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Parallel Framework Mapping 

 Traditional profiling represented as 
–  Functions, Basic Blocks, Statement 

 Frameworks have intuitive abstractions 
–  Direct ties with mathematical terms 
–  PETSc, Cactus, POOMA, GrACE 

 Map profiling information to variables 
– Maps to abstractions in case of frameworks 
– Also can be used for standard programs 

• Map Structs, Classes, Arrays, Scalars 
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Example PETSC Program* 
int main(int argc,char **args) { 
  Vec     x, /* approx solution */ 
              b, /* right hand side */ 
              u;  /* exact solution*/ 
  Mat     A;          /* linear system matrix */ 
  KSP    ksp;       /* linear solver context */ 
  PC      pc;         /* preconditioner context */ 
 VecCreate(PETSC_COMM_WORLD,&x); 
 VecDuplicate(x,&b); 
 VecDuplicate(x,&u); 
 MatCreate(PETSC_COMM_WORLD,&A); 
 MatAssemblyBegin(A,MAT_FINAL_ASSEMBLY); 
 MatAssemblyEnd(A,MAT_FINAL_ASSEMBLY);  
 /* Set exact solution */ 
  VecSet(u,one); 
  MatMult(A,u,b); 
  /* Create linear solver context */ 
  KSPCreate(PETSC_COMM_WORLD,&ksp); 
  KSPGetPC(ksp,&pc); 
  PCSetType(pc,PCJACOBI); 
  /* Solve linear system */ 
  ierr = KSPSolve(ksp,b,x); }   

* - $PETSC_DIR/src/ksp/ksp/examples/tutorials/ex23.c 

50% cache  
misses 

30% MPI 
operations 

40% run 
time 
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Variable “Blame” 
  Record writes in a function 
  Build association tree of writes from ground up 
  Use transfer function to filter information up 

–  Up the call stack 
–  Aggregate over distributed nodes 

  Eventually reach high level abstractions 
–  Example: Matrix abstraction 

•  Allocated storage for actual data 
–  Sparse or Dense 

•  Storage for bookkeeping 
  Augments traditional profiling approaches 
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Preliminary Experimental Results 

 Chose programs with similar properties to 
those found in parallel frameworks 

 Blame metric is number of cycles 
 For each sampling point (instance) 

–  Instance gets blamed for set number of cycles 
–  Variable that instance maps up to gets blame  
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FFP_SPARSE 

 C++ program that solves Poisson’s Equation 
– Approximately 6,700 lines of code & 63 Functions 

 Non-parallel program 
 Uses Sparse Matrices 

– No specific data structure for representation 
–  Composite of primitive pointers declared in ‘main’ 

 Recorded 101 samples from program run 
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FFP_SPARSE Results 
Name Type Description Direct Blame (%) 

node_u double * Solution vector 0 35 (34.7) 

a double * Coefficient matrix 0 24.5 (24.3) 

ia int * Non-zero row indices of a 1 5 (5.0) 

ja int * Non-zero column indices of a 1 5 (5.0) 

element_neighbor int *  Estimate of non-zeroes 0 10 (9.9) 

node_boundary bool * Bool vector for boundary 0 9 (8.9) 

f double *  Right hand side of vector 0 3.5 (3.5) 

Other - 99 9 (8.9) 

Total - 101 101 (100) 
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HPL 

 C program that solves a linear system 
– Utilizes MPI and BLAS 
– Has wrappers for functions from both libraries 
– Operations done on dense matrices 
– Approximately 18,000 lines of code 
–  149 source files 

 32 Red Hat nodes connected via Myrinet 
– OpenMPI 1.2.8 
–  Range of 149-159 samples over the nodes 
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HPL Results 

mat HPL_T_pmat 139.3(90.0) 2.8 

Anorm1 double 1.4(0.9) 0.8 

AnormI double 1.1(0.7) 1.0 

XnormI double 0.5(0.3) 0.7 

Xnorm1 double 0.2(0.1) 0.4 
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Name Type Mean (Total %) Node St. Dev. 

All Instances - 154.7(100) 2.7 

Blame over 32 Nodes 

grid HPL_T_grid 2.2(1.4) 0.4 

A HPL_T_pmat * 136.6(88.3) 2.9 

PANELL2 HPL_T_pmat 112.8(72.9) 8.5 

PANELA double 12.8(8.3) 3.8 

PANELU double 10.2(6.6) 5.2 

main 

mainHPL_pdtest 

mainHPL_pdtestHPL_pdgesv 

mainHPL_pdtestHPL_pdgesvHPL_pdgesv0 

Blame 
Points 
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Implementation Details 

 Mixture of Static and Runtime Tools 
 Static Analysis 

–  LLVM 
–  Boost 

 Runtime Analysis 
–  Dyninst API 
–  Symtab API 
–  Stackwalker API 
–  PAPI 
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LLVM (Low Level Virtual Machine) 
  What is it? 

–  Compiler Infrastructure 
–  Provides Intermediate Representation 

•  Each instruction in SSA form 
  Why we use it? 

–  Need intermediate representation for static analysis 
–  SSA form useful for creating dependency relationships 
–  Intuitive API for accessing 

•  Def-use chains 
•  Dominator & CFG information 
•  Language Independent representation of complex types 

–  Integration with GCC 
–  Multiple Language support 

•  C, C++, Fortran 
  Limitations 

–  llvm-gcc versus gcc 
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Boost 

 What is it? 
– Widely used portable C++ Libraries 

 Why we use it? 
–  Implicit/Explicit data flow relationships 

• Can create very large graphs 
–  Boost provides graph libraries 

• Efficient representation of nodes/edges 
– Descriptors assigned to both 

• DFS, BFS, Uniform Cost Search 
• Dijkstra’s Shortest Path, Kruskal’s MST, … 

 Limitations 
–  Trade efficiency for requiring one more library 
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StackWalker API 

  What is it? 
–  API for runtime traversing of stack 

  Why we use it? 
–  Instance Generation 

• Used in combination with PAPI 
• Each sample point we need full path information 
• Use full context given from PAPI 

– Walk up stack until we reach the top 
–  Mem-Container Information 

• Used in combination with Dyninst 
• Wrapper functions mean we need full path 

–  Every allocation we get full allocation path 
  Limitations 

–  Frame pointer removal decreases accuracy 
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DyninstAPI 

 What is it? 
–  Dynamic instrumentation tool 

 Why we use it? 
– Need to instrument memory allocation sites 
–  Integrated with StackWalkerAPI 

 Limitations 
–  Instrumentation overhead 

15 



University of Maryland 

SymtabAPI 

 What is it? 
– API for accessing symbol information 

 Why we use it? 
–  General Module/Function Information 
–  Line Number Mappings 

• Runtime information mapped back to source 
• Use line number mappings for this 

 Limitations 
–  Debugging Information needed 
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PAPI  

 What is it? 
– API that provides interface to hardware counters 

 Why we use it? 
–  Instance (Sample Point) Generation 

• PAPI provides sampling interface 
• User chooses metric to trigger sample 

– Metrics can be any measurable event on system 
–  PAPI hardware counters 

 Limitations  
–  Special kernel patch required on certain systems  
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Advantage of Using Tools 
Application/API LOC (w/comments) 

Blame    6K (8K) 

Dyninst API 6.0 292K (360K) 

Symtab API 6.0   51K  (65K) 

Stackwalker API 6.0   52K (66K) 

LLVM 2.3  298K (375K) 

PAPI 3.6 278K (320K) 

Boost (Graph) 1.36 29K   (33K) 
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Conclusion 
  Variable “blame” mapping 

–  Switch analysis from delimited regions to variables  
–  Alternative to standard profiling techniques 

  Lessons Learned 
–  Standards are a good things 

• PAPI gives ucontext 
• Stackwalker uses information for context 

–  Best not to reinvent the wheel … BUT 
–  Tool interoperability can be a problem 

• Compiler, OS compatibilities 
• Runtime tool interoperability 
• Target application/end-user requirements 

  Questions? 
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