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HPC Programming: Where are We?

• IBM SP at NERSC/LBNL has as 6K processors
• There were 6K transistors in the Intel 8080a implementation 

• BG/L at LLNL has 64K processor cores
• There were 68K transistors in the MC68000 

• A BG/Q system with 1.5M processors may have more 
processors than there are logic gates per processor

• HPC Applications developers today write programs that 
are as complex as describing where every single bit must 
move between the 6,000 transistors of the 8080a

• We need to at least get to “assembly language” level

Slide source: Horst Simon and John Shalf, LBNL/NERSC
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Predictions
• Parallelism will explode

• Number of cores will double every 12-24 months
• Petaflop (million processor) machines will be common 

in HPC by 2015 (all top 500 machines will have this)
• Performance will become a software problem

• Parallelism and locality are key will be concerns for 
many programmers – not just an HPC problem

• A new programming model will emerge for 
multicore programming
• Can one language cover laptop to top500 space?

• Locality will continue to be important
• On-chip to off-chip as well as node to node
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Partitioned Global Address Space 
(PGAS) Languages:

What, Why, and How
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Partitioned Global Address Space
• Global address space: any thread/process may directly 

read/write data allocated by another
• Partitioned: data is designated as local or global
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• SPMD languages: UPC, CAF, and Titanium 
• All three use an SPMD execution model 
• Emphasis in this talk on UPC and Titanium (based on Java)

• Dynamic languages: X10, Fortress, Chapel and Charm++
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PGAS Language Overview

• Many common concepts, although specifics differ
• Consistent with base language, e.g., Titanium is strongly typed

• Both private and shared data
• int x[10];      and shared int y[10]; 

• Support for distributed data structures
• Distributed arrays; local and global pointers/references

• One-sided shared-memory communication 
• Simple assignment statements: x[i] = y[i]; or t = *p;
• Bulk operations: memcpy in UPC, array ops in Titanium and CAF

• Synchronization
• Global barriers, locks, memory fences

• Collective Communication, IO libraries, etc.
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PGAS Language for Multicore
• PGAS languages are a good fit to shared 

memory machines
• Global address space implemented as reads/writes
• Current UPC and Titanium implementation uses threads
• Working on System V shared memory for UPC

• “Competition” on shared memory is OpenMP
• PGAS has locality information that may be important when 

we get to >100 cores per chip
• Also may be exploited for processor with explicit local 

store rather than cache, e.g., Cell processor
• SPMD model in current PGAS languages is both an 

advantage (for performance) and constraining
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PGAS on Hierarchical Machines

• Single global address space used across cores, SMPs, cluster/MPP 
networks

• Within an SMP or multicore, threads with direct load/store 
instructions are used

• Between nodes, one-sided communication (GASNet) is used

Global address space
Arrays, Trees, Meshes,…
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PGAS Languages on Clusters: 
One-Sided vs Two-Sided Communication

• Two-sided requires information from remote host application
• Messages that arrive before receive create performance/memory problems
• Message ordering preserved for semantics; limits bandwidth
• Matching send to receives adds latency on many networks

• A one-sided put/get encodes all information needed for delivery
• No tag/message matching or ordering
• Message can be handled directly by a network interface with RDMA support
• Avoid interrupting the CPU or recording data from

address

message id

data payload

data payload

one-sided put message

two-sided message

network
interface

memory

host
CPU

Joint work with Dan Bonachea
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One-Sided vs. Two-Sided: Practice
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Joint work with Paul Hargrove and Dan Bonachea
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GASNet: Portability and High-Performance
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Joint work with UPC Group; GASNet design by Dan Bonachea
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GASNet at least as high (comparable) for large messages
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GASNet: Portability and High-Performance

Joint work with UPC Group; GASNet design by Dan Bonachea
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GASNet excels at mid-range sizes: important for overlap

GASNet: Portability and High-Performance
Flood Bandwidth for 4KB messages
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Joint work with UPC Group; GASNet design by Dan Bonachea



Kathy Yelick,  16PSC 2007                       

Communication Strategies for 3D FFT

Joint work with Chris Bell, Rajesh Nishtala, Dan Bonachea

chunk = all rows with same destination

pencil = 1 row

• Three approaches:
• Chunk:

• Wait for 2nd dim FFTs to finish
• Minimize # messages

• Slab:
• Wait for chunk of rows destined 

for 1 proc to finish
• Overlap with computation

• Pencil:
• Send each row as it completes
• Maximize overlap and
• Match natural layout slab = all rows in a single plane with 

same destination
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NAS FT Variants Performance Summary

• Slab is always best for MPI; small message cost too high
• Pencil is always best for UPC; more overlap
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Automating Overlap
• UPC philosophy: language is expressive enough 

to allow programmers to hand-optimize
• Compiler can improve productivity by making 

simpler (less optimized) programs run faster
• Three communication optimizations:

• Overlap and coalescing of fine-grained accesses
• Overlap of operations that use bulk put/get
• Scheduling (reduce contention through pipelining) of bulk 

operations
• Dynamic optimizations for irregular (a[b[i]]) accesses 

(implemented in Titanium rather than UPC)
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Optimizing Fine-Grained Programs
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Overlapping Bulk Communication
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Optimizations in Titanium
• Communication optimizations are done 
• Analysis in Titanium is easier than in UPC:

• Strong typing helps with alias analysis
• Single analysis identifies global execution points that all 

threads will reach “together” (in same synch phase)
• I.e., a barrier would be legal here

• Allows global optimizations
• Convert remote reads to remote writes by other side
• Perform global runtime analysis (inspector-executor)
• Especially useful for sparse matrix code with indirection:

y [i] = … a[b[i]] 

Joint work with Jimmy Su
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Global Communication Optimizations
Itanium/Myrinet Speedup Comparison
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• Titanium code is written with fine-grained remote accesses
• Compile identifies legal “inspector” points
• Runtime selects (pack, bounding box) per machine / matrix / thread pair

Joint work with Jimmy Su
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PGAS Productivity
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Coding Challenges: Block-Structured AMR
• Adaptive Mesh Refinement 

(AMR) is challenging
• Irregular data accesses and 

control from boundaries
• Mixed global/local view is useful 

AMR Titanium work by Tong Wen and Philip Colella

Titanium AMR benchmark available
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Arrays in a Global Address Space
• Key features of Titanium arrays

• Generality: indices may start/end and any point
• Domain calculus allow for slicing, subarray, transpose and other 

operations without data copies

• Use domain calculus to identify ghosts and iterate:
foreach (p in gridA.shrink(1).domain()) ...

• Array copies automatically work on intersection
gridB.copy(gridA.shrink(1));

gridA gridB

“restricted” (non-ghost) 
cells 

ghost cells 

intersection (copied area)

Joint work with Titanium group

Useful in grid 
computations 
including AMR
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Languages Support Helps Productivity

C++/Fortran/MPI AMR
• Chombo package from LBNL
• Bulk-synchronous comm:

• Pack boundary data between procs
• All optimizations done by programmer

Titanium AMR
• Entirely in Titanium
• Finer-grained communication

• No explicit pack/unpack code
• Automated in runtime system

• General approach
• Language allow programmer 

optimizations
• Compiler/runtime does some 

automatically

Work by Tong Wen and Philip Colella; Communication optimizations joint with Jimmy Su
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Performance of Titanium AMR
Speedup
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• Serial: Titanium is within a few % of C++/F; sometimes faster!
• Parallel: Titanium scaling is comparable with generic optimizations

- optimizations (SMP-aware) that are not in MPI code
- additional optimizations (namely overlap) not yet implemented

Comparable 
parallel 
performance

Joint work with Tong Wen, Jimmy Su, Phil Colella
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Particle/Mesh Method: Heart Simulation
• Elastic structures in an incompressible fluid.

• Blood flow, clotting, inner ear, embryo growth, …
• Complicated parallelization

• Particle/Mesh method, but  “Particles” connected 
into materials (1D or 2D structures)

• Communication patterns irregular between particles 
(structures) and mesh (fluid)

Joint work with Ed Givelberg, Armando Solar-Lezama, Charlie Peskin, Dave McQueen

2D Dirac Delta Function

Code Size in Lines

8000
Fortran

4000
Titanium

Note: Fortran code is not parallel
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Immersed Boundary Method Performance

Hand-Optimized 
(planes, 2004)

0
10

20
30

40
50

1 2 4 8 16 32 64 128
procs

tim
e 

(s
ec

s)

256 3̂ on Power3/Colony
512 3̂ on Power3/Colony
512 2̂x256 on Pent4/Myrinet

Automatically Optimized 
(sphere, 2006)

0

0.5

1

1.5

2

1 2 4 8 16 32 64 128

procs

tim
e 

(s
ec

s)

128^3 on Power4/Federation
256^3 on Power4/Federation

Joint work with Ed Givelberg, Armando Solar-Lezama, Charlie Peskin, Dave McQueen
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PGAS Portability
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Titanium and Berkeley UPC Compiler 

Compiler-generated C code

UPC Runtime system

GASNet Communication System

Network Hardware

Platform-
independent

Network-
independent

Language-
independent

Compiler-
independent

UPC Code UPC
Compiler
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Titanium and Berkeley UPC Compiler 

Compiler-generated C code

UPC Runtime system

GASNet Communication System

Network Hardware

Platform-
independent

Network-
independent

Language-
independent

Compiler-
independent

Titanium Code
Titanium
Compiler
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Berkeley UPC Compiler Portability
Portable, high-performance open-source UPC compiler

Fully UPC spec 1.2 compliant
Includes UPC collectives and UPC-I/O

Many extensions for performance and programmability
Non-blocking and non-contiguous memcpy functions
Semaphores and signaling put
Fine granularity timers
Value-based collectives
Atomic memory operations
Hierarchical layout query
Call to/from MPI (C++, F, etc.)

Entirely free & open source
Binary installer for Windows/Mac/UNIX 
http://upc.lbl.gov/download/
Source code download too
Remote compile server simplifies installation
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Titanium Compiler Portability
Portable, high-performance open-source Titanium compiler

Includes value-based collectives and bulk I/O
Support for checkpoint

Many extensions for performance and programmability
Non-blocking array copy functions
Array copies do strided acceses
Hierarchical layout query
Call to MPI (C++, F, etc.)

Entirely free & open source
http://titanium.cs.berkeley.edu/download/



Kathy Yelick,  35PSC 2007                       

Berkeley UPC and Titanium Portability
Platform-independent generated code supports:

Network Hardware (supported through GASNet): 
SMP, Myrinet, Quadrics Elan 3/4, Infiniband, IBM LAPI, Dolphin 
SCI, MPI, Ethernet, X1/Altix shmem (UPC only), Cray XT3 Portals 
(new, UPC only, Titanium soon)
BlueGene via MPI (working on native version)

Operating Systems:
Linux, Mac OSX, Windows/Cygwin, AIX, Solaris, IRIX, HPUX, 
FreeBSD, NetBSD, Tru64, Unicos, Catamount, CNL (new)

CPU / System Architecture:
Opteron, Itanium, x86, Athlon, Blue Gene, Cray XT3,  X1, T3E, 
Alpha, PowerPC, MIPS, PA-RISC, SPARC, SX-6

UPC-to-C Translator runs on Linux, Tru64, OSX, AIX
Opteron, x86, Itanium, PowerPC and Alpha
Seamless cross-compilation for other systems

using Berkeley internet translate server or your own
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Recent Work on Extending the 
Language Model

(ongoing)
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Beyond the SPMD Model: Mixed Parallelism
• UPC and Titanium uses a static threads (SPMD) 

programming model
• General, performance-transparent 
• Criticized as “local view” rather than “global view”

• “for all my array elements”, or “for all my blocks”

• Adding extension for data parallelism
• Based on collective model:

• Threads gang together to do data parallel operations
• Or (from a different perspective) single data-parallel thread can 

split into P threads when needed
• Compiler proves that threads are aligned at barriers, 

reductions and other collective points
• Already used for global optimizations: read writes transform
• Adding support for other data parallel operations

Joint work with Parry Husbands
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Beyond the SPMD Model: Dynamic Threads
• UPC uses a static threads (SPMD) programming model

• No dynamic load balancing built-in, although some examples 
(Delaunay mesh generation) of building it on top

• Berkeley UPC model extends basic memory semantics (remote 
read/write) with active messages

• AM have limited functionality (no messages except acks) to avoid 
deadlock in the network

• A more dynamic runtime would have many uses
• Application load imbalance, OS noise, fault tolerance

• Two extremes are well-studied
• Dynamic load balancing (e.g., random stealing) without locality
• Static parallelism (with threads = processors) with locality

• Charm++ has virtualized processes with locality
• How much “unnecessary” parallelism can it support?

Joint work with Parry Husbands
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Dense and Sparse Matrix Factorization
Blocks 2D
block-cyclic
distributed

Panel factorizations
involve communication
for pivoting Matrix-

matrix
multiplication
used here.
Can be coalesced

C
om

pleted part of L

A(i,j) A(i,k)

A(j,i) A(j,k)

Trailing matrix
to be updated

Panel being factored

Joint work with Parry Husbands

Completed part of U
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Parallel Tasks in LU

• Theoretical and practical problem: Memory deadlock
• Not enough memory for all tasks at once.  (Each update needs two

temporary blocks, a green and blue, to run.)
• If updates are scheduled too soon, you will run out of memory
• If updates are scheduled too late, critical path will be delayed.

some edges omitted
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LU in UPC + Multithreading
• UPC uses a static threads (SPMD) programming model

• Multithreading used to mask latency and to mask dependence delays
• Remote enqueue used to spawn remote threads
• Three levels of threads: 

• UPC threads (data layout, each runs an event scheduling loop)
• Multithreaded BLAS (boost efficiency)
• User level (non-preemptive) threads with explicit yield

• No dynamic load balancing, but lots of remote invocation
• Layout is fixed (blocked/cyclic) and tuned for block size

• Same framework being used for sparse Cholesky
• Event-driven sparse ChoHard problems
• Block size tuning (tedious) for both locality and granularity
• Task prioritization (ensure critical path performance) 
• Resource management can deadlock memory allocator if not careful
• Collectives (asynchronous reductions for pivoting) need high priority

Joint work with Parry Husbands
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UPC HP Linpack Performance

X1 UPC vs. MPI/HPL
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•Faster than ScaLAPACK due to less synchronization
•Comparable to MPI HPL (numbers from HPCC database)
•Large scaling of UPC code on Itanium/Quadrics (Thunder) 

• 2.2 TFlops on 512p  and 4.4 TFlops on 1024p
Joint work with Parry Husbands
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Conclusions and Future Plans
•Current PGAS Languages

• Good fit for shared and distributed memory
• Good control over locality
• High productivity, especially in higher level Titanium

•Role of optimizing compiler
• Language provides enough control for hand-

optimizations (heroic compilers not needed)
• Analysis and optimizations for productivity
• Goal: allow for algorithm experimentation by users

•Need to break out of strict SPMD model 
• Load imbalance, OS noise, faults tolerance, etc.
• Encapsulate LU techniques as language extension


