
1PSC 2007 Kathy Yelick

Partitioned Global Address Space
Languages

for Multilevel Parallelism

Katherine Yelick

U.C. Berkeley and Lawrence Berkeley National Lab

http://titanium.cs.berkeley.edu
http://upc.lbl.gov

Kathy Yelick, 2PSC 2007

HPC Programming: Where are We?

• IBM SP at NERSC/LBNL has as 6K processors
• There were 6K transistors in the Intel 8080a implementation

• BG/L at LLNL has 64K processor cores
• There were 68K transistors in the MC68000

• A BG/Q system with 1.5M processors may have more
processors than there are logic gates per processor

• HPC Applications developers today write programs that
are as complex as describing where every single bit must
move between the 6,000 transistors of the 8080a

• We need to at least get to “assembly language” level

Slide source: Horst Simon and John Shalf, LBNL/NERSC

Kathy Yelick, 3PSC 2007

100

1000

10000

100000

1E+06

1E+07

1E+08

1E+09

1E+10

1E+11

1E+12

1993 1996 1999 2002 2005 2008 2011 2014

SUM
#1
#500

Petaflop with ~1M Cores By 2008
1Eflop/s

100 Pflop/s

10 Pflop/s

1 Pflop/s

100 Tflop/s

10 Tflops/s

1 Tflop/s

100 Gflop/s

10 Gflop/s

1 Gflop/s

10 MFlop/s

1 PFlop system in 2008

Slide source Horst Simon, LBNL

Data from top500.org

6-8 years

Common
by 2015?

Kathy Yelick, 4PSC 2007

100

1000

10000

100000

1E+06

1E+07

1E+08

1E+09

1E+10

1E+11

1E+12

1993 1996 1999 2002 2005 2008 2011 2014

SUM

#1

#500

Desktop

Petaflop Desktop By 2036
1Eflop/s

100 Pflop/s

10 Pflop/s

1 Pflop/s

100 Tflop/s

10 Tflops/s

1 Tflop/s

100 Gflop/s

10 Gflop/s

1 Gflop/s

10 MFlop/s

1 PFlop system in 2008

Slide source Horst Simon, LBNL

6-8 years

8-10 years

Kathy Yelick, 5PSC 2007

Predictions
• Parallelism will explode

• Number of cores will double every 12-24 months
• Petaflop (million processor) machines will be common

in HPC by 2015 (all top 500 machines will have this)
• Performance will become a software problem

• Parallelism and locality are key will be concerns for
many programmers – not just an HPC problem

• A new programming model will emerge for
multicore programming
• Can one language cover laptop to top500 space?

• Locality will continue to be important
• On-chip to off-chip as well as node to node

6PSC 2007 Kathy Yelick

Partitioned Global Address Space
(PGAS) Languages:

What, Why, and How

Kathy Yelick, 7PSC 2007

Partitioned Global Address Space
• Global address space: any thread/process may directly

read/write data allocated by another
• Partitioned: data is designated as local or global

G
lo

ba
l a

dd
re

ss
 s

pa
ce x: 1

y:

l: l: l:

g: g: g:

x: 5
y:

x: 7
y: 0

p0 p1 pn

By default:
• Object heaps

are shared
• Program

stacks are
private

• SPMD languages: UPC, CAF, and Titanium
• All three use an SPMD execution model
• Emphasis in this talk on UPC and Titanium (based on Java)

• Dynamic languages: X10, Fortress, Chapel and Charm++

Kathy Yelick, 8PSC 2007

PGAS Language Overview

• Many common concepts, although specifics differ
• Consistent with base language, e.g., Titanium is strongly typed

• Both private and shared data
• int x[10]; and shared int y[10];

• Support for distributed data structures
• Distributed arrays; local and global pointers/references

• One-sided shared-memory communication
• Simple assignment statements: x[i] = y[i]; or t = *p;
• Bulk operations: memcpy in UPC, array ops in Titanium and CAF

• Synchronization
• Global barriers, locks, memory fences

• Collective Communication, IO libraries, etc.

Kathy Yelick, 9PSC 2007

PGAS Language for Multicore
• PGAS languages are a good fit to shared

memory machines
• Global address space implemented as reads/writes
• Current UPC and Titanium implementation uses threads
• Working on System V shared memory for UPC

• “Competition” on shared memory is OpenMP
• PGAS has locality information that may be important when

we get to >100 cores per chip
• Also may be exploited for processor with explicit local

store rather than cache, e.g., Cell processor
• SPMD model in current PGAS languages is both an

advantage (for performance) and constraining

Kathy Yelick, 10PSC 2007

PGAS on Hierarchical Machines

• Single global address space used across cores, SMPs, cluster/MPP
networks

• Within an SMP or multicore, threads with direct load/store
instructions are used

• Between nodes, one-sided communication (GASNet) is used

Global address space
Arrays, Trees, Meshes,…

Kathy Yelick, 11PSC 2007

PGAS Languages on Clusters:
One-Sided vs Two-Sided Communication

• Two-sided requires information from remote host application
• Messages that arrive before receive create performance/memory problems
• Message ordering preserved for semantics; limits bandwidth
• Matching send to receives adds latency on many networks

• A one-sided put/get encodes all information needed for delivery
• No tag/message matching or ordering
• Message can be handled directly by a network interface with RDMA support
• Avoid interrupting the CPU or recording data from

address

message id

data payload

data payload

one-sided put message

two-sided message

network
interface

memory

host
CPU

Joint work with Dan Bonachea

Kathy Yelick, 12PSC 2007

One-Sided vs. Two-Sided: Practice

0

100

200

300

400

500

600

700

800

900

10 100 1,000 10,000 100,000 1,000,000

Size (bytes)

B
an

dw
id

th
 (M

B
/s

)

GASNet put (nonblock)"
MPI Flood

Relative BW (GASNet/MPI)

1.0
1.2
1.4
1.6
1.8
2.0
2.2
2.4

10 1000 100000 10000000

Size (bytes)

• InfiniBand: GASNet vapi-conduit and OSU MVAPICH 0.9.5
• Half power point (N ½) differs by one order of magnitude
• This is not a criticism of the implementation!

Joint work with Paul Hargrove and Dan Bonachea

(u
p

is
 g

oo
d) NERSC Jacquard

machine with
Opteron
processors

Kathy Yelick, 13PSC 2007

GASNet: Portability and High-Performance
(d

ow
n

is
 g

oo
d)

GASNet better for latency across machines

8-byte Roundtrip Latency

14.6

6.6

22.1

9.6

6.6

4.5

9.5

18.5

24.2

13.5

17.8

8.3

0

5

10

15

20

25

Elan3/Alpha Elan4/IA64 Myrinet/x86 IB/G5 IB/Opteron SP/Fed

R
ou

nd
tr

ip
 L

at
en

cy
 (u

se
c)

MPI ping-pong
GASNet put+sync

Joint work with UPC Group; GASNet design by Dan Bonachea

Kathy Yelick, 14PSC 2007

(u
p

is
 g

oo
d)

GASNet at least as high (comparable) for large messages

Flood Bandwidth for 2MB messages

1504

630

244

857
225

610

1490799
255

858 228
795

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

Elan3/Alpha Elan4/IA64 Myrinet/x86 IB/G5 IB/Opteron SP/Fed

Pe
rc

en
t H

W
 p

ea
k

(B
W

 in
 M

B
)

MPI
GASNet

GASNet: Portability and High-Performance

Joint work with UPC Group; GASNet design by Dan Bonachea

Kathy Yelick, 15PSC 2007

(u
p

is
 g

oo
d)

GASNet excels at mid-range sizes: important for overlap

GASNet: Portability and High-Performance
Flood Bandwidth for 4KB messages

547

420

190

702

152

252

750

714231

763
223

679

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

Elan3/Alpha Elan4/IA64 Myrinet/x86 IB/G5 IB/Opteron SP/Fed

Pe
rc

en
t H

W
 p

ea
k

MPI
GASNet

Joint work with UPC Group; GASNet design by Dan Bonachea

Kathy Yelick, 16PSC 2007

Communication Strategies for 3D FFT

Joint work with Chris Bell, Rajesh Nishtala, Dan Bonachea

chunk = all rows with same destination

pencil = 1 row

• Three approaches:
• Chunk:

• Wait for 2nd dim FFTs to finish
• Minimize # messages

• Slab:
• Wait for chunk of rows destined

for 1 proc to finish
• Overlap with computation

• Pencil:
• Send each row as it completes
• Maximize overlap and
• Match natural layout slab = all rows in a single plane with

same destination

Kathy Yelick, 17PSC 2007

NAS FT Variants Performance Summary

• Slab is always best for MPI; small message cost too high
• Pencil is always best for UPC; more overlap

0

200

400

600

800

1000

Myrinet 64
InfiniBand 256

Elan3 256
Elan3 512

Elan4 256
Elan4 512

M
Fl

op
s

pe
r

Th
re

ad

Best MFlop rates for all NAS FT Benchmark versions

Best NAS Fortran/MPI
Best MPI
Best UPC

0

100

200

300

400

500

600

700

800

900

1000

1100

Myrinet 64

InfiniBand 256
Elan3 256

Elan3 512
Elan4 256

Elan4 512

M
F

lo
ps

 p
er

 T
hr

ea
d

Best NAS Fortran/MPI

Best MPI (always Slabs)

Best UPC (always Pencils)

.5 Tflops

Myrinet Infiniband Elan3 Elan3 Elan4 Elan4
#procs 64 256 256 512 256 512

M
Fl

op
s

pe
r T

hr
ea

d

Chunk (NAS FT with FFTW)
Best MPI (always slabs)
Best UPC (always pencils)

Kathy Yelick, 18PSC 2007

Automating Overlap
• UPC philosophy: language is expressive enough

to allow programmers to hand-optimize
• Compiler can improve productivity by making

simpler (less optimized) programs run faster
• Three communication optimizations:

• Overlap and coalescing of fine-grained accesses
• Overlap of operations that use bulk put/get
• Scheduling (reduce contention through pipelining) of bulk

operations
• Dynamic optimizations for irregular (a[b[i]]) accesses

(implemented in Titanium rather than UPC)

Kathy Yelick, 19PSC 2007

Optimizing Fine-Grained Programs

0
0.5

1
1.5

2
2.5

3
3.5

4
4.5

Q
ua

dr
ic

s

M
yr

in
et

In
fin

ib
an

d

Q
ua

dr
ic

s

M
yr

in
et

In
fin

ib
an

d

Q
ua

dr
ic

s

M
yr

in
et

In
fin

ib
an

d

Q
ua

dr
ic

s

M
yr

in
et

In
fin

ib
an

d

Q
ua

dr
ic

s

M
yr

in
et

In
fin

ib
an

d

Sobel Psearch Mcop Gups Barnes

Sp
ee

du
p

Coalesce
SplitPhase
Address

Kathy Yelick, 20PSC 2007

Overlapping Bulk Communication

0

0.5

1

1.5

2

2.5

BT CG FT
FT

-pe
nc

ils IS MG SP

GUPS

CFD
sp

ee
du

p
(u

no
pt

 /
op

t) Manual

Automatic

64-processor Infiniband cluster

Kathy Yelick, 21PSC 2007

Optimizations in Titanium
• Communication optimizations are done
• Analysis in Titanium is easier than in UPC:

• Strong typing helps with alias analysis
• Single analysis identifies global execution points that all

threads will reach “together” (in same synch phase)
• I.e., a barrier would be legal here

• Allows global optimizations
• Convert remote reads to remote writes by other side
• Perform global runtime analysis (inspector-executor)
• Especially useful for sparse matrix code with indirection:

y [i] = … a[b[i]]

Joint work with Jimmy Su

Kathy Yelick, 22PSC 2007

Global Communication Optimizations
Itanium/Myrinet Speedup Comparison

1

1.1

1.2

1.3

1.4

1.5

1.6

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22

matrix number

sp
ee

du
p

average speedup maximum speedup

Sparse Matrix-Vector Multiply on Itanium/Myrinet
Speedup of Titanium over Aztec Library

• Titanium code is written with fine-grained remote accesses
• Compile identifies legal “inspector” points
• Runtime selects (pack, bounding box) per machine / matrix / thread pair

Joint work with Jimmy Su

23PSC 2007 Kathy Yelick

PGAS Productivity

Kathy Yelick, 24PSC 2007

Coding Challenges: Block-Structured AMR
• Adaptive Mesh Refinement

(AMR) is challenging
• Irregular data accesses and

control from boundaries
• Mixed global/local view is useful

AMR Titanium work by Tong Wen and Philip Colella

Titanium AMR benchmark available

Kathy Yelick, 25PSC 2007

Arrays in a Global Address Space
• Key features of Titanium arrays

• Generality: indices may start/end and any point
• Domain calculus allow for slicing, subarray, transpose and other

operations without data copies

• Use domain calculus to identify ghosts and iterate:
foreach (p in gridA.shrink(1).domain()) ...

• Array copies automatically work on intersection
gridB.copy(gridA.shrink(1));

gridA gridB

“restricted” (non-ghost)
cells

ghost cells

intersection (copied area)

Joint work with Titanium group

Useful in grid
computations
including AMR

Kathy Yelick, 26PSC 2007

Languages Support Helps Productivity

C++/Fortran/MPI AMR
• Chombo package from LBNL
• Bulk-synchronous comm:

• Pack boundary data between procs
• All optimizations done by programmer

Titanium AMR
• Entirely in Titanium
• Finer-grained communication

• No explicit pack/unpack code
• Automated in runtime system

• General approach
• Language allow programmer

optimizations
• Compiler/runtime does some

automatically

Work by Tong Wen and Philip Colella; Communication optimizations joint with Jimmy Su

0

5000

10000

15000

20000

25000

30000

Titanium C++/F/MPI
(Chombo)

Li
ne

s
of

 C
od

e

AMRElliptic

AMRTools

Util

Grid

AMR

Array

Kathy Yelick, 27PSC 2007

Performance of Titanium AMR
Speedup

0
10
20
30
40
50
60
70
80

16 28 36 56 112

#procs

sp
ee

du
p

Ti Chombo

• Serial: Titanium is within a few % of C++/F; sometimes faster!
• Parallel: Titanium scaling is comparable with generic optimizations

- optimizations (SMP-aware) that are not in MPI code
- additional optimizations (namely overlap) not yet implemented

Comparable
parallel
performance

Joint work with Tong Wen, Jimmy Su, Phil Colella

Kathy Yelick, 28PSC 2007

Particle/Mesh Method: Heart Simulation
• Elastic structures in an incompressible fluid.

• Blood flow, clotting, inner ear, embryo growth, …
• Complicated parallelization

• Particle/Mesh method, but “Particles” connected
into materials (1D or 2D structures)

• Communication patterns irregular between particles
(structures) and mesh (fluid)

Joint work with Ed Givelberg, Armando Solar-Lezama, Charlie Peskin, Dave McQueen

2D Dirac Delta Function

Code Size in Lines

8000
Fortran

4000
Titanium

Note: Fortran code is not parallel

Kathy Yelick, 29PSC 2007

Immersed Boundary Method Performance

Hand-Optimized
(planes, 2004)

0
10

20
30

40
50

1 2 4 8 16 32 64 128
procs

tim
e

(s
ec

s)

256 3̂ on Power3/Colony
512 3̂ on Power3/Colony
512 2̂x256 on Pent4/Myrinet

Automatically Optimized
(sphere, 2006)

0

0.5

1

1.5

2

1 2 4 8 16 32 64 128

procs

tim
e

(s
ec

s)

128^3 on Power4/Federation
256^3 on Power4/Federation

Joint work with Ed Givelberg, Armando Solar-Lezama, Charlie Peskin, Dave McQueen

30PSC 2007 Kathy Yelick

PGAS Portability

Kathy Yelick, 31PSC 2007

Titanium and Berkeley UPC Compiler

Compiler-generated C code

UPC Runtime system

GASNet Communication System

Network Hardware

Platform-
independent

Network-
independent

Language-
independent

Compiler-
independent

UPC Code UPC
Compiler

Kathy Yelick, 32PSC 2007

Titanium and Berkeley UPC Compiler

Compiler-generated C code

UPC Runtime system

GASNet Communication System

Network Hardware

Platform-
independent

Network-
independent

Language-
independent

Compiler-
independent

Titanium Code
Titanium
Compiler

Kathy Yelick, 33PSC 2007

Berkeley UPC Compiler Portability
Portable, high-performance open-source UPC compiler

Fully UPC spec 1.2 compliant
Includes UPC collectives and UPC-I/O

Many extensions for performance and programmability
Non-blocking and non-contiguous memcpy functions
Semaphores and signaling put
Fine granularity timers
Value-based collectives
Atomic memory operations
Hierarchical layout query
Call to/from MPI (C++, F, etc.)

Entirely free & open source
Binary installer for Windows/Mac/UNIX
http://upc.lbl.gov/download/
Source code download too
Remote compile server simplifies installation

Kathy Yelick, 34PSC 2007

Titanium Compiler Portability
Portable, high-performance open-source Titanium compiler

Includes value-based collectives and bulk I/O
Support for checkpoint

Many extensions for performance and programmability
Non-blocking array copy functions
Array copies do strided acceses
Hierarchical layout query
Call to MPI (C++, F, etc.)

Entirely free & open source
http://titanium.cs.berkeley.edu/download/

Kathy Yelick, 35PSC 2007

Berkeley UPC and Titanium Portability
Platform-independent generated code supports:

Network Hardware (supported through GASNet):
SMP, Myrinet, Quadrics Elan 3/4, Infiniband, IBM LAPI, Dolphin
SCI, MPI, Ethernet, X1/Altix shmem (UPC only), Cray XT3 Portals
(new, UPC only, Titanium soon)
BlueGene via MPI (working on native version)

Operating Systems:
Linux, Mac OSX, Windows/Cygwin, AIX, Solaris, IRIX, HPUX,
FreeBSD, NetBSD, Tru64, Unicos, Catamount, CNL (new)

CPU / System Architecture:
Opteron, Itanium, x86, Athlon, Blue Gene, Cray XT3, X1, T3E,
Alpha, PowerPC, MIPS, PA-RISC, SPARC, SX-6

UPC-to-C Translator runs on Linux, Tru64, OSX, AIX
Opteron, x86, Itanium, PowerPC and Alpha
Seamless cross-compilation for other systems

using Berkeley internet translate server or your own

36PSC 2007 Kathy Yelick

Recent Work on Extending the
Language Model

(ongoing)

Kathy Yelick, 37PSC 2007

Beyond the SPMD Model: Mixed Parallelism
• UPC and Titanium uses a static threads (SPMD)

programming model
• General, performance-transparent
• Criticized as “local view” rather than “global view”

• “for all my array elements”, or “for all my blocks”

• Adding extension for data parallelism
• Based on collective model:

• Threads gang together to do data parallel operations
• Or (from a different perspective) single data-parallel thread can

split into P threads when needed
• Compiler proves that threads are aligned at barriers,

reductions and other collective points
• Already used for global optimizations: read writes transform
• Adding support for other data parallel operations

Joint work with Parry Husbands

Kathy Yelick, 38PSC 2007

Beyond the SPMD Model: Dynamic Threads
• UPC uses a static threads (SPMD) programming model

• No dynamic load balancing built-in, although some examples
(Delaunay mesh generation) of building it on top

• Berkeley UPC model extends basic memory semantics (remote
read/write) with active messages

• AM have limited functionality (no messages except acks) to avoid
deadlock in the network

• A more dynamic runtime would have many uses
• Application load imbalance, OS noise, fault tolerance

• Two extremes are well-studied
• Dynamic load balancing (e.g., random stealing) without locality
• Static parallelism (with threads = processors) with locality

• Charm++ has virtualized processes with locality
• How much “unnecessary” parallelism can it support?

Joint work with Parry Husbands

Kathy Yelick, 39PSC 2007

Dense and Sparse Matrix Factorization
Blocks 2D
block-cyclic
distributed

Panel factorizations
involve communication
for pivoting Matrix-

matrix
multiplication
used here.
Can be coalesced

C
om

pleted part of L

A(i,j) A(i,k)

A(j,i) A(j,k)

Trailing matrix
to be updated

Panel being factored

Joint work with Parry Husbands

Completed part of U

Kathy Yelick, 40PSC 2007

Parallel Tasks in LU

• Theoretical and practical problem: Memory deadlock
• Not enough memory for all tasks at once. (Each update needs two

temporary blocks, a green and blue, to run.)
• If updates are scheduled too soon, you will run out of memory
• If updates are scheduled too late, critical path will be delayed.

some edges omitted

Kathy Yelick, 41PSC 2007

LU in UPC + Multithreading
• UPC uses a static threads (SPMD) programming model

• Multithreading used to mask latency and to mask dependence delays
• Remote enqueue used to spawn remote threads
• Three levels of threads:

• UPC threads (data layout, each runs an event scheduling loop)
• Multithreaded BLAS (boost efficiency)
• User level (non-preemptive) threads with explicit yield

• No dynamic load balancing, but lots of remote invocation
• Layout is fixed (blocked/cyclic) and tuned for block size

• Same framework being used for sparse Cholesky
• Event-driven sparse ChoHard problems
• Block size tuning (tedious) for both locality and granularity
• Task prioritization (ensure critical path performance)
• Resource management can deadlock memory allocator if not careful
• Collectives (asynchronous reductions for pivoting) need high priority

Joint work with Parry Husbands

Kathy Yelick, 42PSC 2007

UPC HP Linpack Performance

X1 UPC vs. MPI/HPL

0

200

400

600

800

1000

1200

1400

60 X1/64 X1/128

G
Fl

op
/s

MPI/HPL

UPC

Opteron
cluster
UPC vs.
MPI/HPL

0

50

100

150

200

Opt/64

G
Fl

op
/s

MPI/HPL

UPC

Altix UPC.
Vs.

MPI/HPL

0

20

40

60

80

100

120

140

160

Alt/32
G

Fl
op

/s

MPI/HPL

UPC

•Faster than ScaLAPACK due to less synchronization
•Comparable to MPI HPL (numbers from HPCC database)
•Large scaling of UPC code on Itanium/Quadrics (Thunder)

• 2.2 TFlops on 512p and 4.4 TFlops on 1024p
Joint work with Parry Husbands

UPC vs.
ScaLAPACK

0

20

40

60

80

2x4 pr oc gr i d 4x4 pr oc gr i d

G
Fl

op
s

ScaLAPACK

UPC

Kathy Yelick, 43PSC 2007

Conclusions and Future Plans
•Current PGAS Languages

• Good fit for shared and distributed memory
• Good control over locality
• High productivity, especially in higher level Titanium

•Role of optimizing compiler
• Language provides enough control for hand-

optimizations (heroic compilers not needed)
• Analysis and optimizations for productivity
• Goal: allow for algorithm experimentation by users

•Need to break out of strict SPMD model
• Load imbalance, OS noise, faults tolerance, etc.
• Encapsulate LU techniques as language extension

