
The Upcoming PAPI 5.0 Release

Vince Weaver

vweaver1@eecs.utk.edu

CScADS Performance Tools for Extreme-scale Computing

27 June 2012

PAPI 5.0 has many changes

Most of the changes involve component support

• Some break the ABI (expected)

• Some break the CDI (component interface)

• Some break the API (we try our best to avoid this)

1

Overhaul of the CDI — .cmp info

• OS-specific fields separated out (itimer, os version, etc.)

• papi hwd[0]->cmp info turned into papi os info

• CPU specific fields (such as cntr IEAR events,

cntr DEAR events) removed

• Names standardized away from CVS (“linux-net” not

$Id: linux-net.c,v 1.11 2012/02/13 17:09:51 terpstra Exp $

• Added short name, description, disabled, disabled reason,

component type

2

Overhaul of the CDI — papi vector t

• Move OS specific papi vector t functions to

papi os vector t:

get real cycles, get real usec, get virt cycles,

get virt usec, update shlib info, get system info,

get memory info, and get dmem info.

• Add get real nsec, get virt nsec to allow ns for

archs that support it (before it was just calc from usec)

• Remove Bipartite Map Functions

• Add ntv code to info

3

Removal of the 16-Component limit

How PAPI 4.x worked:

31 0

PAPI Event

PAPI_PRESET_MASK

PAPI_NATIVE_MASK

15 711

EVENT

25

UMASKCOMPONENT

4

Removal of the 16-Component limit

New lookup method:

Preset
Native

0 31

0x4000 0003

Component Internal ID

5 2

To the

component

5

Removal of the 16-Component limit

New interfaces:

int PAPI_get_event_component(int EventCode);

PAPI_COMPONENT_INDEX () /* compatibility macro */

int PAPI_enum_cmp_event(int *EventCode , int cid , int modifier);

int PAPI_get_component_index(char *name);

6

Removal of the 16-Component limit

Slowdown due to new code:

zero native_avail overflow_all all_native
0.0

0.5

1.0

1.5

T
im

e
(s

ec
on

ds
)

Slowdown due to Removal of 16 Component Limit

4.2.1
4.4
4.9 before
4.9 after

7

New Interfaces — Named Events

Allow operating on events without having to lookup

eventcode first:
int PAPI_add_named_event(int EventSet , char *EventName);

int PAPI_remove_named_event(int EventSet , char *EventName);

int PAPI_query_named_event(char *EventName);

8

New Interfaces — Disabling Components

int PAPI disable component(int cidx);

int cidx , result;

cidx = PAPI_get_component_index("example");

if (cidx >=0) {

result = PAPI_disable_component(cidx);

if (result == PAPI_OK)

printf("The example component is disabled\n");

}

/* ... */

PAPI_library_init ();

9

Enhanced Event Support

Kluge, Hackenberg, Nagel. Collecting Distributed

Performance Data with Dataheap

• data type — UINT64, INT64, FP64

• units — string

• location — core, cpu, package, uncore

• timescope — since start, since last, until next, point

• update type, update frequency

10

Enhanced Attribute Enumeration

| UNHALTED_CORE_CYCLES

| Count core clock cycles whenever the

| clock signal on the specific core is

| running (not halted)

| :e=0 edge level (may require c>=1)

| :i=0 invert

| :c=0 counter-mask in range [0-255]

| :u=0 monitor at user level

| :k=0 monitor at kernel level

11

PAPI-V

• virtualized and virtual vendor string fields in

hw info t

• VMware component — pseudo-perf counters and

vmGuestLib

• Stealtime component — lets you know if your VM was

scheduled out

• Virtualized counters work in new KVM and new VMware

12

CPU frequency support

• PAPI makes various assumptions about MHz

(specifically, in PAPI get real cycles())

• Get it from

/sys/devices/system/cpu/cpu0/cpufreq/cpuinfo min freq

rather than /proc/cpuinfo

• Add minimum mhz and maximum mhz to hw info t

• Still no turbo-boost support

13

Locking

• Can enable POSIX pthread mutexes

• Can use Valgrind race-detection tools

14

New Architectures/Platforms

Most of the hard work is done by libpfm4.

• FreeBSD support improved

• BlueGene/Q support (really 4.4)

• Intel SandyBridge, Interlagos support still new

• ARM Cortex A8, A9 also still new

• Intel Ivy Bridge

• Intel Cedar View Atoms

15

Updated Components

• coretemp — temperatures, voltages, fan readings

• cuda — NVIDIA GPU events

• example — simple test events

• infiniband — infiniband stats

• lmsensors — temperature/fan readings

• lustre — info from the lustre filesystem

• mx — myrinet stats

• net — generic Linux network stats

16

New Components

• appio — I/O stats

• bgpm — various BG/Q modules

• nvml — power readings for NVIDIA cards

• rapl — power/energy estimates for Intel SandyBridge

• stealtime — stealtime from inside of KVM

• vmware — VM stats, pseudo-performance counters

17

New Components for BG/Q

1. Processor Unit — A2 Core: 24 counters / 269 events

2. L2 Unit — 6 counters per L2 Memory Slice / 32 events

3. I/O Unit — 43 counters

4. Network Unit — 5D-Torus network, 66 counters / 31

events

5. Compute Node Kernel Unit — software counters

collected by the kernel / 29 events

18

RAPL Component

• Running Average Power Limit

• Part of an infrastructure to allow setting custom per-

package hardware enforced power limits

• User Accessible Energy/Power readings are a bonus

feature of the interface

19

How RAPL Works

• RAPL is not an analog power meter

• RAPL uses a software power model, running on a helper

controller on the main chip package

• Energy is estimated using various hardware performance

counters, temperature, leakage models and I/O models

• The model is used for CPU throttling and turbo-boost,

but the values are also exposed to users via a model-

specific register (MSR)

20

Available RAPL Readings

• PACKAGE ENERGY: total energy used by entire package

• PP0 ENERGY: energy used by “power plane 0” which

includes all cores and caches

• PP1 ENERGY: on original Sandybridge this includes the

on-chip Intel GPU

• DRAM ENERGY: on Sandybridge EP this measures DRAM

energy usage. It is unclear whether this is just the

interface or if it includes all power used by all the

DIMMs too
21

RAPL Measurement Accuracy

• Intel Documentation indicates Energy readings are

updated roughly every millisecond (1kHz)

• Rotem at al. show results match actual hardware

Rotem et al. (IEEE Micro, Mar/Apr 2012)

22

RAPL Accuracy, Continued

• The hardware also reports minimum measurement

quanta. This can vary among processor releases. On

our Sandybridge EP machine all Energy measurements

are in multiples of 15.2nJ

• Power and Energy can vary between identical packages

on a system, even when running identical workloads. It

is unclear whether this is due to process variation during

manufacturing or else a calibration issue.

23

RAPL PAPI Interface

• Access to RAPL data requires reading a CPU MSR

register. This requires operating system support

• Linux currently has no driver and likely won’t for the

near future

• Linux does support an “MSR” driver. Given proper read

permissions, MSRs can be accessed via /dev/cpu/*/msr

• PAPI uses the “MSR” driver to gather RAPL values

24

RAPL Power Plot

10 20 30 40
Time (seconds)

0

50

100

150

A
ve

ra
ge

 P
ow

er
 (

W
at

ts
)

PLASMA Cholesky Factorization N=30,000 threads=16

DRAM Package 0
DRAM Package 1

PP0 Package 0
PP0 Package 1

Total Package 0
Total Package 1

Measured on SandyBridge EP

25

RAPL Energy Plot

10 20 30 40
Time (seconds)

0

1000

2000

3000

4000

T
ot

al
 E

ne
rg

y
(J

ou
le

s)

Cholesky Factorization N=30,000 threads=16

PLASMA Package 0
PLASMA Package 1
mkl Package 0
mkl Package 1

Measured on SandyBridge EP

26

NVML

• Recent NVIDIA GPUs support reading power via the

NVIDIA Management Library (NVML)

• On Fermi C2075 GPUs it has milliwatt resolution within

±5W and is updated at roughly 60Hz

• The power reported is that for the entire board, including

GPU and memory

27

NVML Power Graph

0 1 2
Time (seconds)

0

50

100

150

A
ve

ra
ge

 P
ow

er
 (

W
at

ts
)

MAGMA LU 10,000, Nvidia Fermi C2075

28

Future Work

• New perf event features: rdpmc, uncore

• Finer-grained user/kernel support

• Per-process vs system-wide measurements

• AMD fam15h Application Power Management

• SNB/IvyBridge FP OPS events

• Improved attribute enumeration

• Better error message if privileged event

• Enhanced sampling interfaces

29

Questions

30

