
Parallel Performance Evaluation  
With TAU

CSCADS 2009

Wyatt Spear

wspear@cs.uoregon.edu

http://tau.uoregon.edu



2

TAU Performance System® Project

• Tuning and Analysis Utilities (15+ year project effort)

• Performance system framework for HPC systems
– Integrated, scalable, and flexible
– Target parallel programming paradigms

• Integrated toolkit for performance problem solving
– Instrumentation, measurement, analysis, and visualization
– Portable performance profiling and tracing facility
– Performance data management and data mining

• Partners
– LLNL, ANL, LANL
– Research Centre Jülich, TU Dresden



3

What is TAU?

• TAU is a performance evaluation tool

• It supports parallel profiling and tracing 

• Profiling shows you how much (total) time was spent in each routine 

• Tracing shows you when the events take place in each process along a timeline

• TAU uses a package called PDT for automatic instrumentation of the source code

• Profiling and tracing can measure time as well as hardware performance counters from your 
CPU

• TAU can automatically instrument your source code (routines, loops, I/O, memory, phases, 
etc.)

• TAU runs on all HPC platforms and it is free (BSD style license)

• TAU has instrumentation, measurement and analysis tools
– paraprof is TAU’s 3D profile browser

• To use TAU, you need to set a couple of environment variables and substitute the name of 
your compiler with a TAU shell script



4

Performance Optimization Cycle

• Expose factors

• Collect performance data

• Calculate metrics

• Analyze results

• Visualize results

• Identify problems

• Tune performance

Instrumentation

Presentation

Measurement

Optimization

Analysis



5

Steps of Performance Evaluation

• Collect basic routine-level timing profile to determine 
where most time is being spent

• Collect routine-level hardware counter data to determine 
types of performance problems

• Collect callpath profiles to determine sequence of events 
causing performance problems

• Conduct finer-grained profiling and/or tracing to pinpoint 
performance bottlenecks
– Loop-level profiling with hardware counters
– Tracing of communication operations 



6

Parallel Performance Properties

• Parallel code performance is influenced by both 
sequential and parallel factors?

• Sequential factors
– Computation and memory use
– Input / output

• Parallel factors
– Thread / process interactions
– Communication and synchronization



7

Performance Analysis Questions

• How does performance vary with different compilers?

• Is poor performance correlated with certain OS features?

• Has a recent change caused unanticipated performance?

• How does performance vary with MPI variants?

• Why is one application version faster than another?

• What is the reason for the observed scaling behavior?

• Did two runs exhibit similar performance?

• How are performance data related to application events?

• Which machines will run my code the fastest and why?

• Which benchmarks predict my code performance best?



8

TAU Parallel Performance System Goals

• Portable (open source) parallel performance system
– Computer system architectures and operating systems
– Different programming languages and compilers

• Multi-level, multi-language performance instrumentation

• Flexible and configurable performance measurement

• Support for multiple parallel programming paradigms
– Multi-threading, message passing, mixed-mode, hybrid, object oriented (generic), 

component-based

• Support for performance mapping

• Integration of leading performance technology

• Scalable (very large) parallel performance analysis



9

Using TAU: A brief Introduction

• TAU supports several measurement options (profiling, tracing, profiling with 
hardware counters, etc.)

• Each measurement configuration of TAU corresponds to a unique stub makefile 
that is generated when you configure it

• To instrument source code using PDT
– Choose an appropriate TAU stub makefile in <arch>/lib:
% export TAU_MAKEFILE=/projects/tau/tau_latest/x86_64/lib/Makefile.tau-mpi-pdt
% export TAU_OPTIONS=‘-optVerbose …’ (see tau_compiler.sh -help)

And use tau_f90.sh, tau_cxx.sh or tau_cc.sh as Fortran, C++ or C compilers:
% mpif90 foo.f90 
changes to 
% tau_f90.sh foo.f90

• Execute application and analyze performance data:
– At runtime, if more than one metric is measured

– export TAU_METRICS=TIME:PAPI_FP_INS:PAPI_NATIVE_<native_event_name>
– Use papi_native_avail, papi_avail, and papi_event_chooser to select these preset and native event names

% pprof   (for text based profile display)
% paraprof  (for GUI)



10

Using TAU

• Configuration

• Instrumentation
– Manual
– MPI – Wrapper interposition library
– PDT- Source rewriting for C,C++, F77/90/95
– Compiler-based instrumentation for C, C++, F90
– OpenMP – Directive rewriting
– Component based instrumentation – Proxy components
– Binary Instrumentation

– DyninstAPI – Runtime Instrumentation/Rewriting binary
– Java – Runtime instrumentation
– Python – Runtime instrumentation 

• Measurement 

• Performance Analysis



11

TAU Measurement Configuration – Examples

• ./configure -arch=x86_64 –pdt=/projects/tau/pdtoolkit-3.14 -mpi 
Configure using PDT and MPI

• ./configure -arch=x86_64 -papi=/projects/tau/papi-3.6.2 
  -pdt=<dir>  -mpi ; make clean install
– Use PAPI counters (one or more) with C/C++/F90 automatic 

instrumentation. Also instrument the MPI library.

• Typically configure multiple measurement libraries

• Each configuration creates a  unique <arch>/lib/Makefile.tau<options> 

stub makefile. It corresponds to the configuration options used. e.g.,
– $(PET_HOME)/tau/x86_64/lib/Makefile.tau-mpi-pdt
– $(PET_HOME)/tau/x86_64/lib/Makefile.tau-mpi-papi-pdt



12

TAU_SETUP: A GUI for Installing TAU



13

TAU Measurement Configuration – Examples

% cd $(PET_HOME)/tau/x86_64/lib; ls Makefile.*pgi

Makefile.tau-pdt

Makefile.tau-mpi-pdt

Makefile.tau-callpath-mpi-pdt

Makefile.tau-mpi-pdt-trace

Makefile.tau-mpi-compensate-pdt

Makefile.tau-mpi-papi-pdt

Makefile.tau-mpi-papi-pdt-trace

Makefile.tau-mpi-papi-pdt-epilog-scalasca-trace

Makefile.tau-pdt…

• For an MPI+F90 application, you may want to start with:
Makefile.tau-mpi-pdt

– Supports MPI instrumentation & PDT for automatic source instrumentation for PGI compilers



14

TAU’s MPI Wrapper Interposition Library

• Uses standard MPI Profiling Interface
– Provides name shifted interface 

– MPI_Send = PMPI_Send
– Weak bindings 

• Interpose TAU’s MPI wrapper library between MPI and TAU
– -lmpi replaced by –lTauMpi –lpmpi –lmpi

• No change to the source code!
– Just re-link the application to generate performance data
– export TAU_MAKEFILE=<dir>/<arch>/lib/Makefile.tau-mpi -[options]
– Use tau_cxx.sh, tau_f90.sh and tau_cc.sh as compilers



15

Runtime MPI Shared Library Instrumentation

• We can now interpose the MPI wrapper library for applications that 
have already been compiled
– No re-compilation or re-linking necessary!

• Uses LD_PRELOAD for Linux

• On AIX, TAU uses MPI_EUILIB / MPI_EUILIBPATH

• Simply compile TAU with MPI support and prefix your MPI program 
with tauex
% mpirun -np 4 tauex a.out

• Requires shared library MPI - does not work on XT3

• Approach will work with other shared libraries



16

-PROFILE Configuration Option 

• Generates flat profiles (one for each MPI process)
– It is the default option.

• Uses wallclock time (gettimeofday() sys call)

• Calculates exclusive, inclusive time spent in each timer and number of calls

% pprof



17

Profiling

• Recording of aggregated information
– Counts, time, …

• … about program and system entities
– Functions, loops, basic blocks, …
– Processes, threads

• Methods
– Event-based sampling (indirect, statistical)
– Direct measurement (deterministic) 



18

inclusive
duration

exclusive
duration

int foo() 
{
       int a;
       a = a + 1;

     bar();

       a = a + 1;
       return a;
}

Inclusive and Exclusive Profiles

• Performance with respect to code regions

• Exclusive measurements for region only

• Inclusive measurements includes child regions



19

ParaProf Main Window

click left
 mouse button

click right 
mouse button

% paraprof matmult.ppk 



20

-PAPI Configuration Option

• Instead of one metric, profile or trace with more than one metric
– % export TAU_METRICS=TIME:PAPI_L2_DCM:PAPI_FP_OPS...

• When used with –TRACE option, the first counter must be TIME
– % export  TAU_METRICS=TIME:...
– Provides a globally synchronized real time clock for tracing

• -papi appears in the name of the stub Makefile

• Often used with –papi=<dir> to measure hardware performance counters 
and time

• papi_native_avail and papi_avail are two useful tools



21

-PROFILECALLPATH Configuration Option

• Generates profiles that show the calling order (edges & nodes in callgraph)
– A=>B=>C shows the time spent in C when it was called by B and B was called by A
– Control the depth of callpath using TAU_CALLPATH_DEPTH env. Variable
– -callpath in the name of the stub Makefile name
– In TAU 2.18.2+, any executable can generate callpath profiles using
– % export TAU_CALLPATH=1



22

-PROFILECALLPATH Configuration Option

• Generates program callgraph



23

Profile Measurement – Three Flavors

• Flat profiles
– Time (or counts) spent in each routine (nodes in callgraph).
– Exclusive/inclusive time, no. of calls, child calls
– E.g,: MPI_Send, foo, …

• Callpath Profiles
– Flat profiles, plus 
– Sequence of actions that led to poor performance
– Time spent along a calling path (edges in callgraph)
– E.g., “main=> f1 => f2 => MPI_Send” shows the time spent in MPI_Send when 

called by f2, when f2 is called by f1, when it is called by main. Depth of this 
callpath = 4 (TAU_CALLPATH_DEPTH environment variable) 

• Phase based profiles
– Flat profiles, plus
– Flat profiles under a phase (nested phases are allowed)
– Default “main” phase has all phases and routines invoked outside phases
– Supports static or dynamic (per-iteration) phases
– E.g., “IO => MPI_Send” is time spent in MPI_Send in IO phase



24

-DEPTHLIMIT Configuration Option 

•  Allows users to enable instrumentation at runtime based on the depth of 
a calling routine on a callstack.
– Disables instrumentation in all routines a certain depth away from the root in 

a callgraph

• TAU_DEPTH_LIMIT environment variable specifies depth 
% export TAU_DEPTH_LIMIT=1
enables instrumentation in only “main”
% export TAU_DEPTH_LIMIT=2
enables instrumentation in main and routines that are directly called by main

• Stub makefile has  -depthlimit in its name:
export TAU_MAKEFILE=<taudir>/<arch>/lib/Makefile.tau-mpi-depthlimit-pdt



25

-COMPENSATE Configuration Option 

• Specifies online compensation of performance perturbation

• TAU computes its timer overhead and subtracts it from the 
profiles

• Works well with time or instructions based metrics

• Does not work with level 1/2 data cache misses

• export TAU_COMPENSATE=1 (in TAU v2.18.2+)



26

-TRACE Configuration Option 

• Generates event-trace logs, rather than summary profiles

• Traces show when and where an event occurred in terms of location and the 
process that executed it

• Traces from multiple processes are merged:
% tau_treemerge.pl

– generates tau.trc and tau.edf as merged trace and event definition file

• TAU traces can be converted to Vampir’s OTF/VTF3, Jumpshot SLOG2, 
Paraver trace formats:

% tau2otf tau.trc tau.edf app.otf 
% tau2vtf tau.trc tau.edf app.vpt.gz
% tau2slog2 tau.trc tau.edf -o app.slog2
% tau_convert -paraver tau.trc tau.edf app.prv

• Activated by environment variable
% export TAU_TRACE=1



27

Tracing Analysis and Visualization

1 master

2 worker

3 ...

58 A ENTER 1

60 B ENTER 2

62 A SEND B

64 A EXIT 1

68 B RECV A

...

69 B EXIT 2

...

main
master
worker

58 60 62 64 66 68 70

B

A



28

Trace Formats

• Different tools produce different formats
– Differ by event types supported
– Differ by ASCII and binary representations

– Vampir Trace Format (VTF)
– KOJAK (EPILOG)
– Jumpshot (SLOG-2)
– Paraver

• Open Trace Format (OTF)
– Supports interoperation between tracing tools



29

-PROFILEPARAM Configuration Option

• Idea: partition performance data for individual functions 
based on runtime parameters

• Enable by configuring with –PROFILEPARAM 

• TAU call: TAU_PROFILE_PARAM1L (value, “name”)

• Simple example:

      void foo(long input) {

   TAU_PROFILE("foo", "", TAU_DEFAULT);

   TAU_PROFILE_PARAM1L(input, "input");

 ... }



30

Workload Characterization

• 5 seconds spent in function “foo” becomes
– 2 seconds for “foo [ <input> = <25> ]”
– 1 seconds for “foo [ <input> = <5> ]”
– …

• Currently used in MPI wrapper library
– Allows for partitioning of time spent in MPI routines based on 

parameters (message size, message tag, destination node)
– Can be extrapolated to infer specifics about the MPI subsystem 

and system as a whole



31

Workload Characterization

• MPI Results (NAS Parallel Benchmark 3.1, LU class D on 
16 processors of SGI Altix)

 



32

Workload Characterization

• Two different message sizes (~3.3MB and ~4K)



33

Memory Profiling in TAU

• Configuration option –PROFILEMEMORY
– Records global heap memory utilization for each function
– Takes one sample at beginning of each function and associates the sample 

with function name

• Configuration option -PROFILEHEADROOM
– Records headroom (amount of free memory to grow) for each function
– Takes one sample at beginning of each function and associates it with the 

callstack [TAU_CALLPATH_DEPTH env variable]
– Useful for debugging memory usage on IBM BG/L. 

• Independent of instrumentation/measurement options selected

• No need to insert macros/calls in the source code

• User defined atomic events appear in profiles/traces



34

Memory Profiling in TAU (Atomic events)

Flash2 code profile (-PROFILEMEMORY) on IBM BlueGene/L [MPI rank 0]



35

Detecting Memory Leaks in C/C++

• TAU wrapper library for malloc/realloc/free

• During instrumentation, specify
-optDetectMemoryLeaks option to TAU_COMPILER

% export TAU_OPTIONS=‘-optVerbose -optDetectMemoryLeaks’
% export TAU_MAKEFILE=<taudir>/<arch>/lib/Makefile.tau-mpi-pdt...
% tau_cxx.sh foo.cpp ...

• Tracks each memory allocation/de-allocation in parsed files 

• Correlates each memory event with the executing callstack

• At the end of execution, TAU detects memory leaks

• TAU reports leaks based on allocations and the executing callstack

• Set TAU_CALLPATH_DEPTH environment variable to limit callpath data
– default is 2

• Future work
– Support for C++ new/delete planned
– Support for Fortran 90/95 allocate/deallocate planned



36

Memory Leak Detection



37

TAU Timers and Phases

• Static timer
– Shows time spent in all invocations of a routine (foo)
– E.g., “foo()”  100 secs, 100 calls

• Dynamic timer
– Shows time spent in each invocation of a routine
– E.g., “foo() 3” 4.5 secs, “foo 10” 2 secs (invocations 3 and 10 respectively)

• Static phase
– Shows time spent in all routines called (directly/indirectly) by a given routine 

(foo)
– E.g., “foo() => MPI_Send()” 100 secs, 10 calls shows that a total of 100 secs 

were spent in MPI_Send() when it was called by foo. 

• Dynamic phase
– Shows time spent in all routines called by a given invocation of a routine.
– E.g., “foo() 4 => MPI_Send()” 12 secs, shows that 12 secs were spent in 

MPI_Send when it was called by the 4th invocation of foo.



38

Performance Dynamics: Phase-Based Profiling

• Profile phases capture
performance with respect
to application-defined
‘phases’ of execution
– Separate full profile produced

for each phase

• GTC particle-in-cell
simulation of fusion
turbulence

• Phases assigned to iterations

• Data change affects cache

increasing phase
execution time

decreasing 
flops rate

declining cache
performance



39

TAU_COMPILER Commandline Options

• See <taudir>/<arch>/bin/tau_compiler.sh –help

• Compilation:

% mpxlf90 -c foo.f90

Changes to
% f95parse foo.f90 $(OPT1)
% tau_instrumentor foo.pdb foo.f90 –o foo.inst.f90 $(OPT2)
% ftn –c foo.inst.f90 $(OPT3)

• Linking:

% ftn foo.o bar.o –o app

Changes to
% ftn foo.o bar.o –o app $(OPT4)

• Where options OPT[1-4] default values may be overridden by the user:
F90 = tau_f90.sh



40

TAU_COMPILER Options

• Optional parameters for $(TAU_COMPILER): [tau_compiler.sh –help]
-optVerbose Turn on verbose debugging messages
-optCompInst Use compiler based instrumentation
-optDetectMemoryLeaks Turn on debugging memory allocations/

de-allocations to track leaks
-optKeepFiles         Does not remove intermediate .pdb and .inst.* files
-optPreProcess         Preprocess Fortran sources before instrumentation
-optTauSelectFile="" Specify selective instrumentation file for tau_instrumentor
-optLinking=""        Options passed to the linker. Typically 

$(TAU_MPI_FLIBS) $(TAU_LIBS) $(TAU_CXXLIBS)
-optCompile=""        Options passed to the compiler. Typically 

$(TAU_MPI_INCLUDE) $(TAU_INCLUDE) $(TAU_DEFS)
-optPdtF95Opts="" Add options for Fortran parser in PDT (f95parse/gfparse)
-optPdtF95Reset="" Reset options for Fortran parser in PDT (f95parse/gfparse)
-optPdtCOpts=""      Options for C parser in PDT (cparse). Typically 

$(TAU_MPI_INCLUDE) $(TAU_INCLUDE) $(TAU_DEFS)
-optPdtCxxOpts="" Options for C++ parser in PDT (cxxparse). Typically

$(TAU_MPI_INCLUDE) $(TAU_INCLUDE) $(TAU_DEFS)
...



41

Compiling Codes with TAU 

• If your Fortran code uses free format in .f files (fixed is default for .f), you may use:
% export TAU_OPTIONS=‘-optPdtF95Opts=“-R free” -optVerbose ’

• To use the compiler based instrumentation instead of PDT (source-based):
% export TAU_OPTIONS=‘-optCompInst -optVerbose’

• If your Fortran code uses C preprocessor directives (#include, #ifdef, #endif):
% export TAU_OPTIONS=‘-optPreProcess -optVerbose -optDetectMemoryLeaks’

• To use an instrumentation specification file:
% export TAU_OPTIONS=‘-optTauSelectFile=mycmd.tau -optVerbose -optPreProcess’
% cat mycmd.tau
BEGIN_INSTRUMENT_SECTION
memory file=“foo.f90” routine=“#”
# instruments all allocate/deallocate statements in all routines in foo.f90
loops file=“*” routine=“#”
io file=“abc.f90” routine=“FOO”
END_INSTRUMENT_SECTION



42

Optimization of Program Instrumentation

• Need to eliminate instrumentation in frequently executing lightweight routines

• Throttling of events at runtime (default in tau-2.17.2+):
% export TAU_THROTTLE=1
Turns off instrumentation in routines that execute over 100000 times (TAU_THROTTLE_NUMCALLS) 

and take less than 10 microseconds of inclusive time per call (TAU_THROTTLE_PERCALL). Use 
TAU_THROTTLE=0 to disable.

• Selective instrumentation file to filter events
% tau_instrumentor [options] –f <file>  OR
% export TAU_OPTIONS=’-optTauSelectFile=tau.txt’

• Compensation of local instrumentation overhead 
% configure -COMPENSATE
or
% export TAU_COMPENSATE=1  (in tau-2.18.2+)



43

ParaProf: Creating Selective Instrumentation File



44

Choosing Rules for Excluding Routines



45

Selective Instrumentation File

• Specify a list of routines to exclude or include (case sensitive)

• # is a wildcard in a routine name. It cannot appear in the first column.
BEGIN_EXCLUDE_LIST
Foo
Bar
D#EMM 
END_EXCLUDE_LIST

• Specify a list of routines to include for instrumentation
BEGIN_INCLUDE_LIST
int main(int, char **)
F1
F3
END_INCLUDE_LIST

• Specify either an include list or an exclude list!



46

Selective Instrumentation File

• Optionally specify a list of files to exclude or include (case sensitive)

• * and ? may be used as wildcard characters in a file name
BEGIN_FILE_EXCLUDE_LIST
f*.f90
Foo?.cpp 
END_FILE_EXCLUDE_LIST

• Specify a list of routines to include for instrumentation
BEGIN_FILE_INCLUDE_LIST
main.cpp
foo.f90
END_FILE_INCLUDE_LIST



47

Selective Instrumentation File

• User instrumentation commands are placed in INSTRUMENT section

• ? and * used as wildcard characters for file name, # for routine name

• \ as escape character for quotes

• Routine entry/exit, arbitrary code insertion

• Outer-loop level instrumentation

BEGIN_INSTRUMENT_SECTION
loops file=“foo.f90” routine=“matrix#”
memory file=“foo.f90” routine=“#” 
io routine=“matrix#”
[static/dynamic] phase routine=“MULTIPLY”
dynamic [phase/timer] name=“foo” file=“foo.cpp” line=22 to line=35
file=“foo.f90” line = 123 code = "  print *, \" Inside foo\""
exit routine = “int foo()” code = "cout <<\"exiting foo\"<<endl;"
END_INSTRUMENT_SECTION



48

Instrumentation of OpenMP Constructs

• OOpenMP PPragma AAnd RRegion IInstrumentor [UTK, FZJ]

• Source-to-Source translator to insert POMP calls
around OpenMP constructs and API functions

• Done:  Supports
– Fortran77 and Fortran90, OpenMP 2.0
– C and C++, OpenMP 1.0
– POMP Extensions
– EPILOG and TAU POMP implementations
– Preserves source code information (#line line file)

• tau_ompcheck
– Balances OpenMP constructs (DO/END DO) and detects errors
– Invoked by tau_compiler.sh prior to invoking Opari

• KOJAK Project website http://icl.cs.utk.edu/kojak



49

OpenMP API Instrumentation

• Transform
– omp_#_lock()        →   pomp_#_lock()
– omp_#_nest_lock()→   pomp_#_nest_lock()

[ #  =  init | destroy | set | unset | test ]

• POMP version
– Calls omp version internally
– Can do extra stuff before and after call



50

Dynamic Instrumentation 

• TAU uses DyninstAPI for runtime code patching

• Developed by U. Wisconsin and U. Maryland

• http://www.dyninst.org

• tau_run (mutator) loads measurement library

• Instruments mutatee 

• MPI issues:
– one mutator per executable image [TAU, DynaProf]
– one mutator for several executables [Paradyn, DPCL]



51

Virtual Machine Performance Instrumentation

• Integrate performance system with VM
– Captures robust performance data (e.g., thread events)
– Maintain features of environment

– portability, concurrency, extensibility, interoperation
– Allow use in optimization methods

• JVM Profiling Interface (JVMPI)
– Generation of JVM events and hooks into JVM
– Profiler agent (TAU) loaded as shared object

– registers events of interest and address of callback routine
– Access to information on dynamically loaded classes
– No need to modify Java source, bytecode, or JVM



52

Generate a Python Profile

% export TAU_MAKEFILE=/projects/tau/tau_latest/ibm64
/lib/Makefile.tau-python-pdt

% set path=(/projects/tau/tau_latest/ibm64/bin $path)
% cat wrapper.py
  import tau
  def OurMain():
      import foo
  tau.run(‘OurMain()’)
Uninstrumented:
% ./foo.py
Instrumented:
% export PYTHONPATH= <taudir>/ibm64/<lib>/bindings-python-pdt
(same options string as TAU_MAKEFILE)
% export LD_LIBRARY_PATH=<taudir>/x86_64/lib/bindings-python-pdt: 
$LD_LIBRARY_PATH
% ./wrapper.py

Wrapper invokes foo and generates performance data
% pprof/paraprof



53

Python Instrumentation: SciPy



54

Critical issues

• Accuracy
– Timing and counting accuracy depends on resolution
– Any performance measurement generates overhead

– Execution on performance measurement code
– Measurement overhead can lead to intrusion
– Intrusion can cause perturbation

– alters program behavior

• Granularity
– How many measurements are made 
– How much overhead per measurement 

• Tradeoff (general wisdom)
– Accuracy is inversely correlated with granularity



55

Performance Evaluation Alternatives

Flat profile

Depthlimit
profile

Parameter
profile

Callpath/
callgraph profile

Phase
profile

Trace

Volume of performance data
Each alternative has:
­ one metric/counter
­ multiple counters



56

Profiling / Tracing Comparison

• Profiling
 Finite, bounded performance data size
 Applicable to both direct and indirect methods
 Loses time dimension (not entirely)
 Lacks ability to fully describe process interaction

• Tracing
 Temporal and spatial dimension to performance data
 Capture parallel dynamics and process interaction
 Some inconsistencies with indirect methods
 Unbounded performance data size (large)
 Complex event buffering and clock synchronization



57

TAU Performance System Interfaces

• PDT [U. Oregon, LANL, FZJ] for instrumentation of C++, C99, F95 source code

• PAPI [UTK] for accessing hardware performance counters data

• DyninstAPI  [U. Maryland, U. Wisconsin] for runtime instrumentation

• KOJAK [FZJ, UTK]
– Epilog trace generation library
– CUBE callgraph visualizer
– Opari OpenMP directive rewriting tool

• Vampir/VNG Trace Analyzer [TU Dresden]

• VTF3/OTF trace generation library [TU Dresden] (available from TAU website)

• Paraver trace visualizer [CEPBA]

• Jumpshot-4 trace visualizer [MPICH, ANL]

• JVMPI from JDK for Java program instrumentation [Sun]

• Paraprof profile browser/PerfDMF database supports:
– TAU format
– Gprof [GNU]
– HPM Toolkit [IBM]
– MpiP [ORNL, LLNL]
– Dynaprof [UTK]
– PSRun [NCSA]



58

Building Bridges to Other Tools: TAU



59

ParaProf  – Manager Window

performance
database

metadata



60

Performance Database: Storage of MetaData



61

ParaProf Main Window (Lammps)



62

ParaProf – Flat Profile (Miranda)

8K processors!node, context, thread

Miranda
 hydrodynamics
 Fortran + MPI
 LLNL



63

ParaProf – 3D Full Profile Bar Plot (Flash)

128 processors



64

ParaProf Bar Plot (Zoom in/out +/-)



65

ParaProf – Callpath Profile (Flash)

Flash
 thermonuclear
      flashes
 Fortran + MPI
 U. Chicago



66

ParaProf – Callgraph Zoomed (Flash)

Zoom in (+)
Zoom out (-)



67

ParaProf - Thread Statistics Table (GSI)



68

ParaProf – 3D Scatterplot (SWEEP3D CUBE)



69

Vampir – Trace Zoomed (S3D)



70

Jumpshot

• http://www-unix.mcs.anl.gov/perfvis/software/viewers/index.htm

• Developed at Argonne National Laboratory as part of the MPICH 
project
– Also works with other MPI implementations
– Installed on NAVO IBM and ERDC XT3/4
– Jumpshot is bundled with the TAU package 

• Java-based tracefile visualization tool for postmortem performance 
analysis of MPI programs

• Latest version is Jumpshot-4 for SLOG-2 format
– Scalable level of detail support
– Timeline and histogram views
– Scrolling and zooming
– Search/scan facility



71

Jumpshot



72

PerfDMF: Performance Data Mgmt. Framework



73

Using Performance Database (PerfDMF)

• Configure PerfDMF (Done by each user)
% perfdmf_configure --create-default

– Choose derby, PostgreSQL, MySQL, Oracle or DB2 
– Hostname
– Username
– Password
– Say yes to downloading required drivers (we are not allowed to distribute these)
– Stores parameters in your ~/.ParaProf/perfdmf.cfg file

• Configure PerfExplorer (Done by each user)
% perfexplorer_configure

• Execute PerfExplorer
% perfexplorer



74

PerfDMF and the TAU Portal

• Development of the TAU portal 
– Common repository for collaborative data sharing
– Profile uploading, downloading, user management
– Paraprof, PerfExplorer can be launched from the portal using Java 

Web Start (no TAU installation required)

• Portal URL
http://tau.nic.uoregon.edu



75

Performance Data Mining (Objectives)

• Conduct parallel performance analysis process
– In a systematic, collaborative and reusable manner
– Manage performance complexity
– Discover performance relationship and properties
– Automate process

• Multi-experiment performance analysis

• Large-scale performance data reduction
– Summarize characteristics of large processor runs

• Implement extensible analysis framework
– Abstraction / automation of data mining operations
– Interface to existing analysis and data mining tools



76

Performance Data Mining (PerfExplorer)

• Performance knowledge discovery framework
– Data mining analysis applied to parallel performance data

– comparative, clustering, correlation, dimension reduction, …
– Use the existing TAU infrastructure

– TAU performance profiles, PerfDMF
– Client-server based system architecture

• Technology integration
– Java API and toolkit for portability
– PerfDMF
– WEKA data mining package
– JFreeChart for visualization, vector output (EPS, SVG)



77

PerfExplorer: Regression Testing



78

PerfExplorer: Exclusive Time for Events (2007) 



79

PerfExplorer: Limiting Events (> 3% ), Oct 2007



80

PerfExplorer - Analysis Methods

• Data summaries, distributions, scatter plots

• Clustering
– k-means
– Hierarchical

• Correlation analysis

• Dimension reduction
– PCA
– Random linear projection
– Thresholds

• Comparative analysis

• Data management views



81

PerfExplorer - Cluster Analysis (sPPM) 



82

PerfExplorer - Cluster Analysis

• Four significant events automatically selected (from 16K 
processors)

• Clusters and correlations are visible



83

PerfExplorer - Correlation Analysis (Flash)

• Describes strength and direction of  a linear relationship 
between two variables (events) in the data



84

PerfExplorer - Correlation Analysis (Flash)

• -0.995 indicates strong, 
negative relationship

• As CALC_CUT_
BLOCK_CONTRIBUTIO
NS() increases in 
execution time, 
MPI_Barrier() decreases



85

PerfExplorer - Comparative Analysis

• Relative speedup, efficiency
– total runtime, by event, one event, by phase

• Breakdown of total runtime

• Group fraction of total runtime

• Correlating events to total runtime

• Timesteps per second

• Performance Evaluation Research Center (PERC)
– PERC tools study (led by ORNL, Pat Worley)
– In-depth performance analysis of select applications
– Evaluation performance analysis requirements
– Test tool functionality and ease of use



86

PerfExplorer - Interface

Select experiments 
and trials of interest

Data organized in application, 
experiment, trial structure
(will allow arbitrary in future)

Experiment
metadata



87

PerfExplorer - Interface

Select analysis



88

PerfExplorer - Relative Efficiency Plots



89

PerfExplorer - Relative Efficiency by Routine



90

PerfExplorer - Relative Speedup



91

PerfExplorer - Timesteps Per Second



92

PerfExplorer - Relative Efficiency



93

PerfExplorer - Relative Speedup by Event



94

PerfExplorer - Runtime Breakdown



95

B3-gtc

PerfExplorer - Timesteps per Second for GYRO

• Cray X1 is the fastest to solution
– In all 3 tests

• FFT (nl2) improves time
– B3-gtc only

• TeraGrid faster than p690
– For B1-std?

• All plots generated automatically

B1-std

B2-cy B3-gtc

TeraGrid



96

PerfExplorer - Relative Efficiency (B1-std)

• By experiment (B1-std)
– Total runtime (Cheetah (red))

• By event for one experiment
– Coll_tr (blue) is significant

• By experiment for one event
– Shows how Coll_tr behaves for all 

experiments

16 processor
base case

Cheetah Coll_tr



97

PerfExplorer - Runtime Breakdown



98

Group % of Total

Communication grows 
to

over 60% of total 
runtime

At each timestep, 230 messages 
between

all boundaries: MPI_Bcast = 26%,
MPI_Wait = 25% of total for N=1024



99

TAU Integration with IDEs

• High performance software development environments
– Tools may be complicated to use
– Interfaces and mechanisms differ between platforms / OS

• Integrated development environments
– Consistent development environment
– Numerous enhancements to development process
– Standard in industrial software development

• Integrated performance analysis
– Tools limited to single platform or programming language
– Rarely compatible with 3rd  party analysis tools
– Little or no support for parallel projects



100

TAU and Eclipse

• Provide an interface for configuring TAU’s automatic instrumentation within 
Eclipse’s build system

• Manage runtime configuration settings and environment variables for 
execution of TAU instrumented programs

C/C++/Fortran
Project in Eclipse

Add or modify
an Eclipse build

configuration w/ TAU

Temporary copy
of instrumented code

Compilation/linking
with TAU libraries

TAU instrumented
libraries

Program
execution

Performance
data

Program
output



101

TAU and Eclipse

 PerfDMF



102

Choosing PAPI Counters with TAU  in Eclipse 

% /projects/tau/eclipse/eclipse



103

TAU Performance System Status 

• Computing platforms (selected)
– IBM SP/pSeries/BGL/Cell PPE, SGI Altix/Origin, Cray T3E/SV-

1/X1/XT3, HP (Compaq) SC (Tru64), Sun, Linux clusters (IA-32/64, 
Alpha, PPC, PA-RISC, Power, Opteron), Apple (G4/5, OS X), Hitachi 
SR8000, NEC SX Series, Windows …

• Programming languages
– C, C++, Fortran 77/90/95, HPF, Java, Python

• Thread libraries (selected)
– pthreads, OpenMP, SGI sproc, Java,Windows, Charm++

• Compilers (selected)
– Intel, PGI, GNU, Fujitsu, Sun, PathScale, SGI, Cray, IBM, HP, NEC, 

Absoft, Lahey, Nagware, ...



104

More Information

• PAPI References:
– PAPI documentation page available from the PAPI website:
     http://icl.cs.utk.edu/papi/

• TAU References:
– TAU Users Guide and papers available from the TAU website: http://tau.uoregon.edu/

• VAMPIR References
– VAMPIR-NG website
    http://www.vampir-ng.de/

• Scalasca/KOJAK References
– Scalasca documentation page
    http://www.scalasca.org/

• Eclipse PTP References
– Documentation available from the Eclipse PTP website:
    http://www.eclipse.org/ptp/



105

Acknowledgements

• HPCMP DoD PET Program

• Department of Energy
– Office of Science
– NNSA/ASC Trilabs (SNL, LLNL, LANL)

• National Science Foundation

• University of Tennessee
– David Cronk, Shirley Moore
– Daniel Terpstra
– Joseph Thomas

• University of Oregon
– Allen D. Malony, A. Morris, K. Huck,
     W. Spear

• TU Dresden
– Holger Brunst, Andreas Knupfer
– Wolfgang Nagel

• Research Centre Juelich, Germany
– Bernd Mohr
– Felix Wolf


	Parallel Performance Evaluation  With TAU
	TAU Performance System® Project
	What is TAU?
	Performance Optimization Cycle
	Steps of Performance Evaluation
	Parallel Performance Properties
	Performance Analysis Questions
	TAU Parallel Performance System Goals
	Using TAU: A brief Introduction
	Using TAU
	TAU Measurement Configuration – Examples
	TAU_SETUP: A GUI for Installing TAU
	Slide 13
	TAU’s MPI Wrapper Interposition Library
	Runtime MPI Shared Library Instrumentation
	-PROFILE Configuration Option 
	Profiling
	Inclusive and Exclusive Profiles
	ParaProf Main Window
	-PAPI Configuration Option
	-PROFILECALLPATH Configuration Option
	Slide 22
	Profile Measurement – Three Flavors
	-DEPTHLIMIT Configuration Option 
	-COMPENSATE Configuration Option 
	-TRACE Configuration Option 
	Tracing Analysis and Visualization
	Trace Formats
	-PROFILEPARAM Configuration Option
	Workload Characterization
	Slide 31
	Slide 32
	Memory Profiling in TAU
	Memory Profiling in TAU (Atomic events)
	Detecting Memory Leaks in C/C++
	Memory Leak Detection
	TAU Timers and Phases
	Performance Dynamics: Phase-Based Profiling
	TAU_COMPILER Commandline Options
	TAU_COMPILER Options
	Compiling Fortran Codes with TAU 
	Optimization of Program Instrumentation
	ParaProf: Creating Selective Instrumentation File
	Choosing Rules for Excluding Routines
	Selective Instrumentation File
	Slide 46
	Slide 47
	Instrumentation of OpenMP Constructs
	OpenMP API Instrumentation
	Dynamic Instrumentation 
	Virtual Machine Performance Instrumentation
	Generate a Python Profile
	Python Instrumentation: SciPy
	Critical issues
	Performance Evaluation Alternatives
	Profiling / Tracing Comparison
	TAU Performance System Interfaces
	Building Bridges to Other Tools: TAU
	ParaProf  – Manager Window
	Performance Database: Storage of MetaData
	ParaProf Main Window (Lammps)
	ParaProf – Flat Profile (Miranda)
	ParaProf – 3D Full Profile Bar Plot (Flash)
	ParaProf Bar Plot (Zoom in/out +/-)
	ParaProf – Callpath Profile (Flash)
	ParaProf – Callgraph Zoomed (Flash)
	ParaProf - Thread Statistics Table (GSI)
	ParaProf – 3D Scatterplot (SWEEP3D CUBE)
	Vampir – Trace Zoomed (S3D)
	Jumpshot
	Slide 71
	PerfDMF: Performance Data Mgmt. Framework
	Using Performance Database (PerfDMF)
	PerfDMF and the TAU Portal
	Performance Data Mining (Objectives)
	Performance Data Mining (PerfExplorer)
	PerfExplorer: Regression Testing
	PerfExplorer: Exclusive Time for Events (2007) 
	PerfExplorer: Limiting Events (> 3% ), Oct 2007
	PerfExplorer - Analysis Methods
	PerfExplorer - Cluster Analysis (sPPM) 
	Slide 82
	PerfExplorer - Correlation Analysis (Flash)
	Slide 84
	PerfExplorer - Comparative Analysis
	PerfExplorer - Interface
	Slide 87
	PerfExplorer - Relative Efficiency Plots
	PerfExplorer - Relative Efficiency by Routine
	PerfExplorer - Relative Speedup
	PerfExplorer - Timesteps Per Second
	PerfExplorer - Relative Efficiency
	PerfExplorer - Relative Speedup by Event
	PerfExplorer - Runtime Breakdown
	PerfExplorer - Timesteps per Second for GYRO
	PerfExplorer - Relative Efficiency (B1-std)
	Slide 97
	Group % of Total
	TAU Integration with IDEs
	TAU and Eclipse
	Slide 101
	Choosing PAPI Counters with TAU  in Eclipse 
	TAU Performance System Status 
	More Information
	Acknowledgements

