
University of Maryland

What it Takes to Assign Blame

Nick Rutar
Jeffrey K. Hollingsworth

University of Maryland

University of Maryland

Parallel Framework Mapping

 Traditional profiling represented as
–  Functions, Basic Blocks, Statement

 Frameworks have intuitive abstractions
–  Direct ties with mathematical terms
–  PETSc, Cactus, POOMA, GrACE

 Map profiling information to variables
– Maps to abstractions in case of frameworks
– Also can be used for standard programs

• Map Structs, Classes, Arrays, Scalars

2

University of Maryland

Example PETSC Program*
int main(int argc,char **args) {
 Vec x, /* approx solution */
 b, /* right hand side */
 u; /* exact solution*/
 Mat A; /* linear system matrix */
 KSP ksp; /* linear solver context */
 PC pc; /* preconditioner context */
 VecCreate(PETSC_COMM_WORLD,&x);
 VecDuplicate(x,&b);
 VecDuplicate(x,&u);
 MatCreate(PETSC_COMM_WORLD,&A);
 MatAssemblyBegin(A,MAT_FINAL_ASSEMBLY);
 MatAssemblyEnd(A,MAT_FINAL_ASSEMBLY);
 /* Set exact solution */
 VecSet(u,one);
 MatMult(A,u,b);
 /* Create linear solver context */
 KSPCreate(PETSC_COMM_WORLD,&ksp);
 KSPGetPC(ksp,&pc);
 PCSetType(pc,PCJACOBI);
 /* Solve linear system */
 ierr = KSPSolve(ksp,b,x); }

* - $PETSC_DIR/src/ksp/ksp/examples/tutorials/ex23.c

50% cache
misses

30% MPI
operations

40% run
time

3

University of Maryland

Variable “Blame”
  Record writes in a function
  Build association tree of writes from ground up
  Use transfer function to filter information up

–  Up the call stack
–  Aggregate over distributed nodes

  Eventually reach high level abstractions
–  Example: Matrix abstraction

•  Allocated storage for actual data
–  Sparse or Dense

•  Storage for bookkeeping
  Augments traditional profiling approaches

4

University of Maryland

Static Analysis Runtime
(Instances)

Transfer Functions

Mem Containers

Generation

Stubs

Static

Application

Allocation/Free

Dynamic

Container Resoution

PAPI
Hardware
Counter
Sampling

DyninstAPI

StackWalker API

Implicit/
Explicit
Data Flow
Relationships

Variable
Blame

Blame Calculation Components

5

Symtab API

University of Maryland

Preliminary Experimental Results

 Chose programs with similar properties to
those found in parallel frameworks

 Blame metric is number of cycles
 For each sampling point (instance)

–  Instance gets blamed for set number of cycles
–  Variable that instance maps up to gets blame

6

University of Maryland

FFP_SPARSE

 C++ program that solves Poisson’s Equation
– Approximately 6,700 lines of code & 63 Functions

 Non-parallel program
 Uses Sparse Matrices

– No specific data structure for representation
–  Composite of primitive pointers declared in ‘main’

 Recorded 101 samples from program run

7

University of Maryland

FFP_SPARSE Results
Name Type Description Direct Blame (%)

node_u double * Solution vector 0 35 (34.7)

a double * Coefficient matrix 0 24.5 (24.3)

ia int * Non-zero row indices of a 1 5 (5.0)

ja int * Non-zero column indices of a 1 5 (5.0)

element_neighbor int * Estimate of non-zeroes 0 10 (9.9)

node_boundary bool * Bool vector for boundary 0 9 (8.9)

f double * Right hand side of vector 0 3.5 (3.5)

Other - 99 9 (8.9)

Total - 101 101 (100)

8

University of Maryland

HPL

 C program that solves a linear system
– Utilizes MPI and BLAS
– Has wrappers for functions from both libraries
– Operations done on dense matrices
– Approximately 18,000 lines of code
–  149 source files

 32 Red Hat nodes connected via Myrinet
– OpenMPI 1.2.8
–  Range of 149-159 samples over the nodes

9

University of Maryland

HPL Results

mat HPL_T_pmat 139.3(90.0) 2.8

Anorm1 double 1.4(0.9) 0.8

AnormI double 1.1(0.7) 1.0

XnormI double 0.5(0.3) 0.7

Xnorm1 double 0.2(0.1) 0.4

10

Name Type Mean (Total %) Node St. Dev.

All Instances - 154.7(100) 2.7

Blame over 32 Nodes

grid HPL_T_grid 2.2(1.4) 0.4

A HPL_T_pmat * 136.6(88.3) 2.9

PANELL2 HPL_T_pmat 112.8(72.9) 8.5

PANELA double 12.8(8.3) 3.8

PANELU double 10.2(6.6) 5.2

main

mainHPL_pdtest

mainHPL_pdtestHPL_pdgesv

mainHPL_pdtestHPL_pdgesvHPL_pdgesv0

Blame
Points

University of Maryland

Implementation Details

 Mixture of Static and Runtime Tools
 Static Analysis

–  LLVM
–  Boost

 Runtime Analysis
–  Dyninst API
–  Symtab API
–  Stackwalker API
–  PAPI

11

University of Maryland

LLVM (Low Level Virtual Machine)
  What is it?

–  Compiler Infrastructure
–  Provides Intermediate Representation

•  Each instruction in SSA form
  Why we use it?

–  Need intermediate representation for static analysis
–  SSA form useful for creating dependency relationships
–  Intuitive API for accessing

•  Def-use chains
•  Dominator & CFG information
•  Language Independent representation of complex types

–  Integration with GCC
–  Multiple Language support

•  C, C++, Fortran
  Limitations

–  llvm-gcc versus gcc
12

University of Maryland

Boost

 What is it?
– Widely used portable C++ Libraries

 Why we use it?
–  Implicit/Explicit data flow relationships

• Can create very large graphs
–  Boost provides graph libraries

• Efficient representation of nodes/edges
– Descriptors assigned to both

• DFS, BFS, Uniform Cost Search
• Dijkstra’s Shortest Path, Kruskal’s MST, …

 Limitations
–  Trade efficiency for requiring one more library

13

University of Maryland

StackWalker API

  What is it?
–  API for runtime traversing of stack

  Why we use it?
–  Instance Generation

• Used in combination with PAPI
• Each sample point we need full path information
• Use full context given from PAPI

– Walk up stack until we reach the top
–  Mem-Container Information

• Used in combination with Dyninst
• Wrapper functions mean we need full path

–  Every allocation we get full allocation path
  Limitations

–  Frame pointer removal decreases accuracy
14

University of Maryland

DyninstAPI

 What is it?
–  Dynamic instrumentation tool

 Why we use it?
– Need to instrument memory allocation sites
–  Integrated with StackWalkerAPI

 Limitations
–  Instrumentation overhead

15

University of Maryland

SymtabAPI

 What is it?
– API for accessing symbol information

 Why we use it?
–  General Module/Function Information
–  Line Number Mappings

• Runtime information mapped back to source
• Use line number mappings for this

 Limitations
–  Debugging Information needed

16

University of Maryland

PAPI

 What is it?
– API that provides interface to hardware counters

 Why we use it?
–  Instance (Sample Point) Generation

• PAPI provides sampling interface
• User chooses metric to trigger sample

– Metrics can be any measurable event on system
–  PAPI hardware counters

 Limitations
–  Special kernel patch required on certain systems

17

University of Maryland

Advantage of Using Tools
Application/API LOC (w/comments)

Blame 6K (8K)

Dyninst API 6.0 292K (360K)

Symtab API 6.0 51K (65K)

Stackwalker API 6.0 52K (66K)

LLVM 2.3 298K (375K)

PAPI 3.6 278K (320K)

Boost (Graph) 1.36 29K (33K)

18

University of Maryland

Conclusion
  Variable “blame” mapping

–  Switch analysis from delimited regions to variables
–  Alternative to standard profiling techniques

  Lessons Learned
–  Standards are a good things

• PAPI gives ucontext
• Stackwalker uses information for context

–  Best not to reinvent the wheel … BUT
–  Tool interoperability can be a problem

• Compiler, OS compatibilities
• Runtime tool interoperability
• Target application/end-user requirements

  Questions?
19

