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Computational Science 

  Use of computer simulation as a tool for 
greater understanding of the real world 
–  Complements experimentation and theory 

  Problems are increasingly computationally 
challenging 
–  Large parallel machines needed to perform 

calculations 
–  Critical to leverage parallelism in all phases 

  Data access is a huge challenge 
–  Using parallelism to obtain performance 
–  Finding usable, efficient, portable interfaces 
–  Understanding and tuning I/O 
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Visualization of entropy in Terascale 
Supernova Initiative application. Image from 
Kwan-Liu Ma’s visualization team at UC 
Davis. 

IBM BG/L system. 
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Large-Scale Data Sets 
Application teams are beginning to generate 10s of Tbytes of data in a single 
simulation. For example, a recent GTC run on 29K processors on the XT4 
generated over 54 Tbytes of data in a 24 hour period [1]. 

PI Project On-Line DataOff-Line Data
Lamb, Don FLASH: Buoyancy-Driven Turbulent Nuclear Burning 75TB 300TB 
Fischer, Paul Reactor Core Hydrodynamics 2TB 5TB 
Dean, David Computational Nuclear Structure 4TB 40TB 
Baker, David Computational Protein Structure 1TB 2TB 
Worley, Patrick H. Performance Evaluation and Analysis 1TB 1TB 
Wolverton, Christopher Kinetics and Thermodynamics of Metal and 

Complex Hydride Nanoparticles 
5TB 100TB 

Washington, Warren Climate Science 10TB 345TB 
Tsigelny, Igor Parkinson's Disease 2.5TB 50TB 
Tang, William Plasma Microturbulence 2TB 10TB 
Sugar, Robert Lattice QCD 1TB 44TB 
Siegel, Andrew Thermal Striping in Sodium Cooled Reactors 4TB 8TB 
Roux, Benoit Gating Mechanisms of Membrane Proteins 10TB 10TB 

Data requirements for select 2008 INCITE applications at ALCF

[1] S. Klasky, personal correspondence, June 19, 2008. 
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“There is no physics without I/O.” 
– Anonymous Physicist 

SciDAC Conference 
June 17, 2009 

(I think he might have been kidding.) 
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This Talk 

Part 1 (Today) 

–  Describe the lower layers of parallel I/O systems (storage and 
I/O middleware) and how these layers contribute to 
performance and reliability 

–  Provide an understanding of how these pieces fit together to 
provide a resource for computational science applications 

Part 2 (Tomorrow) 

–  Detail the use of higher-level I/O libraries in computational 
science applications and how these fit with lower layers 

–  Discuss how I/O can be tuned and tools to facilitate 
understanding of I/O in applications 
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Storage Hardware and 
Parallel File Systems 
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Disk Access Rates over Time 

Thanks to R. Freitas of IBM Almaden Research Center for providing much of the data for this graph. 
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Blue Gene/P Parallel Storage System 

Architectural diagram of 557 TF Argonne Leadership Computing Facility Blue Gene/P I/O system. 

Commodity 
network primarily 
carries storage traffic

900+ port 10 Gigabit 
Ethernet Myricom switch 
complex

Enterprise storage 
controllers and large racks 
of disks connected via 
InfiniBand or Fibre 
Channel
17 DataDirect S2A9900 
controller pairs with 480�
1 Tbyte drives and 8 
InfiniBand ports per pair

Storage nodes run 
parallel file system 
software and manage 
incoming FS traffic 
from gateway nodes
136 two dual core 
Opteron servers with 8 
Gbytes of RAM each

Gateway nodes run 
parallel file system client 
software and forward I/O 
operations from HPC 
clients 
640 Quad core PowerPC 
450 nodes with 2 Gbytes of 
RAM each

Ethernet�
10 Gbit/sec

InfiniBand�
16 Gbit/sec

BG/P Tree�
6.8 Gbit/sec

Serial ATA�
3.0 Gbit/sec

HW bottleneck is 
here. Controllers 
can manage only�
4.6 Gbyte/sec.
Peak I/O system 
bandwidth  is �
78.2 Gbyte/sec.
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Snapshot of Performance on Blue Gene/P 
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Maximum I/O rate of 
300 Mbytes/sec per  
I/O forwarding node 
limits performance in 
this region. 

Effective BW out of 
storage racks limits 
performance in this 
region (writing to  
/dev/null achieves 
around 65 Gbytes/sec). 

We believe this drop 
is due to a disk going 
bad in a storage rack; 
waiting on repeat 
testing to confirm. 

Low stat performance 
relative to create may 
be due to poor choice 
of server-side cache 
size (256 Kbytes)? 

Lang et. al, “I/O Performance Challenges at Leadership Scale”, to appear in SC09, November 2009. 
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Parallel File Systems 

  Building block for HPC I/O systems 
–  Present storage as a single, logical storage unit 
–  Stripe files across disks and nodes for performance 

–  Tolerate failures (in conjunction with other HW/SW) 
 User interface is POSIX file I/O interface, not very good for HPC 

An example parallel file system, with large astrophysics checkpoints distributed across multiple I/O 
servers (IOS)  while small bioinformatics files are each stored on a single IOS. 

C C C C C 

Comm. Network 

PFS PFS PFS PFS PFS 

IOS IOS IOS IOS 

H01 

/pfs 

/astro 

H03 /bio H06 

H02 
H05 

H04 

H01 

/astro 

/pfs 

/bio 

H02 
H03 
H04 

H05 H06 

chkpt32.nc 

prot04.seq prot17.seq 
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Data Distribution in Parallel File Systems 
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Locking in Parallel File Systems 

Most parallel file systems use locks to manage concurrent 
access to files 
  Files are broken up into lock units 
  Clients obtain locks on units that they will access before 

I/O occurs 
  Enables caching on clients as well (as long as client has a lock, 

it knows its cached data is valid) 
  Locks are reclaimed from clients when others desire access  
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If an access touches any 
data in a lock unit, the 
lock for that region must 
be obtained before access 
occurs. 
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Locking and Concurrent Access 
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Fault Tolerance and Parallel File Systems 

Combination of hardware and software ensures continued 
operation in face of failures: 

–  RAID techniques hide disk failures 
–  Redundant controllers and shared access to storage 
–  Heartbeat software and quorum directs server failover 
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Computational Science and 
Parallel I/O 

15 



Argonne National 
Laboratory 

Stressing the I/O System 

 Computational science applications exhibit complex I/O 
patterns that are unique, and how we describe these 
patterns influences performance. 

 Accessing from large numbers of processes has the potential 
to overwhelm the storage system. How we describe the 
relationship between accesses influences performance. 

 In some cases we simply need to reduce the number of 
processes accessing the storage system in order to match 
number of servers or limit concurrent access. 
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Process 0 Process 0 Process 0 Process 0 

Contiguous and Noncontiguous I/O 

  Contiguous I/O moves data from a single memory block into a single file 
region 

  Noncontiguous I/O has three forms: 
–  Noncontiguous in memory, noncontiguous in file, or noncontiguous in 

both 
  Structured data leads naturally to noncontiguous I/O (e.g. block 

decomposition) 
  Describing noncontiguous accesses with a single operation passes more 

knowledge to I/O system 

Contiguous Noncontiguous 
in File 

Noncontiguous 
in Memory 

Noncontiguous 
in Both 
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Independent and Collective I/O 

  Independent I/O operations specify only what a single process will do 
–  Independent I/O calls obscure relationships between I/O on other processes  

  Many applications have phases of computation and I/O 
–  During I/O phases, all processes read/write data 

  Collective I/O is coordinated access to storage by a group of processes 
–  Collective I/O functions are called by all processes participating in I/O 
–  Allows I/O layers to know more about access as a whole, more opportunities for 

optimization in lower software layers, better performance 

P0 P1 P2 P3 P4 P5 P0 P1 P2 P3 P4 P5 

Independent I/O Collective I/O 
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I/O Aggregation 

As the number of nodes on systems grows, the access patterns seen 
by underlying file systems appear increasingly chaotic. Reducing the 
apparent number of clients before hitting the file system layer can 
significantly improve performance. 

In this case we have 2K 
nodes rendering and 
compositing a 20482 
image on the Blue Gene/P. 

There are 64 compute  
nodes per I/O node.  
64 writers corresponds  
to 2 writers per I/O node. 

T. Peterka et al, “Assessing Improvements in the Parallel Volume Rendering Pipeline at Large Scale,” SC08 
Ultrascale Visualization Workshop, November 2008.  
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The I/O Software Stack 

 Additional I/O software provides improved performance and 
usability over directly accessing the parallel file system. Reduces 
or (ideally) eliminates need for optimization in application codes. 
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I/O Middleware 

 Match the programming model (e.g. MPI) 
 Facilitate concurrent access by groups 

of processes 
–  Collective I/O 
–  Atomicity rules 

 Expose a generic interface 
–  Good building block for high-level libraries 

 Efficiently map middleware operations into PFS ones 
–  Leverage any rich PFS access constructs, such as 
• Scalable file name resolution 
• Rich I/O descriptions 
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MPI-IO 
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MPI-IO 

 I/O interface specification for use in MPI apps 
 Data model is a stream of bytes in a file 

–  Same as POSIX and stdio 
 Features: 

–  Noncontiguous I/O with MPI datatypes and file views 
–  Collective I/O 
–  Nonblocking I/O 
–  Fortran bindings (and additional languages) 
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Example: Noncontiguous I/O in MPI with 
the subarray datatype 

  MPI_Type_create_subarray can describe any N-dimensional subarray of 
an N-dimensional array 

  In this case we use it to pull out a 2-D tile 
  Tiles can overlap if we need them to 
  Separate MPI_File_set_view call uses this type to select the file region 
  More arbitrary structures can be described with MPI datatypes as well 

frame_size[1] 

fra
m

e_
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ze
[0

] 

Tile 4 

tile_start[1] tile_size[1] 

tile_start[0] tile_size[0] 
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Noncontiguous I/O: Data Sieving 

  Data sieving is used to 
combine lots of small accesses 
into a single larger one 
–  Remote file systems (parallel or 

not) tend to have high latencies 
–  Reducing # of operations 

important 

  Similar to how a block-based 
file system interacts with 
storage 

  Generally very effective, but 
not as good as having a PFS 
that supports noncontiguous 
access 

Buffer 

Memory 

File 

Data Sieving Read Transfers 
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Data Sieving Write Operations 

Buffer 

Memory 

File 

Data Sieving Write Transfers 

  Data sieving for writes is more 
complicated 
–  Must read the entire region first 
–  Then make changes in buffer 
–  Then write the block back 

  Requires locking in the file 
system 
–  Can result in false sharing 

(interleaved access) 

  PFS supporting noncontiguous 
writes is preferred 
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Collective I/O Optimization: Two-Phase I/O 

  Problems with independent, noncontiguous access 
–  Lots of small accesses 
–  Independent data sieving reads lots of extra data, can exhibit false 

sharing 
  Idea: Reorganize access to match layout on disks 

–  Single processes use data sieving to get data for many 
  Second “phase” redistributes data to final destinations 
  Two-phase writes operate in reverse (redistribute then I/O) 

Two-Phase Read Algorithm 

p0 p1 p2 p0 p1 p2 p0 p1 p2 

Phase 1: I/O Initial State Phase 2: Redistribution 
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Two-Phase I/O Algorithms 
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For more information, see W.K. Liao and A. Choudhary, “Dynamically Adapting File Domain Partitioning Methods for Collective I/O Based on 
Underlying Parallel File System Locking Protocols,” SC2008, November, 2008. 
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Impact of Two-Phase I/O Algorithms 

 This graph shows the 
performance for the S3D 
combustion code, writing to a 
single file. 

 Aligning with lock boundaries 
doubles performance over 
default “even” algorithm. 

 “Group” algorithm similar to 
server-aligned algorithm on last 
slide. 

 Testing on Mercury, an IBM IA64 
system at NCSA, with 54 
servers and 512KB stripe size. 
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I/O Based on Underlying Parallel File System 
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S3D Turbulent Combustion Code 

  S3D is a turbulent combustion 
application using a direct numerical 
simulation solver from Sandia National 
Laboratory 

  Checkpoints consist of four global 
arrays 
–  2 3-dimensional 
–  2 4-dimensional 
–  50x50x50 fixed 

subarrays 
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Thanks to Jackie Chen (SNL), Ray Grout (SNL), and Wei-Keng Liao (NWU) for providing the S3D I/O benchmark, Wei-Keng Liao 
for providing this diagram. 
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Impact of Optimizations on S3D I/O 

  Testing with PnetCDF output to single file, three configurations,  
16 processes 
–  All MPI-IO optimizations (collective buffering and data sieving) disabled 
–  Independent I/O optimization (data sieving) enabled 
–  Collective I/O optimization (collective buffering, a.k.a. two-phase I/O) 

enabled 
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Coll. Buffering  
and Data Sieving 
Disabled 

Data Sieving 
Enabled 

Coll. Buffering 
Enabled (incl. 
Aggregation) 

POSIX writes 102,401 81 5 
POSIX reads 0 80 0 
MPI-IO writes 64 64 64 
Unaligned in file 102,399 80 4 
Total written (MB) 6.25 87.11 6.25 
Runtime (sec) 1443 11 6.0 
Avg. MPI-IO time 
per proc (sec) 

1426.47 4.82 0.60 
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Summarizing Part 1 

 Storage systems combine very large numbers of devices 
together with software to create a logical unit on which 
scientific data may be stored. 

 Computational science applications exhibit complex access 
patterns. How we describe those accesses can have a 
dramatic impact on performance. 

 The I/O software stack implements optimizations designed to 
maximize performance, given enough information to apply the 
best optimization. 

 Tomorrow we will look at high-level I/O libraries and their 
role in usability of these systems. 
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Recap of Part 1 

 Storage systems combine very large numbers of devices 
together with software to create a logical unit on which 
scientific data may be stored. 

 Computational science applications exhibit complex access 
patterns. How we describe those accesses can have a 
dramatic impact on performance. 

 The I/O software stack implements optimizations designed to 
maximize performance, given enough information to apply the 
best optimization. 
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Application and Storage Data Models 

  Applications have data models appropriate to 
domain 
–  Multidimensional typed arrays, images 

composed of scan lines, variable length 
records 

–  Headers, attributes on data 
  I/O systems have very simple data models 

–  Tree-based hierarchy of containers 
–  Some containers have streams of bytes 

(files) 
–  Others hold collections of other 

containers (directories or folders) 
  High-level I/O libraries help map between 

these data models 
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Graphic from J. Tannahill, LLNL 

Graphic from A. Siegel, ANL 
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High-level I/O Interfaces 

 Provide structure to files 
–  Well-defined, portable formats 
–  Self-describing 
–  Organization of data in file 
–  Interfaces for discovering contents 

 Present APIs more appropriate for computational science 
–  Typed data 
–  Noncontiguous regions in memory and file 
–  Multidimensional arrays and I/O on subsets of these arrays 

 Both of our example interfaces are implemented on top of 
MPI-IO 
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The Parallel netCDF 
Interface and File Format 

37 

Thanks to Wei-Keng Liao, Kui Gao, and 
Alok Choudhary (NWU) for their help in 
the development of PnetCDF. 
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Parallel netCDF (PnetCDF) 

  Based on original “Network Common Data Format” (netCDF) work from 
Unidata 
–  Derived from their source code 

  Data Model: 
–  Collection of variables in single file 
–  Typed, multidimensional array variables 
–  Attributes on file and variables 

  Features: 
–  C and Fortran interfaces 
–  Portable data format (identical to netCDF) 
–  Noncontiguous I/O in memory using MPI datatypes 
–  Noncontiguous I/O in file using sub-arrays 
–  Collective I/O 

  Unrelated to netCDF-4 work 
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Data Layout in netCDF Files 
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Record Variables in netCDF 

  Record variables are defined to have a 
single “unlimited” dimension 
–  Convenient when a dimension size 

is unknown at time of variable 
creation 

  Record variables are stored after all 
the other variables in an interleaved 
format 
–  Using more than one in a file is 

likely to result in poor 
performance due to number of 
noncontiguous accesses 
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Storing Data in PnetCDF 

 Create a dataset (file) 
–  Puts dataset in define mode 
–  Allows us to describe the contents 
• Define dimensions for variables 
• Define variables using dimensions 
• Store attributes if desired (for variable or dataset) 

 Switch from define mode to data mode to write variables 
 Store variable data 
 Close the dataset 
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Example: FLASH Astrophysics 

  FLASH is an astrophysics code for 
studying events such as supernovae 
–  Adaptive-mesh hydrodynamics 
–  Scales to tens of 1000s of processors 
–  MPI for communication 

  Frequently checkpoints: 
–  Large blocks of typed variables 

from all processes 
–  Portable format 
–  Canonical ordering (different than 

in memory) 
–  Skipping ghost cells Ghost cell 

Stored element 

… 
Vars 0, 1, 2, 3, … 23 
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Example: FLASH with PnetCDF 

 FLASH AMR structures do not map directly to netCDF 
multidimensional arrays 

 Must create mapping of the in-memory FLASH data structures 
into a representation in netCDF multidimensional arrays 

 Chose to 
–  Place all checkpoint data in a single file 
–  Impose a linear ordering on the AMR blocks 
• Use 4D variables (X, Y, Z, block) 

–  Store each FLASH variable in its own netCDF variable 
• Skip ghost cells 

–  Record attributes describing run time, total blocks, etc. 
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Defining Variable Dimensions 

int status, ncid, dim_tot_blks, dim_nxb, 
dim_nyb, dim_nzb; 

MPI_Info hints; 

/* create dataset (file) */ 

status = ncmpi_create(MPI_COMM_WORLD, filename, 
NC_CLOBBER, hints, &file_id); 

/* define dimensions */ 

status = ncmpi_def_dim(ncid, "dim_tot_blks", 
tot_blks, &dim_tot_blks); 

status = ncmpi_def_dim(ncid, "dim_nxb", 
nzones_block[0], &dim_nxb); 

status = ncmpi_def_dim(ncid, "dim_nyb", 
nzones_block[1], &dim_nyb); 

status = ncmpi_def_dim(ncid, "dim_nzb", 
nzones_block[2], &dim_nzb); 

Each dimension gets 
a unique reference 
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Creating Variables 

int dims = 4, dimids[4]; 

int varids[NVARS]; 

/* define variables (X changes most quickly) */ 

dimids[0] = dim_tot_blks; 

dimids[1] = dim_nzb; 

dimids[2] = dim_nyb; 

dimids[3] = dim_nxb;   
for (i=0; i < NVARS; i++) { 

status = ncmpi_def_var(ncid, unk_label[i], 
NC_DOUBLE, dims, dimids, &varids[i]); 

} 

Same dimensions used 
for all variables 
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Storing Attributes 

/* store attributes of checkpoint */ 

status = ncmpi_put_att_text(ncid, NC_GLOBAL, 
"file_creation_time", string_size, file_creation_time); 

status = ncmpi_put_att_int(ncid, NC_GLOBAL, 
"total_blocks", NC_INT, 1, tot_blks); 

status = ncmpi_enddef(file_id); 

/* now in data mode … */ 
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Writing Variables 

double *unknowns; /* unknowns[blk][nzb][nyb][nxb] */ 

size_t start_4d[4], count_4d[4]; 

start_4d[0] = global_offset; /* different for each process */ 

start_4d[1] = start_4d[2] = start_4d[3] = 0; 

count_4d[0] = local_blocks; 

count_4d[1] = nzb;  count_4d[2] = nyb;  count_4d[3] = nxb; 

for (i=0; i < NVARS; i++) { 

/* ... build datatype “mpi_type” describing values of a 

single variable ... */ 

/* collectively write out all values of a single variable 
*/ 

ncmpi_put_vara_all(ncid, varids[i], start_4d, count_4d, 
unknowns, 1, mpi_type); 

} 

status = ncmpi_close(file_id); Typical MPI buffer-count-type tuple 
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Inside PnetCDF Define Mode 

 In define mode (collective) 
–  Use MPI_File_open to create file at create time 
–  Set hints as appropriate 
–  Locally cache header information in memory 
• All changes are made to local copies at each process 

 At ncmpi_enddef  
–  Process 0 writes header with MPI_File_write_at  
–  MPI_Bcast result to others 
–  Everyone has header data in memory, understands 

placement of all variables 
• No need for any additional header I/O during data mode! 
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Inside PnetCDF Data Mode 

 Inside ncmpi_put_vara_all (once per variable)  
–  Each process performs data conversion into internal buffer 
–  Uses MPI_File_set_view  to define file region 
• Contiguous file region for each process in FLASH case 

–  MPI_File_write_all collectively writes data 
 At ncmpi_close  

–  MPI_File_close ensures data is written to storage 

 MPI-IO performs optimizations 
–  Two-phase possibly applied when writing variables 

 MPI-IO makes PFS calls 
–  PFS client code communicates with servers and stores data 
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PnetCDF Wrap-Up 

 PnetCDF gives us 
–  Simple, portable, self-describing container for data 
–  Collective I/O 
–  Data structures closely mapping to the variables described 

 If PnetCDF meets application needs, it is likely to give good 
performance 
–  Type conversion to portable format does add overhead 

 Some limits on (CDF-2) file format: 
–  Fixed-size variable:  < 4 GiB 
–  Per-record size of record variable: < 4 GiB 
–  232 -1 records  

 Work almost complete to relax these limits (CDF-5) 
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The HDF5 Interface and 
File Format 
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HDF5 

 Hierarchical Data Format, from the HDF Group (formerly of 
NCSA) 

 Data Model: 
–  Hierarchical data organization in single file 
–  Typed, multidimensional array storage 
–  Attributes on dataset, data 

 Features: 
–  C, C++, and Fortran interfaces 
–  Portable data format 
–  Optional compression (not in parallel I/O mode) 
–  Data reordering (chunking) 
–  Noncontiguous I/O (memory and file) with hyperslabs 
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Dataset “temp” 

HDF5 File “chkpt007.h5” 

Group “/” 

Group “viz” 
datatype = H5T_NATIVE_DOUBLE 
dataspace = (10, 20) 

attributes = … 

10 (data) 

20 

HDF5 Files 

 HDF5 files consist of groups, datasets, and attributes 
–  Groups are like directories, holding other groups and datasets 
–  Datasets hold an array of typed data (what we think of as a variable) 

•  A datatype describes the type (not an MPI datatype) 
•  A dataspace gives the dimensions of the array 

–  Attributes are small datasets associated with the file, a group, or 
another dataset 
•  Also have a datatype and dataspace 
• May only be accessed as a unit 
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Example: FLASH Particle I/O with HDF5 

 FLASH “Lagrangian particles” record 
location, characteristics of reaction 
–  Passive particles don’t exert 

forces; pushed along but do not 
interact 

 Particle data included in checkpoints, 
but not in plotfiles; dump particle data 
to separate file 

 One particle dump file per time step 
–  i.e., all processes write to single 

particle file 
 Output includes application info, 

runtime info in addition to particle 
data 

54 

Block=30; 
Pos_x=0.65; 
Pos_y=0.35; 
Pos_z=0.125; 
Tag=65; 
Vel_x=0.0; 
Vel_y=0.0; 
vel_z=0.0; 

Typical particle data 
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Storing Labels for Particles 

int string_size = OUTPUT_PROP_LENGTH; 

hsize_t dims_2d[2] = {npart_props, string_size}; 

hid_t dataspace, dataset, file_id, string_type; 

/* store string creation time attribute */ 

string_type = H5Tcopy(H5T_C_S1); 

H5Tset_size(string_type, string_size); 

dataspace = H5Screate_simple(2, dims_2d, NULL); 

dataset   = H5Dcreate(file_id, “particle names", 
string_type, dataspace, H5P_DEFAULT); 

if (myrank == 0) {  

 status = H5Dwrite(dataset, string_type, H5S_ALL, 
H5S_ALL,  H5P_DEFAULT, particle_labels); 

} 

get a copy of the 
string type and resize it 
(one way to deal with 

strings) 

Write out all 8 labels 
in one call 

Remember: 
“S” is for dataspace, 
“T” is for datatype, 
“D” is for dataset! 
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Storing Particle Data with Hyperslabs (1 of 2) 

hsize_t dims_2d[2];  

/* Step 1: set up dataspace –  
        describe global layout */ 

dims_2d[0] = total_particles; 
dims_2d[1] = npart_props; 

dspace = H5Screate_simple(2, dims_2d, NULL); 
dset = H5Dcreate(file_id, “tracer particles”, 

H5T_NATIVE_DOUBLE, dspace, H5P_DEFAULT); 

Remember: 
“S” is for dataspace, 
“T” is for datatype, 
“D” is for dataset! 

local_np = 2, 
part_offset = 3, 
total_particles = 10,
Npart_props = 8
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Storing Particle Data with Hyperslabs (2 of 2) 

hsize_t start_2d[2] = {0, 0}, 
       stride_2d[1] = {1, 1}; 

hsize_t count_2d[2] = {local_np, 

                       npart_props}; 

/* Step 2: setup hyperslab for  

   dataset in file */ 

start_2d[0]  = part_offset; /* different for each process */ 

status = H5Sselect_hyperslab(dspace, 
                   H5S_SELECT_SET, 
                   start_2d, stride_2d, count_2d, NULL); 

dataspace from 
last slide 

local_np = 2, 
part_offset = 3, 
total_particles = 10,
Npart_props = 8

-  Hyperslab selection similar to MPI-IO file view 
-  Selections don’t overlap in this example (would be bad if writing!) 
-  H5SSelect_none() if no work for this process  
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Collectively Writing Particle Data 

/* Step 1: specify collective I/O */ 

dxfer_template = H5Pcreate(H5P_DATASET_XFER); 

ierr = H5Pset_dxpl_mpio(dxfer_template, 
H5FD_MPIO_COLLECTIVE); 

/* Step 2: perform collective write */ 

status = H5Dwrite(dataset, 
               H5T_NATIVE_DOUBLE, 
               memspace, 
               dspace, 
               dxfer_template, 
               particles); 

“P” is for property list; 
tuning parameters 

dataspace 
describing memory, 

 could also use a 
hyperslab 

dataspace describing region 
in file, with hyperslab from 

previous two slides Remember: 
“S” is for dataspace, 
“T” is for datatype, 
“D” is for dataset! 
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Inside HDF5 
 MPI_File_open used to open file 
  Because there is no “define” mode, file layout is determined at write time 
  In H5Dwrite:  

–  Processes communicate to determine file layout 
•  Process 0 performs metadata updates 

–  Call MPI_File_set_view 
–  Call MPI_File_write_all to collectively write 

 Memory hyperslab could be used to define noncontig. region in memory 
  In FLASH application, data is kept in native format and converted at read 

time (defers overhead) 
–  Could store in some other format if desired 

  At the MPI-IO layer: 
–  Metadata updates at every write are a bit of a bottleneck 

• MPI-IO from process 0 introduces some skew 
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Additional I/O Libraries 
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netCDF-4 

  Joint effort between Unidata (netCDF) and NCSA (HDF5) 
–  Initial effort NASA funded 
–  Ongoing development Unidata/UCAR funded 

  Combine netCDF and HDF5 aspects 
–  HDF5 file format (still portable, self-describing) 
–  netCDF API 

  Features 
–  Parallel I/O 
–  C, Fortran, and Fortran 90 language bindings (C++ in development) 
–  Multiple unlimited dimensions 
–  Higher limits for file and variable sizes 
–  Backwards compatibility with “classic” datasets 
–  Groups 
–  Compound types  
–  Variable length arrays 
–  Data chunking and compression (parallel reads only – serial writes) 
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Comparing PnetCDF and netCDF-4 
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 netCDF-4: parallel access through new function calls (_par) 
–  Open, create take MPI hints (like PnetCDF) 
–  Collective I/O by default (like PnetCDF) 
–  Same routine can be either independent or collective 

depending on mode (like HDF5) 
–  HDF5 tools understand netCDF-4 datasets 

Parallel netCDF netCDF-4 
ncmpi_open nc_open_par 
ncmpi_create nc_create_par 
ncmpi_enddef nc_enddef 
ncmpi_def_dim nc_def_dim 
ncmpi_put_vara_float_all nc_put_vara_float  
ncmpi_begin_indep_data nc_var_par_access 
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ADaptable IO System (ADIOS) 

The goal of ADIOS is to create an easy and efficient I/O interface that 
hides the details of I/O from computational science applications: 
 Operate across multiple HPC architectures and parallel file systems 

–  Blue Gene, Cray, IB-based clusters 
–  Lustre, PVFS2, GPFS, Panasas, PNFS 

 Support many underlying file formats and interfaces 
–  MPI-IO, POSIX, HDF5, netCDF 
–  Facilitates switching underlying file formats to reach performance 

goals 
 Cater to common I/O patterns 

–  Restarts, analysis, diagnostics 
–  Different combinations provide different levels of IO performance 

 Compensate for inefficiencies in the current I/O infrastructures 
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ADIOS Binary Packed (BP) File Format 

Defers translation into portable format 
to attain high performance at runtime. 
Accelerates writing from large numbers 
of processes through a log-like storage 
format: 
 Each process writes independently 
 Coordinate only twice 

–  Once at start to determine writing 
locations 

–  Once at end for metadata 
collection 

 Move the “header” to the end to aid 
in alignment 
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Tuning Application I/O 
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Tuning Application I/O 

 Find out what you have to work with 
–  What is peak I/O rate? 
–  What other testing has been done? 

 Describe as much as possible to the I/O system 
–  Use collective calls when available 
–  Describe data movement with fewest possible operations 
–  Open with appropriate mode 

 Match file organization to process partitioning if possible 
–  Order dimensions so relatively large blocks are contiguous 

with respect to data decomposition 
 Know what you can control … 
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Controlling I/O Stack Behavior: Hints 

 Most systems accept hints through one mechanism or another 
–  Parameters to file “open” calls 
–  Proprietary POSIX ioctl calls 
–  MPI_Info 
–  HDF5 property lists 

 Allow the programmer to: 
–  Explain more about the I/O pattern 
–  Control particular optimizations 
–  Impose resource limitations 

 Generally pass information that is used only during a particular 
set of accesses (between open and close, for example) 
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MPI-IO Hints 

  MPI-IO hints may be passed via: 
–  MPI_File_open  
–  MPI_File_set_info  
–  MPI_File_set_view  

  Hints are optional - implementations are guaranteed to ignore 
ones they do not understand 
–  Different implementations, even different underlying file 

systems, support different hints 
  MPI_File_get_info used to get list of hints 



Argonne National 
Laboratory 69 

MPI-IO Hints: Data Sieving 

  ind_rd_buffer_size - Controls the size (in bytes) of 
the intermediate buffer used by ROMIO when performing 
data sieving reads 

  ind_wr_buffer_size - Controls the size (in bytes) of 
the intermediate buffer used by ROMIO when performing 
data sieving writes 

  romio_ds_read - Determines when ROMIO will choose 
to perform data sieving for reads (enable, disable, auto) 

  romio_ds_write - Determines when ROMIO will 
choose to perform data sieving for writes 
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MPI-IO Hints: Collective I/O 

  cb_buffer_size - Controls the size (in bytes) of the 
intermediate buffer used in two-phase collective I/O 

  romio_cb_read - Controls when collective buffering is 
applied to collective read operations 

  romio_cb_write - Controls when collective buffering is 
applied to collective write operations 

  cb_nodes - Controls the maximum number of aggregators 
to be used 

  cb_config_list - Provides explicit control over 
aggregators (see ROMIO User's Guide) 
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MPI-IO Hints: File System Specific 

  striping_factor - Controls the number of I/O devices 
to stripe across 

  striping_unit - Controls the amount of data placed on 
one device before moving to next device (in bytes) 

  start_iodevice - Determines what I/O device data will 
first be written to 

  direct_read - Controls direct I/O for reads 
  direct_write - Controls direct I/O for writes 
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Using MPI_Info 

  Example: setting data sieving buffer to be a whole “frame” of a 
tiled display movie 

char info_value[16]; 

MPI_Info info; 

MPI_File fh; 

MPI_Info_create(&info); 

snprintf(info_value, 15, "%d", 3*1024 * 2*768 * 3); 

MPI_Info_set(info, "ind_rd_buffer_size", 
info_value); 

MPI_File_open(comm, filename, MPI_MODE_RDONLY, 
info, &fh); 

MPI_Info_free(&info); 
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Hints and PnetCDF 

  Uses MPI_Info, so almost identical 
  For example, turning off two-phase writes, in case you’re 

doing large contiguous collective I/O on Lustre: 

MPI_Info info; 

MPI_File fh; 

MPI_Info_create(&info); 

MPI_Info_set(info, ”romio_cb_write", “disable”); 

ncmpi_open(comm, filename, NC_NOWRITE, info, 
&ncfile); 

MPI_Info_free(&info); 
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Hints and HDF5 
  HDF5 uses property lists and MPI_Info structures for passing hints 

/* HDF5 data sieving buffer size using file access property list */ 

acc_template = H5Pcreate(H5P_FILE_ACCESS); 

H5Pset_sieve_buf_size(acc_template, 524288);  

/* align objects larger than 512K on 256K boundaries */ 

H5Pset_alignment(acc_template, 524288, 262144); 

/* pass in an MPI hint using file access property list */  

MPI_Info_set(info, "access_style”, "write_once"); 

H5Pset_fapl_mpio(acc_template, MPI_COMM_WORLD, info); 

/* specify collective I/O using data xfer property list */ 

xfer_template = H5Pcreate(H5P_DATASET_XFER); 

H5Pset_dxpl_mpio(xfer_template, H5FD_MPIO_COLLECTIVE); 
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Characterizing Application I/O 

How is this application performing I/O? 
How successful is its approach? 

Darshan (Sanskrit for “sight”) is a tool we are developing for I/O 
characterization at extreme scale: 
 No code changes (link time hooks into MPI-IO and POSIX calls) 
  Small, tunable runtime memory footprint (~2MB default, 1024 distinct files) 
  Relates accesses from multiple processes and to the same files 
  Captures: 

–  Counters for POSIX and MPI-IO operations 
–  Counters for unaligned, sequential, consecutive, and strided access 
–  Timing of opens, closes, first and last reads and writes 
–  Histograms of access, stride, datatype, and extent size 
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P. Carns et. al, “24/7 Characterization of Petascale I/O Workloads”, to appear in the Workshop on Interfaces and 
Abstractions for Scientific Data Storage, September, 2009. 
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Darshan Internals 

  Characterization centers around per-file 
records 
–  Falls back to aggregate (across files) 

mode if file limit is exceeded 
  At output time, processes further reduce 

output size 
–  Communicate to combine data on 

identical files accessed by all processes 
–  Independently compress (gzip) remaining 

data 
•  32K processes writing a shared file leads 

to 203 bytes of compressed output 
•  32K processes writing a total of 262,144 

files leads to 13.3MB of output 
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Multiple tables allow efficient 
location of file records by name, 
file descriptor, or MPI File 
handle. 
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Results from Chombo I/O Benchmark 
  Simulates I/O from a block-structured AMR code, writes a single HDF5 file  
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Benchmark results in nearly 100K individual 
I/O operations, none of which are larger 
than 1MByte in size. Darshan also tells us 
that 99.99% of these are unaligned in file. 

MPI and POSIX file write times are identical, 
indicating MPI-IO implementation isn’t 
performing any optimization. 
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Conclusions 

 Storage is a complex hardware/software system 
 Lots of software is available to support computational science 

workloads at scale 
–  Parallel file systems 
–  I/O libraries 
–  I/O tracing and characterization tools 

 Using this software (correctly) can dramatically improve 
performance (execution time) and productivity (development 
time) 

 Computer scientists are interested in helping with I/O 
challenges 
–  SciDAC SDM center is one good point of contact 
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Printed References 

  John May, Parallel I/O for High Performance Computing, 
Morgan Kaufmann, October 9, 2000. 
–  Good coverage of basic concepts, some MPI-IO, HDF5, and serial 

netCDF 
–  Out of print… 

  William Gropp, Ewing Lusk, and Rajeev Thakur, Using MPI-2: 
Advanced Features of the Message Passing Interface, MIT 
Press, November 26, 1999. 
–  In-depth coverage of MPI-IO API, including a very detailed description 

of the MPI-IO consistency semantics 
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On-Line References (1 of 4) 

 netCDF and netCDF-4 
–  http://www.unidata.ucar.edu/packages/netcdf/ 
–  http://www.unidata.ucar.edu/software/netcdf/netcdf-4  

 PnetCDF 
–  http://www.mcs.anl.gov/parallel-netcdf/ 

 ROMIO MPI-IO 
–  http://www.mcs.anl.gov/romio/ 

 HDF5 and HDF5 Tutorial 
–  http://www.hdfgroup.org/ 
–  http://hdf.ncsa.uiuc.edu/HDF5/ 
–  http://hdf.ncsa.uiuc.edu/HDF5/doc/Tutor/index.html 

 POSIX I/O Extensions 
–  http://www.opengroup.org/platform/hecewg/ 
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On-Line References (2 of 4) 

  PVFS 
http://www.pvfs.org/ 

  Panasas 
http://www.panasas.com/ 

  Lustre 
http://www.lustre.org/ 

  GPFS 
http://www.almaden.ibm.com/storagesystems/file_systems/GPFS/ 
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On-Line References (3 of 4) 

 LLNL I/O tests (IOR, fdtree, mdtest) 
–  http://sourceforge.net/projects/ior-sio 

 Parallel I/O Benchmarking Consortium (noncontig, mpi-tile-io, 
mpi-md-test) 
–  http://www.mcs.anl.gov/pio-benchmark/ 

 FLASH I/O benchmark 
–  http://www.mcs.anl.gov/pio-benchmark/ 
–  http://flash.uchicago.edu/~jbgallag/io_bench/ (original version) 

 b_eff_io test 
–  http://www.hlrs.de/organization/par/services/models/mpi/b_eff_io/ 

 mpiBLAST 
–  http://www.mpiblast.org 
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On Line References (4 of 4) 

 NFS Version 4.1 
–  draft-ietf-nfsv4-minorversion1-26.txt 
–  draft-ietf-nfsv4-pnfs-obj-09.txt 
–  draft-ietf-nfsv4-pnfs-block-09.txt 

 pNFS Problem Statement 
–  Garth Gibson (Panasas), Peter Corbett (Netapp), Internet-

draft, July 2004 
–  http://www.pdl.cmu.edu/pNFS/archive/gibson-pnfs-

problem-statement.html 
 Linux pNFS Kernel Development 

–  http://www.citi.umich.edu/projects/asci/pnfs/linux 

83 



Argonne National 
Laboratory 84 

Acknowledgments 

This work is supported in part by U.S. Department of Energy 
Grant DE-FC02-01ER25506, by National Science Foundation 
Grants EIA-9986052, CCR-0204429, and CCR-0311542, and by 
the U.S. Department of Energy under Contract DE-
AC02-06CH11357. 

Thanks to Rajeev Thakur (ANL) and Bill Loewe (Panasas) for 
their help in creating this material and presenting this tutorial in 
prior years. 


