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PAPI 5.0 has many changes

Most of the changes involve component support

• Some break the ABI (expected)

• Some break the CDI (component interface)

• Some break the API (we try our best to avoid this)
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Overhaul of the CDI — .cmp info

• OS-specific fields separated out (itimer, os version, etc.)

• papi hwd[0]->cmp info turned into papi os info

• CPU specific fields (such as cntr IEAR events,

cntr DEAR events) removed

• Names standardized away from CVS (“linux-net” not

$Id: linux-net.c,v 1.11 2012/02/13 17:09:51 terpstra Exp $

• Added short name, description, disabled, disabled reason,

component type
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Overhaul of the CDI — papi vector t

• Move OS specific papi vector t functions to

papi os vector t:

get real cycles, get real usec, get virt cycles,

get virt usec, update shlib info, get system info,

get memory info, and get dmem info.

• Add get real nsec, get virt nsec to allow ns for

archs that support it (before it was just calc from usec)

• Remove Bipartite Map Functions

• Add ntv code to info
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Removal of the 16-Component limit

How PAPI 4.x worked:
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Removal of the 16-Component limit

New lookup method:
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Removal of the 16-Component limit

New interfaces:

int PAPI_get_event_component(int EventCode );

PAPI_COMPONENT_INDEX () /* compatibility macro */

int PAPI_enum_cmp_event(int *EventCode , int cid , int modifier );

int PAPI_get_component_index(char *name);
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Removal of the 16-Component limit

Slowdown due to new code:
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New Interfaces — Named Events

Allow operating on events without having to lookup

eventcode first:
int PAPI_add_named_event(int EventSet , char *EventName );

int PAPI_remove_named_event(int EventSet , char *EventName );

int PAPI_query_named_event(char *EventName );

8



New Interfaces — Disabling Components

int PAPI disable component( int cidx );

int cidx , result;

cidx = PAPI_get_component_index("example");

if (cidx >=0) {

result = PAPI_disable_component(cidx);

if (result == PAPI_OK)

printf("The example component is disabled\n");

}

/* ... */

PAPI_library_init ();
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Enhanced Event Support

Kluge, Hackenberg, Nagel. Collecting Distributed

Performance Data with Dataheap

• data type — UINT64, INT64, FP64

• units — string

• location — core, cpu, package, uncore

• timescope — since start, since last, until next, point

• update type, update frequency
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Enhanced Attribute Enumeration

| UNHALTED_CORE_CYCLES

| Count core clock cycles whenever the

| clock signal on the specific core is

| running (not halted)

| :e=0 edge level (may require c>=1)

| :i=0 invert

| :c=0 counter-mask in range [0-255]

| :u=0 monitor at user level

| :k=0 monitor at kernel level
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PAPI-V

• virtualized and virtual vendor string fields in

hw info t

• VMware component — pseudo-perf counters and

vmGuestLib

• Stealtime component — lets you know if your VM was

scheduled out

• Virtualized counters work in new KVM and new VMware
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CPU frequency support

• PAPI makes various assumptions about MHz

(specifically, in PAPI get real cycles())

• Get it from

/sys/devices/system/cpu/cpu0/cpufreq/cpuinfo min freq

rather than /proc/cpuinfo

• Add minimum mhz and maximum mhz to hw info t

• Still no turbo-boost support
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Locking

• Can enable POSIX pthread mutexes

• Can use Valgrind race-detection tools
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New Architectures/Platforms

Most of the hard work is done by libpfm4.

• FreeBSD support improved

• BlueGene/Q support (really 4.4)

• Intel SandyBridge, Interlagos support still new

• ARM Cortex A8, A9 also still new

• Intel Ivy Bridge

• Intel Cedar View Atoms
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Updated Components

• coretemp — temperatures, voltages, fan readings

• cuda — NVIDIA GPU events

• example — simple test events

• infiniband — infiniband stats

• lmsensors — temperature/fan readings

• lustre — info from the lustre filesystem

• mx — myrinet stats

• net — generic Linux network stats
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New Components

• appio — I/O stats

• bgpm — various BG/Q modules

• nvml — power readings for NVIDIA cards

• rapl — power/energy estimates for Intel SandyBridge

• stealtime — stealtime from inside of KVM

• vmware — VM stats, pseudo-performance counters

17



New Components for BG/Q

1. Processor Unit — A2 Core: 24 counters / 269 events

2. L2 Unit — 6 counters per L2 Memory Slice / 32 events

3. I/O Unit — 43 counters

4. Network Unit — 5D-Torus network, 66 counters / 31

events

5. Compute Node Kernel Unit — software counters

collected by the kernel / 29 events
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RAPL Component

• Running Average Power Limit

• Part of an infrastructure to allow setting custom per-

package hardware enforced power limits

• User Accessible Energy/Power readings are a bonus

feature of the interface

19



How RAPL Works

• RAPL is not an analog power meter

• RAPL uses a software power model, running on a helper

controller on the main chip package

• Energy is estimated using various hardware performance

counters, temperature, leakage models and I/O models

• The model is used for CPU throttling and turbo-boost,

but the values are also exposed to users via a model-

specific register (MSR)
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Available RAPL Readings

• PACKAGE ENERGY: total energy used by entire package

• PP0 ENERGY: energy used by “power plane 0” which

includes all cores and caches

• PP1 ENERGY: on original Sandybridge this includes the

on-chip Intel GPU

• DRAM ENERGY: on Sandybridge EP this measures DRAM

energy usage. It is unclear whether this is just the

interface or if it includes all power used by all the

DIMMs too
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RAPL Measurement Accuracy

• Intel Documentation indicates Energy readings are

updated roughly every millisecond (1kHz)

• Rotem at al. show results match actual hardware

Rotem et al. (IEEE Micro, Mar/Apr 2012)
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RAPL Accuracy, Continued

• The hardware also reports minimum measurement

quanta. This can vary among processor releases. On

our Sandybridge EP machine all Energy measurements

are in multiples of 15.2nJ

• Power and Energy can vary between identical packages

on a system, even when running identical workloads. It

is unclear whether this is due to process variation during

manufacturing or else a calibration issue.
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RAPL PAPI Interface

• Access to RAPL data requires reading a CPU MSR

register. This requires operating system support

• Linux currently has no driver and likely won’t for the

near future

• Linux does support an “MSR” driver. Given proper read

permissions, MSRs can be accessed via /dev/cpu/*/msr

• PAPI uses the “MSR” driver to gather RAPL values
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RAPL Power Plot
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RAPL Energy Plot
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NVML

• Recent NVIDIA GPUs support reading power via the

NVIDIA Management Library (NVML)

• On Fermi C2075 GPUs it has milliwatt resolution within

±5W and is updated at roughly 60Hz

• The power reported is that for the entire board, including

GPU and memory
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NVML Power Graph

0 1 2
Time (seconds)

0

50

100

150

A
ve

ra
ge

 P
ow

er
 (

W
at

ts
)

MAGMA LU 10,000, Nvidia Fermi C2075

28



Future Work

• New perf event features: rdpmc, uncore

• Finer-grained user/kernel support

• Per-process vs system-wide measurements

• AMD fam15h Application Power Management

• SNB/IvyBridge FP OPS events

• Improved attribute enumeration

• Better error message if privileged event

• Enhanced sampling interfaces
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Questions
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