer

Memory

File

Data Sieving Read Transfers

25

Argonne National
Laboratory

Data Sieving Write Operations

Buffer

Memory

File

Data Sieving Write Transfers

  Data sieving for writes is more
complicated
–  Must read the entire region first
–  Then make changes in buffer
–  Then write the block back

  Requires locking in the file
system
–  Can result in false sharing

(interleaved access)

  PFS supporting noncontiguous
writes is preferred

26

Argonne National
Laboratory 27

Collective I/O Optimization: Two-Phase I/O

  Problems with independent, noncontiguous access
–  Lots of small accesses
–  Independent data sieving reads lots of extra data, can exhibit false

sharing
  Idea: Reorganize access to match layout on disks

–  Single processes use data sieving to get data for many
  Second “phase” redistributes data to final destinations
  Two-phase writes operate in reverse (redistribute then I/O)

Two-Phase Read Algorithm

p0 p1 p2 p0 p1 p2 p0 p1 p2

Phase 1: I/O Initial State Phase 2: Redistribution

Argonne National
Laboratory

Two-Phase I/O Algorithms

28

For more information, see W.K. Liao and A. Choudhary, “Dynamically Adapting File Domain Partitioning Methods for Collective I/O Based on
Underlying Parallel File System Locking Protocols,” SC2008, November, 2008.

Argonne National
Laboratory

Impact of Two-Phase I/O Algorithms

 This graph shows the
performance for the S3D
combustion code, writing to a
single file.

 Aligning with lock boundaries
doubles performance over
default “even” algorithm.

 “Group” algorithm similar to
server-aligned algorithm on last
slide.

 Testing on Mercury, an IBM IA64
system at NCSA, with 54
servers and 512KB stripe size.

29

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

8 16 32 64 128
256

512

W
ri

te
 B

a
n

d
w

id
th

 (
G

B
/s

)

Number of Processes

S3D I/O on GPFS

aligned
even

group

W.K. Liao and A. Choudhary, “Dynamically Adapting
File Domain Partitioning Methods for Collective
I/O Based on Underlying Parallel File System
Locking Protocols,” SC2008, November, 2008.

Argonne National
Laboratory

S3D Turbulent Combustion Code

  S3D is a turbulent combustion
application using a direct numerical
simulation solver from Sandia National
Laboratory

  Checkpoints consist of four global
arrays
–  2 3-dimensional
–  2 4-dimensional
–  50x50x50 fixed

subarrays

30

Thanks to Jackie Chen (SNL), Ray Grout (SNL), and Wei-Keng Liao (NWU) for providing the S3D I/O benchmark, Wei-Keng Liao
for providing this diagram.

Argonne National
Laboratory

Impact of Optimizations on S3D I/O

  Testing with PnetCDF output to single file, three configurations,
16 processes
–  All MPI-IO optimizations (collective buffering and data sieving) disabled
–  Independent I/O optimization (data sieving) enabled
–  Collective I/O optimization (collective buffering, a.k.a. two-phase I/O)

enabled

31

Coll. Buffering
and Data Sieving
Disabled

Data Sieving
Enabled

Coll. Buffering
Enabled (incl.
Aggregation)

POSIX writes 102,401 81 5
POSIX reads 0 80 0
MPI-IO writes 64 64 64
Unaligned in file 102,399 80 4
Total written (MB) 6.25 87.11 6.25
Runtime (sec) 1443 11 6.0
Avg. MPI-IO time
per proc (sec)

1426.47 4.82 0.60

Argonne National
Laboratory

Summarizing Part 1

 Storage systems combine very large numbers of devices
together with software to create a logical unit on which
scientific data may be stored.

 Computational science applications exhibit complex access
patterns. How we describe those accesses can have a
dramatic impact on performance.

 The I/O software stack implements optimizations designed to
maximize performance, given enough information to apply the
best optimization.

 Tomorrow we will look at high-level I/O libraries and their
role in usability of these systems.

32

Parallel I/O in Practice
(Part 2)

Rob Ross
Mathematics and Computer Science Division
Argonne National Laboratory
rross@mcs.anl.gov

Thanks to Rob Latham, Rajeev Thakur,
Marc Unangst, and Brent Welch for their
help in preparing this material.

Argonne National
Laboratory

Recap of Part 1

 Storage systems combine very large numbers of devices
together with software to create a logical unit on which
scientific data may be stored.

 Computational science applications exhibit complex access
patterns. How we describe those accesses can have a
dramatic impact on performance.

 The I/O software stack implements optimizations designed to
maximize performance, given enough information to apply the
best optimization.

34

Argonne National
Laboratory

Application and Storage Data Models

  Applications have data models appropriate to
domain
–  Multidimensional typed arrays, images

composed of scan lines, variable length
records

–  Headers, attributes on data
  I/O systems have very simple data models

–  Tree-based hierarchy of containers
–  Some containers have streams of bytes

(files)
–  Others hold collections of other

containers (directories or folders)
  High-level I/O libraries help map between

these data models

35

Graphic from J. Tannahill, LLNL

Graphic from A. Siegel, ANL

Argonne National
Laboratory 36

High-level I/O Interfaces

 Provide structure to files
–  Well-defined, portable formats
–  Self-describing
–  Organization of data in file
–  Interfaces for discovering contents

 Present APIs more appropriate for computational science
–  Typed data
–  Noncontiguous regions in memory and file
–  Multidimensional arrays and I/O on subsets of these arrays

 Both of our example interfaces are implemented on top of
MPI-IO

Argonne National
Laboratory

The Parallel netCDF
Interface and File Format

37

Thanks to Wei-Keng Liao, Kui Gao, and
Alok Choudhary (NWU) for their help in
the development of PnetCDF.

Argonne National
Laboratory 38

Parallel netCDF (PnetCDF)

  Based on original “Network Common Data Format” (netCDF) work from
Unidata
–  Derived from their source code

  Data Model:
–  Collection of variables in single file
–  Typed, multidimensional array variables
–  Attributes on file and variables

  Features:
–  C and Fortran interfaces
–  Portable data format (identical to netCDF)
–  Noncontiguous I/O in memory using MPI datatypes
–  Noncontiguous I/O in file using sub-arrays
–  Collective I/O

  Unrelated to netCDF-4 work

Argonne National
Laboratory

Data Layout in netCDF Files

39

Argonne National
Laboratory 40

Record Variables in netCDF

  Record variables are defined to have a
single “unlimited” dimension
–  Convenient when a dimension size

is unknown at time of variable
creation

  Record variables are stored after all
the other variables in an interleaved
format
–  Using more than one in a file is

likely to result in poor
performance due to number of
noncontiguous accesses

Argonne National
Laboratory 41

Storing Data in PnetCDF

 Create a dataset (file)
–  Puts dataset in define mode
–  Allows us to describe the contents
• Define dimensions for variables
• Define variables using dimensions
• Store attributes if desired (for variable or dataset)

 Switch from define mode to data mode to write variables
 Store variable data
 Close the dataset

Argonne National
Laboratory 42

Example: FLASH Astrophysics

  FLASH is an astrophysics code for
studying events such as supernovae
–  Adaptive-mesh hydrodynamics
–  Scales to tens of 1000s of processors
–  MPI for communication

  Frequently checkpoints:
–  Large blocks of typed variables

from all processes
–  Portable format
–  Canonical ordering (different than

in memory)
–  Skipping ghost cells Ghost cell

Stored element

…
Vars 0, 1, 2, 3, … 23

Argonne National
Laboratory 43

Example: FLASH with PnetCDF

 FLASH AMR structures do not map directly to netCDF
multidimensional arrays

 Must create mapping of the in-memory FLASH data structures
into a representation in netCDF multidimensional arrays

 Chose to
–  Place all checkpoint data in a single file
–  Impose a linear ordering on the AMR blocks
• Use 4D variables (X, Y, Z, block)

–  Store each FLASH variable in its own netCDF variable
• Skip ghost cells

–  Record attributes describing run time, total blocks, etc.

Argonne National
Laboratory 44

Defining Variable Dimensions

int status, ncid, dim_tot_blks, dim_nxb,
dim_nyb, dim_nzb;

MPI_Info hints;

/* create dataset (file) */

status = ncmpi_create(MPI_COMM_WORLD, filename,
NC_CLOBBER, hints, &file_id);

/* define dimensions */

status = ncmpi_def_dim(ncid, "dim_tot_blks",
tot_blks, &dim_tot_blks);

status = ncmpi_def_dim(ncid, "dim_nxb",
nzones_block[0], &dim_nxb);

status = ncmpi_def_dim(ncid, "dim_nyb",
nzones_block[1], &dim_nyb);

status = ncmpi_def_dim(ncid, "dim_nzb",
nzones_block[2], &dim_nzb);

Each dimension gets
a unique reference

Argonne National
Laboratory 45

Creating Variables

int dims = 4, dimids[4];

int varids[NVARS];

/* define variables (X changes most quickly) */

dimids[0] = dim_tot_blks;

dimids[1] = dim_nzb;

dimids[2] = dim_nyb;

dimids[3] = dim_nxb;
for (i=0; i < NVARS; i++) {

status = ncmpi_def_var(ncid, unk_label[i],
NC_DOUBLE, dims, dimids, &varids[i]);

}

Same dimensions used
for all variables

Argonne National
Laboratory 46

Storing Attributes

/* store attributes of checkpoint */

status = ncmpi_put_att_text(ncid, NC_GLOBAL,
"file_creation_time", string_size, file_creation_time);

status = ncmpi_put_att_int(ncid, NC_GLOBAL,
"total_blocks", NC_INT, 1, tot_blks);

status = ncmpi_enddef(file_id);

/* now in data mode … */

Argonne National
Laboratory 47

Writing Variables

double *unknowns; /* unknowns[blk][nzb][nyb][nxb] */

size_t start_4d[4], count_4d[4];

start_4d[0] = global_offset; /* different for each process */

start_4d[1] = start_4d[2] = start_4d[3] = 0;

count_4d[0] = local_blocks;

count_4d[1] = nzb; count_4d[2] = nyb; count_4d[3] = nxb;

for (i=0; i < NVARS; i++) {

/* ... build datatype “mpi_type” describing values of a

single variable ... */

/* collectively write out all values of a single variable
*/

ncmpi_put_vara_all(ncid, varids[i], start_4d, count_4d,
unknowns, 1, mpi_type);

}

status = ncmpi_close(file_id); Typical MPI buffer-count-type tuple

Argonne National
Laboratory 48

Inside PnetCDF Define Mode

 In define mode (collective)
–  Use MPI_File_open to create file at create time
–  Set hints as appropriate
–  Locally cache header information in memory
• All changes are made to local copies at each process

 At ncmpi_enddef
–  Process 0 writes header with MPI_File_write_at
–  MPI_Bcast result to others
–  Everyone has header data in memory, understands

placement of all variables
• No need for any additional header I/O during data mode!

Argonne National
Laboratory 49

Inside PnetCDF Data Mode

 Inside ncmpi_put_vara_all (once per variable)
–  Each process performs data conversion into internal buffer
–  Uses MPI_File_set_view to define file region
• Contiguous file region for each process in FLASH case

–  MPI_File_write_all collectively writes data
 At ncmpi_close

–  MPI_File_close ensures data is written to storage

 MPI-IO performs optimizations
–  Two-phase possibly applied when writing variables

 MPI-IO makes PFS calls
–  PFS client code communicates with servers and stores data

Argonne National
Laboratory 50

PnetCDF Wrap-Up

 PnetCDF gives us
–  Simple, portable, self-describing container for data
–  Collective I/O
–  Data structures closely mapping to the variables described

 If PnetCDF meets application needs, it is likely to give good
performance
–  Type conversion to portable format does add overhead

 Some limits on (CDF-2) file format:
–  Fixed-size variable: < 4 GiB
–  Per-record size of record variable: < 4 GiB
–  232 -1 records

 Work almost complete to relax these limits (CDF-5)

Argonne National
Laboratory

The HDF5 Interface and
File Format

51

Argonne National
Laboratory 52

HDF5

 Hierarchical Data Format, from the HDF Group (formerly of
NCSA)

 Data Model:
–  Hierarchical data organization in single file
–  Typed, multidimensional array storage
–  Attributes on dataset, data

 Features:
–  C, C++, and Fortran interfaces
–  Portable data format
–  Optional compression (not in parallel I/O mode)
–  Data reordering (chunking)
–  Noncontiguous I/O (memory and file) with hyperslabs

Argonne National
Laboratory 53

Dataset “temp”

HDF5 File “chkpt007.h5”

Group “/”

Group “viz”
datatype = H5T_NATIVE_DOUBLE
dataspace = (10, 20)

attributes = …

10 (data)

20

HDF5 Files

 HDF5 files consist of groups, datasets, and attributes
–  Groups are like directories, holding other groups and datasets
–  Datasets hold an array of typed data (what we think of as a variable)

•  A datatype describes the type (not an MPI datatype)
•  A dataspace gives the dimensions of the array

–  Attributes are small datasets associated with the file, a group, or
another dataset
•  Also have a datatype and dataspace
• May only be accessed as a unit

Argonne National
Laboratory

Example: FLASH Particle I/O with HDF5

 FLASH “Lagrangian particles” record
location, characteristics of reaction
–  Passive particles don’t exert

forces; pushed along but do not
interact

 Particle data included in checkpoints,
but not in plotfiles; dump particle data
to separate file

 One particle dump file per time step
–  i.e., all processes write to single

particle file
 Output includes application info,

runtime info in addition to particle
data

54

Block=30;
Pos_x=0.65;
Pos_y=0.35;
Pos_z=0.125;
Tag=65;
Vel_x=0.0;
Vel_y=0.0;
vel_z=0.0;

Typical particle data

Argonne National
Laboratory 55

Storing Labels for Particles

int string_size = OUTPUT_PROP_LENGTH;

hsize_t dims_2d[2] = {npart_props, string_size};

hid_t dataspace, dataset, file_id, string_type;

/* store string creation time attribute */

string_type = H5Tcopy(H5T_C_S1);

H5Tset_size(string_type, string_size);

dataspace = H5Screate_simple(2, dims_2d, NULL);

dataset = H5Dcreate(file_id, “particle names",
string_type, dataspace, H5P_DEFAULT);

if (myrank == 0) {

 status = H5Dwrite(dataset, string_type, H5S_ALL,
H5S_ALL, H5P_DEFAULT, particle_labels);

}

get a copy of the
string type and resize it
(one way to deal with

strings)

Write out all 8 labels
in one call

Remember:
“S” is for dataspace,
“T” is for datatype,
“D” is for dataset!

Argonne National
Laboratory 56

Storing Particle Data with Hyperslabs (1 of 2)

hsize_t dims_2d[2];

/* Step 1: set up dataspace –
 describe global layout */

dims_2d[0] = total_particles;
dims_2d[1] = npart_props;

dspace = H5Screate_simple(2, dims_2d, NULL);
dset = H5Dcreate(file_id, “tracer particles”,

H5T_NATIVE_DOUBLE, dspace, H5P_DEFAULT);

Remember:
“S” is for dataspace,
“T” is for datatype,
“D” is for dataset!

local_np = 2,
part_offset = 3,
total_particles = 10,
Npart_props = 8

Argonne National
Laboratory 57

Storing Particle Data with Hyperslabs (2 of 2)

hsize_t start_2d[2] = {0, 0},
 stride_2d[1] = {1, 1};

hsize_t count_2d[2] = {local_np,

 npart_props};

/* Step 2: setup hyperslab for

 dataset in file */

start_2d[0] = part_offset; /* different for each process */

status = H5Sselect_hyperslab(dspace,
 H5S_SELECT_SET,
 start_2d, stride_2d, count_2d, NULL);

dataspace from
last slide

local_np = 2,
part_offset = 3,
total_particles = 10,
Npart_props = 8

-  Hyperslab selection similar to MPI-IO file view
-  Selections don’t overlap in this example (would be bad if writing!)
-  H5SSelect_none() if no work for this process

Argonne National
Laboratory 58

Collectively Writing Particle Data

/* Step 1: specify collective I/O */

dxfer_template = H5Pcreate(H5P_DATASET_XFER);

ierr = H5Pset_dxpl_mpio(dxfer_template,
H5FD_MPIO_COLLECTIVE);

/* Step 2: perform collective write */

status = H5Dwrite(dataset,
 H5T_NATIVE_DOUBLE,
 memspace,
 dspace,
 dxfer_template,
 particles);

“P” is for property list;
tuning parameters

dataspace
describing memory,

 could also use a
hyperslab

dataspace describing region
in file, with hyperslab from

previous two slides Remember:
“S” is for dataspace,
“T” is for datatype,
“D” is for dataset!

Argonne National
Laboratory

Inside HDF5
 MPI_File_open used to open file
  Because there is no “define” mode, file layout is determined at write time
  In H5Dwrite:

–  Processes communicate to determine file layout
•  Process 0 performs metadata updates

–  Call MPI_File_set_view
–  Call MPI_File_write_all to collectively write

 Memory hyperslab could be used to define noncontig. region in memory
  In FLASH application, data is kept in native format and converted at read

time (defers overhead)
–  Could store in some other format if desired

  At the MPI-IO layer:
–  Metadata updates at every write are a bit of a bottleneck

• MPI-IO from process 0 introduces some skew

59

Argonne National
Laboratory

Additional I/O Libraries

60

Argonne National
Laboratory 61

netCDF-4

  Joint effort between Unidata (netCDF) and NCSA (HDF5)
–  Initial effort NASA funded
–  Ongoing development Unidata/UCAR funded

  Combine netCDF and HDF5 aspects
–  HDF5 file format (still portable, self-describing)
–  netCDF API

  Features
–  Parallel I/O
–  C, Fortran, and Fortran 90 language bindings (C++ in development)
–  Multiple unlimited dimensions
–  Higher limits for file and variable sizes
–  Backwards compatibility with “classic” datasets
–  Groups
–  Compound types
–  Variable length arrays
–  Data chunking and compression (parallel reads only – serial writes)

Argonne National
Laboratory

Comparing PnetCDF and netCDF-4

62

 netCDF-4: parallel access through new function calls (_par)
–  Open, create take MPI hints (like PnetCDF)
–  Collective I/O by default (like PnetCDF)
–  Same routine can be either independent or collective

depending on mode (like HDF5)
–  HDF5 tools understand netCDF-4 datasets

Parallel netCDF netCDF-4
ncmpi_open nc_open_par
ncmpi_create nc_create_par
ncmpi_enddef nc_enddef
ncmpi_def_dim nc_def_dim
ncmpi_put_vara_float_all nc_put_vara_float
ncmpi_begin_indep_data nc_var_par_access

Argonne National
Laboratory

ADaptable IO System (ADIOS)

The goal of ADIOS is to create an easy and efficient I/O interface that
hides the details of I/O from computational science applications:
 Operate across multiple HPC architectures and parallel file systems

–  Blue Gene, Cray, IB-based clusters
–  Lustre, PVFS2, GPFS, Panasas, PNFS

 Support many underlying file formats and interfaces
–  MPI-IO, POSIX, HDF5, netCDF
–  Facilitates switching underlying file formats to reach performance

goals
 Cater to common I/O patterns

–  Restarts, analysis, diagnostics
–  Different combinations provide different levels of IO performance

 Compensate for inefficiencies in the current I/O infrastructures

63

Argonne National
Laboratory

ADIOS Binary Packed (BP) File Format

Defers translation into portable format
to attain high performance at runtime.
Accelerates writing from large numbers
of processes through a log-like storage
format:
 Each process writes independently
 Coordinate only twice

–  Once at start to determine writing
locations

–  Once at end for metadata
collection

 Move the “header” to the end to aid
in alignment

 0.01

 0.1

 1

 10

 100

 1000

 10000

 0 1000

 2000

 3000

 4000

 5000

 6000

 7000

 8000

 9000

T
im

e
 (

s
e

c
)

Number of Processes

Chimera I/O

Original HDF5
ADIOS (1 File)

ADIOS (N Files)

I/O times for Chimera
astrophysics application on Cray
XT at ORNL. “1 File” results may
benefit from Lustre optimizations
that were not in place at time of
testing.

64

Argonne National
Laboratory

Tuning Application I/O

65

Argonne National
Laboratory 66

Tuning Application I/O

 Find out what you have to work with
–  What is peak I/O rate?
–  What other testing has been done?

 Describe as much as possible to the I/O system
–  Use collective calls when available
–  Describe data movement with fewest possible operations
–  Open with appropriate mode

 Match file organization to process partitioning if possible
–  Order dimensions so relatively large blocks are contiguous

with respect to data decomposition
 Know what you can control …

Argonne National
Laboratory 67

Controlling I/O Stack Behavior: Hints

 Most systems accept hints through one mechanism or another
–  Parameters to file “open” calls
–  Proprietary POSIX ioctl calls
–  MPI_Info
–  HDF5 property lists

 Allow the programmer to:
–  Explain more about the I/O pattern
–  Control particular optimizations
–  Impose resource limitations

 Generally pass information that is used only during a particular
set of accesses (between open and close, for example)

Argonne National
Laboratory 68

MPI-IO Hints

  MPI-IO hints may be passed via:
–  MPI_File_open
–  MPI_File_set_info
–  MPI_File_set_view

  Hints are optional - implementations are guaranteed to ignore
ones they do not understand
–  Different implementations, even different underlying file

systems, support different hints
  MPI_File_get_info used to get list of hints

Argonne National
Laboratory 69

MPI-IO Hints: Data Sieving

  ind_rd_buffer_size - Controls the size (in bytes) of
the intermediate buffer used by ROMIO when performing
data sieving reads

  ind_wr_buffer_size - Controls the size (in bytes) of
the intermediate buffer used by ROMIO when performing
data sieving writes

  romio_ds_read - Determines when ROMIO will choose
to perform data sieving for reads (enable, disable, auto)

  romio_ds_write - Determines when ROMIO will
choose to perform data sieving for writes

Argonne National
Laboratory 70

MPI-IO Hints: Collective I/O

  cb_buffer_size - Controls the size (in bytes) of the
intermediate buffer used in two-phase collective I/O

  romio_cb_read - Controls when collective buffering is
applied to collective read operations

  romio_cb_write - Controls when collective buffering is
applied to collective write operations

  cb_nodes - Controls the maximum number of aggregators
to be used

  cb_config_list - Provides explicit control over
aggregators (see ROMIO User's Guide)

Argonne National
Laboratory 71

MPI-IO Hints: File System Specific

  striping_factor - Controls the number of I/O devices
to stripe across

  striping_unit - Controls the amount of data placed on
one device before moving to next device (in bytes)

  start_iodevice - Determines what I/O device data will
first be written to

  direct_read - Controls direct I/O for reads
  direct_write - Controls direct I/O for writes

Argonne National
Laboratory 72

Using MPI_Info

  Example: setting data sieving buffer to be a whole “frame” of a
tiled display movie

char info_value[16];

MPI_Info info;

MPI_File fh;

MPI_Info_create(&info);

snprintf(info_value, 15, "%d", 3*1024 * 2*768 * 3);

MPI_Info_set(info, "ind_rd_buffer_size",
info_value);

MPI_File_open(comm, filename, MPI_MODE_RDONLY,
info, &fh);

MPI_Info_free(&info);

Argonne National
Laboratory 73

Hints and PnetCDF

  Uses MPI_Info, so almost identical
  For example, turning off two-phase writes, in case you’re

doing large contiguous collective I/O on Lustre:

MPI_Info info;

MPI_File fh;

MPI_Info_create(&info);

MPI_Info_set(info, ”romio_cb_write", “disable”);

ncmpi_open(comm, filename, NC_NOWRITE, info,
&ncfile);

MPI_Info_free(&info);

Argonne National
Laboratory 74

Hints and HDF5
  HDF5 uses property lists and MPI_Info structures for passing hints

/* HDF5 data sieving buffer size using file access property list */

acc_template = H5Pcreate(H5P_FILE_ACCESS);

H5Pset_sieve_buf_size(acc_template, 524288);

/* align objects larger than 512K on 256K boundaries */

H5Pset_alignment(acc_template, 524288, 262144);

/* pass in an MPI hint using file access property list */

MPI_Info_set(info, "access_style”, "write_once");

H5Pset_fapl_mpio(acc_template, MPI_COMM_WORLD, info);

/* specify collective I/O using data xfer property list */

xfer_template = H5Pcreate(H5P_DATASET_XFER);

H5Pset_dxpl_mpio(xfer_template, H5FD_MPIO_COLLECTIVE);

Argonne National
Laboratory

Characterizing Application I/O

How is this application performing I/O?
How successful is its approach?

Darshan (Sanskrit for “sight”) is a tool we are developing for I/O
characterization at extreme scale:
 No code changes (link time hooks into MPI-IO and POSIX calls)
  Small, tunable runtime memory footprint (~2MB default, 1024 distinct files)
  Relates accesses from multiple processes and to the same files
  Captures:

–  Counters for POSIX and MPI-IO operations
–  Counters for unaligned, sequential, consecutive, and strided access
–  Timing of opens, closes, first and last reads and writes
–  Histograms of access, stride, datatype, and extent size

75

P. Carns et. al, “24/7 Characterization of Petascale I/O Workloads”, to appear in the Workshop on Interfaces and
Abstractions for Scientific Data Storage, September, 2009.

Argonne National
Laboratory

Darshan Internals

  Characterization centers around per-file
records
–  Falls back to aggregate (across files)

mode if file limit is exceeded
  At output time, processes further reduce

output size
–  Communicate to combine data on

identical files accessed by all processes
–  Independently compress (gzip) remaining

data
•  32K processes writing a shared file leads

to 203 bytes of compressed output
•  32K processes writing a total of 262,144

files leads to 13.3MB of output

76

Multiple tables allow efficient
location of file records by name,
file descriptor, or MPI File
handle.

Argonne National
Laboratory

Results from Chombo I/O Benchmark
  Simulates I/O from a block-structured AMR code, writes a single HDF5 file

77

 0

 20

 40

 60

 80

 100

 120

 140

 160

 180

job time

file open

MPI write

POSIX write
S
e
c
o
n
d
s

Chombo cumulative time per process

 0

 20

 40

 60

 80

 100

0-100

100-1K

1K-10K

10K-100K

100K-1M

C
o
u
n
t

Chombo write size histogram, 512 procs

(
4
5
,
1
2
3
)

(
5
1
,
5
8
7
)

Benchmark results in nearly 100K individual
I/O operations, none of which are larger
than 1MByte in size. Darshan also tells us
that 99.99% of these are unaligned in file.

MPI and POSIX file write times are identical,
indicating MPI-IO implementation isn’t
performing any optimization.

Argonne National
Laboratory

Conclusions

 Storage is a complex hardware/software system
 Lots of software is available to support computational science

workloads at scale
–  Parallel file systems
–  I/O libraries
–  I/O tracing and characterization tools

 Using this software (correctly) can dramatically improve
performance (execution time) and productivity (development
time)

 Computer scientists are interested in helping with I/O
challenges
–  SciDAC SDM center is one good point of contact

78

Argonne National
Laboratory 79

Printed References

  John May, Parallel I/O for High Performance Computing,
Morgan Kaufmann, October 9, 2000.
–  Good coverage of basic concepts, some MPI-IO, HDF5, and serial

netCDF
–  Out of print…

  William Gropp, Ewing Lusk, and Rajeev Thakur, Using MPI-2:
Advanced Features of the Message Passing Interface, MIT
Press, November 26, 1999.
–  In-depth coverage of MPI-IO API, including a very detailed description

of the MPI-IO consistency semantics

Argonne National
Laboratory 80

On-Line References (1 of 4)

 netCDF and netCDF-4
–  http://www.unidata.ucar.edu/packages/netcdf/
–  http://www.unidata.ucar.edu/software/netcdf/netcdf-4

 PnetCDF
–  http://www.mcs.anl.gov/parallel-netcdf/

 ROMIO MPI-IO
–  http://www.mcs.anl.gov/romio/

 HDF5 and HDF5 Tutorial
–  http://www.hdfgroup.org/
–  http://hdf.ncsa.uiuc.edu/HDF5/
–  http://hdf.ncsa.uiuc.edu/HDF5/doc/Tutor/index.html

 POSIX I/O Extensions
–  http://www.opengroup.org/platform/hecewg/

Argonne National
Laboratory 81

On-Line References (2 of 4)

  PVFS
http://www.pvfs.org/

  Panasas
http://www.panasas.com/

  Lustre
http://www.lustre.org/

  GPFS
http://www.almaden.ibm.com/storagesystems/file_systems/GPFS/

Argonne National
Laboratory 82

On-Line References (3 of 4)

 LLNL I/O tests (IOR, fdtree, mdtest)
–  http://sourceforge.net/projects/ior-sio

 Parallel I/O Benchmarking Consortium (noncontig, mpi-tile-io,
mpi-md-test)
–  http://www.mcs.anl.gov/pio-benchmark/

 FLASH I/O benchmark
–  http://www.mcs.anl.gov/pio-benchmark/
–  http://flash.uchicago.edu/~jbgallag/io_bench/ (original version)

 b_eff_io test
–  http://www.hlrs.de/organization/par/services/models/mpi/b_eff_io/

 mpiBLAST
–  http://www.mpiblast.org

Argonne National
Laboratory

On Line References (4 of 4)

 NFS Version 4.1
–  draft-ietf-nfsv4-minorversion1-26.txt
–  draft-ietf-nfsv4-pnfs-obj-09.txt
–  draft-ietf-nfsv4-pnfs-block-09.txt

 pNFS Problem Statement
–  Garth Gibson (Panasas), Peter Corbett (Netapp), Internet-

draft, July 2004
–  http://www.pdl.cmu.edu/pNFS/archive/gibson-pnfs-

problem-statement.html
 Linux pNFS Kernel Development

–  http://www.citi.umich.edu/projects/asci/pnfs/linux

83

Argonne National
Laboratory 84

Acknowledgments

This work is supported in part by U.S. Department of Energy
Grant DE-FC02-01ER25506, by National Science Foundation
Grants EIA-9986052, CCR-0204429, and CCR-0311542, and by
the U.S. Department of Energy under Contract DE-
AC02-06CH11357.

Thanks to Rajeev Thakur (ANL) and Bill Loewe (Panasas) for
their help in creating this material and presenting this tutorial in
prior years.

