
GPU

Ben de Waal
Summer 2008

Agenda

Quick Roadmap

A few observations

© NVIDIA Corporation 20072

A few observations

And a few positions

GPUs are Great at Graphics

© NVIDIA Corporation 20073
Hellgate: London © 2005-2006 Flagship

Studios, Inc.
Licensed by NAMCO BANDAI Games

America, Inc.

Crysis © 2006 Crytek / Electronic Arts

Full Spectrum Warrior: Ten Hammers
© 2006 Pandemic Studios, LLC. All rights

reserved.
© 2006 THQ Inc. All rights reserved.

GPUs are Great at Other Things!

An expanding trend over the last few years

Successful applications in many areas

Computational geometry, biology, chemistry, physics,
finance…

Computer vision

© NVIDIA Corporation 20074

Computer vision

Database management

Signal processing

Physics simulation

…

dim3 DimGrid(100, 50); // 5000 thread blocks

dim3 DimBlock(4, 8, 8); // 256 threads per block
size_t SharedMemBytes = 64; // 64 bytes of shared memory
KernelFunc<<< DimGrid, DimBlock, SharedMemBytes >>>(...);

Standard C ProgrammingNew Architecture for Computing

Parall
el

Data
Cache

P’ = P + V * t

P’ = P + V * t

P’ = P + V * t

Thread
Execution
Manager

ALU

Control

ALU

Control

ALU

Control

ALU

DRAM

P1, V1

P2, V2

P3, V3

P4, V4

P5, V5

Shared

Data

Parall
el

Data
Cache

P’ = P + V * t

P’ = P + V * t

P’ = P + V * t

Thread
Execution
Manager

ALU

Control

ALU

Control

ALU

Control

ALU

DRAM

P1, V1

P2, V2

P3, V3

P4, V4

P5, V5

Shared

Data

C for the GPU
CUDA & GPU Computing

© NVIDIA Corporation 20075

New ApplicationsUnprecedented Performance

P’ = P + V * tP’ = P + V * t

70M CUDA GPUs

Heterogeneous Computing

CPUCPUCPUCPU

GPUGPUGPUGPU60K CUDA Developers

© NVIDIA Corporation 20076

Oil &
Gas

Finance Medical Biophysics Numerics Audio Video Imaging

GeForce GTX 280 Parallel Computing
Architecture

Thread Scheduler

© NVIDIA Corporation 20077

Atomic Tex L2 Atomic Tex L2 Atomic Tex L2 Atomic Tex L2

Memory Memory Memory Memory Memory Memory Memory Memory

CUDA Terminology:
Grids, Blocks, and Threads

CPU

Kernel 1

GPU device
Grid 1

Block
(0, 0)

Block
(1, 0)

Block
(2, 0)

Block
(0, 1)

Block
(1, 1)

Block
(2, 1)Sequence

Programmer partitions problem
into a sequence of kernels.

A kernel executes as a grid of
thread blocks

A thread block is an array of

© NVIDIA Corporation 20078

Kernel 2

Grid 2

Block (1, 1)

Thread

(0, 1)

Thread

(1, 1)

Thread

(2, 1)

Thread

(3, 1)

Thread

(4, 1)

Thread

(0, 2)

Thread

(1, 2)

Thread

(2, 2)

Thread

(3, 2)

Thread

(4, 2)

Thread

(0, 0)

Thread

(1, 0)

Thread

(2, 0)

Thread

(3, 0)

Thread

(4, 0)

A thread block is an array of
threads that can cooperate

Threads within the same block
synchronize and share data in
Shared Memory

Execute thread blocks on
multithreaded multiprocessor SM
cores

CUDA Programming Model:
Thread Memory Spaces

Each kernel thread can read:

Thread Id per thread

Block Id per block

Constants per grid

Texture per grid

Thread Id, Block Id

RegistersKernel
Thread
Program
Written in C

Local Memory

© NVIDIA Corporation 20079

Each thread can read and write:

Registers per thread

Local memory per thread

Shared memory per block

Global memory per grid

Host CPU can read and write:

Constants per grid

Texture per grid

Global memory per grid

Constants

Texture

Global Memory

Shared
Memory

Written in C

Trends and Observations

Cores generally doubles per family
Low end has substantially less cores than high end
Ranges from 8 to 100s

Memory hierarchy will likely remain

Evolving

© NVIDIA Corporation 200710

Evolving
Processor expressiveness
Easy of programming
Reducing performance cliffs
Hierarchical scheduling & partitioning
Nested parallelism

Heterogeneous computing
Algorithms vary
Run them on the most suitable processor

Autotuning – Super Languages

One Possible extreme outcome:

People program in an expressive enough language that maps
fairly cleanly onto the installed base of processors

Programmer driven

Just very simple machine translation needed

© NVIDIA Corporation 200711

As an example, CUDA’s programming paradigm also scales
with CPU cores

Data parallel

Memory hierarchy is explicit

i.e. It reflects an architectural superset of several different
designs

Heterogeneous Tuning Space

Cache hit architectures

Like traditional CPUs

Thread driven execution

NUMA / Cost of global coherence

Cache cliffs (hits, misses, aliasing, etc.)

Scalar / Vector (SIMD)

© NVIDIA Corporation 200712

Scalar / Vector (SIMD)

Cache miss architectures

Like many GPUs

Data driven execution

Wide range of cores

NUMA / sometimes no global coherence

Memory technology exposure (banks, etc.)

Vector / Scalar

Autotuning – Really Smart Code

Another extreme outcome:

Genetic programming style autotuners

Evolves optimal code for any (local) architecture

Potential to find a diamond in the state of Texas

Somehow still generalize

© NVIDIA Corporation 200713

Good news: It’s parallelizable!

Detour: Circuit Synthesis

Similar Problem

Remarkable success

Remarkable exploitation

Genetic Programming III, Koza, John R, et al, 1999

Chapter 25

Autotuning

Both extremes seem to be too good to be true

We’ll probably end up in the middle

Programmer will do some of the parameterization

Identify blocks

© NVIDIA Corporation 200714

Identify blocks

Memory tradeoffs

Serial code

Autotuners explores smaller space

Composition is key

Tuners likely need access to complete code base

Need powerful/expressive enough IL that isnt source

Allow investment

Client side must be smart upfront, or binary ships its

© NVIDIA Corporation 200715

Client side must be smart upfront, or binary ships its
own brains

Smart client

can have IL logic for local system, supplied perhaps by IHVs

Smart binary

more flexible but may not understand the target

Seems desirable for IL to include high level expression

Compiling CUDA

NVCC

C/C++ CUDA
Application

CPU Code

© NVIDIA Corporation 200716

PTX to Target

Translator

GPU … GPU

Target code

PTX CodeVirtual

Target

Virtual to Target ISA Translation

PTX to Target

Translator

PTX Code

ld.global.v4.f32 {$f1,$f3,$f5,$f7},[$r9+0];
mad.f32 $f1,$f5,$f3,$f1;

Parallel Thread eXecution (PTX)

Virtual Machine and ISA

Distribution format for applications

Install-time translation

“fat binary” caches target-specific

© NVIDIA Corporation 200717

Translator

GPU … GPU

Target code

0x103c8009 0x0fffffff
0xd00e0609 0xa0c00780
0x100c8009 0x00000003
0x21000409 0x07800780

“fat binary” caches target-specific
versions

Target-specific translation optimizes
for:

ISA diffences

Resource allocation

Performance

Interesting Architectures

Do more on GPUs

Millions out there

Compact, well suited for server farms

© NVIDIA Corporation 200718

Plenty of tuning parameters

A very hard problem

Represents many issues many-core CPUs are going to

Its like the future – Today

Interesting Architectures

Heterogeneous Tuning

Figuring out how to divide work appropriately among
asymmetrical cores

E.g. partitioning a problem to map serial code onto an
aggressive out-of-order mono-core CPU plus parallel

© NVIDIA Corporation 200719

aggressive out-of-order mono-core CPU plus parallel
parts of problem onto a plenty core GPU.

Questions?

© NVIDIA Corporation 200720

Ben de Waal

ben@nvidia.com

