Overview of ORNL Leadership Computing Facility and Usage

CScADS Summer Workshop Leadership Computing Platforms, Extreme-scale Applications, and Performance Strategies July 23, 2012

Oak Ridge National Laboratory

By Hai Ah Nam Scientific Computing Group Oak Ridge Leadership Computing Facility National Center for Computational Sciences Division

Oak Ridge Leadership Computing Facility Mission

- The OLCF is a DOE Office of Science National User Facility whose mission is to enable breakthrough science by:
- Fielding the most powerful capability computers for scientific research,
- Building the required infrastructure to facilitate user access to these computers,
- Selecting a few time-sensitive problems of national importance that can take advantage of these systems,
- And partnering with these teams to deliver breakthrough science.

² OLGF 20

Breakthrough Science at Every Scale

Nuclear Physics

Nazarewicz et al., map the nuclear driplines that mark the borders of nuclear existence, predicting ~7000 bound nuclei, though only ~3000 have been observed. Nature 2012

New Materials

Lopez-Bezanilla et al., discover that boron-nitride monolayers are an ideal dielectric substrate for future nanoelectronic devices constructed with graphene as the active layer

Biofuels

Smith et al., reveal the surface structure of lignin clumps down to 1 angstrom

Design Innovation Ramgen Power Systems accelerates their design of shock wave turbo compressors for carbon capture and sequestration

Biochemistry

Ivanov et al., illuminate how DNA replication continues past a damaged site so a lesion can be repaired later

Turbo Machinery Efficiency

General Electric, for the first time, simulated unsteady flow in turbo machinery, opening new opportunities for design innovation and efficiency improvements.

We have increased system performance by 1,000 times since 2004

Hardware scaled from single-core through dual-core to quad-core and dual-socket , 12-core SMP nodes

- NNSA and DoD have funded much of the basic system architecture research
 - Cray XT based on Sandia Red Storm
 - IBM BG designed with Livermore
 - Cray X1 designed in collaboration with DoD

Scaling applications and system software is the biggest challenge

- DOE SciDAC and NSF PetaApps programs are funding scalable application work, advancing many apps
- DOE-SC and NSF have funded much of the library and applied math as well as tools
- Computational Liaisons key to using deployed systems

Hierarchical Parallelism

- Parallelism on multiple levels
 - MPI parallelism between nodes (or PGAS)
 - On-node, SMP-like parallelism via threads
 - Vector parallelism
 - SSE/AVX on CPUs
 - GPU threaded parallelism
- It doesn't matter if you use GPU-based machines or not
 - GPUs [CUDA, OpenCL, directives]
 - FPUs on Power [xlf, etc.]
 - Cell [SPE]

5 OLCF 20

- SSE/AVX; MIC (Knights Ferry, Knights Corner)[?]

Increasing node-level parallelism and data locality are universally needed

ORNL's "Titan" System

Upgrade of Jaguar from Cray XT5 to XK6

	Titan Specs	
	Compute Nodes	18,688
	Cores (CPU)	299,008
	Login & I/O Nodes	512
)	Memory per node	32 GB + 6 GB
Α	# of Fermi chips (2012)	960
, ,	# of NVIDIA "Kepler" (2013)	14,592
	Total System Memory	688 TB
	Total System Peak Performance	20+ Petaflops
	Cross Section Bandwidths	X=14.4 TB/s Y=11.3 TB/s Z=24.0 TB/s

- AMD Opteron 6274 processors (Interlagos)
- New accelerated node design using NVIDIA
 multi-core accelerators
 - 2011: 960 NVIDIA x2090 "Fermi" GPUs
 - 2012: 14,592 NVIDIA "Kepler" GPUs
- Gemini interconnect
 - 3-D Torus, Globally addressable memory
 - Advanced synchronization features

20+ PFlops peak system performance | 600 TB DDR3 + 88 TB GDDR5 mem

Cray XK6 Compute Node

XK6 Compute Node Characteristics

AMD Opteron 6200 "Interlagos" 16 core processor @ 2.2GHz

Tesla M2090 "Fermi" @ 665 GF with 6GB GDDR5 memory

> Host Memory, 32GB 1600 MHz DDR3

Gemini High Speed Interconnect

Upgradeable to NVIDIA's next generation "Kepler" processor in 2012

Four compute nodes per XK6 blade. 24 blades per rack

In principle, GPUs are easy

- Identify opportunities for acceleration (loops/high flops)
 - Allocate arrays on GPU
 - Move data from host to GPU
 - Launch computer kernel on GPU
 - Move results from GPU to host
 - Deallocate arrays on GPUs

• Optimization problem!

- Exploiting strengths (FLOPS), avoiding weakness (DATA MOVEMENT)
- Identifying acceleration opportunities is not obvious
 - New algorithm
 - Minimize data, flops

 → minimize data movement
 - Multiple levels of parallelism
 - Revisit good coding practices and vector parallelism

Titan (GPU) programming tools (for now)

Compiler Directives (OpenACC)			Low-level GPU Languages			
Cray	Cray PGI HMPP Toolkit* (CAPS)		OpenCL (agnostic)	CUDA C (NVIDIA)	CUDA Fortran (PGI)	

Intended for portability (GPU, MIC, APU, etc.)

OpenACC: Standard for directives to designate areas for GPU kernels

* OpenCL/CUDA converted source provided

Accelerated Libraries**							
Libsci_acc (Cray)	MAGMA (ICL/UT) (GNU)	CULA (EM Photonics)	cuBLAS/ cuSparse (NVIDIA)	Trilinos	Etc, etc.		

** Libraries are based on CUDA

Pei	Debuggers					
CrayPAT / Vampir / Apprentice VampirTrace	TAU	HPCToolkit	CUDA Profiler	Allinea DDT	NVIDIA	gdb

CAAR @ the OLCF Center for Accelerated Application Readiness

• Titan System Goals: Promote application development for highly scalable architectures

Using six representative apps to explore techniques to effectively use highly scalable architectures

CAM-SE

Community Atmospheric Model

Denovo

• 3D neutron transport for nuclear reactors

wl-LSMS

• First principles statistical mechanics of magnetic materials

S3D

Turbulent Combustion model

LAMMPS

Molecular Dynamics

NRDF

Adaptive mesh refinement

Addressing:

- Data locality
- Explicit data management
- Hierarchical parallelism
- Exposing more parallelism through code refactoring and source code directives
- Highly parallel I/O
- Heterogeneous multicore processor architecture

GPUs on Scalable Applications OLCF-3 Early Science Codes

Current performance (ratio) measurements on TitanDev (XK6) vs. XE6

Application	XK6 (w/ GPU) vs. XK6 (w/o GPU)	XK6 (w/ GPU) vs. XE6	Comment
S3D	1.5	1.4	 Hybrid MPI/OpenMP/OpenACC Redesign message passing – overlap 6% of Jaguar workload
Denovo	3.5	3.3	 SWEEP kernel rewritten in C++ & CUDA 2% of Jaguar workload
	6.5	3.2	 Builds with either OpenCL or CUDA 1% of Jaguar workload
WL-LSMS 👹	3.1	1.6	 Accelerated linear algebra libraries 2% of Jaguar workload 2009 Gordon Bell Winner
CAM-SE	2.6	1.5	 Hybrid MPI/OpenMP/CUDA 1% of Jaguar workload

Cray XK6: Fermi GPU plus Interlagos CPU; Cray XE6: Dual Interlagos and no GPU

¹² OLCF 20

13 OLCF 20

Current performance (ratio) measurements on TitanDev (XK6) vs. XE6

Application	XK6 (w/ GPU) vs. XK6 (w/o GPU)	XK6 (w/ GPU) vs. XE6	Comment
NAMD	2.6	1.4	 High-performance molecular dynamics 2% of Jaguar workload
Chroma	8.8	6.1	 High-energy nuclear physics 2% of Jaguar workload
QMCPACK	3.8	3.0	Electronic structure of materialsNew to OLCF, Common to
SPECFEM-3D	4.7	2.5	Seismology2008 Gordon Bell Finalist
GTC	2.5	1.6	 Plasma physics for fusion-energy 2% of Jaguar workload
СР2К	2.8	1.5	 Chemical physics 1% of Jaguar workload

Cray XK6: Fermi GPU plus Interlagos CPU; Cray XE6: Dual Interlagos and no GPU

Two Phase Upgrade Process

- Phase 1: XT5 to XK6 without GPUs
 - Remove all XT5 nodes and replace with XK6 and XIO nodes
 - 16-core processors, 32 GB/node, Gemini
 - 960 nodes (10 cabinets) have NVIDIA Fermi GPUs
 - Users ran on half of system while other half was upgraded
- Add NVIDIA Kepler GPUs
 - Cabinet Mechanical and Electrical upgrades
 - New air plenum bolts on to cabinet to support air flow needed by GPUs
 - Larger fan

- Additional power supply
- New doors 🙂
- Rolling upgrade of node boards
 - Pull board, add 4 Kepler GPUs modules, replace board, test, repeat 3,647 times!
 - Keep most of the system available for users during upgrade

Image courtesy of Cray Inc.

Access to Titan

15 OLCF 20

Provide access to LCFs: More than 2.7 billion core hours awarded in 2012

INCITE Webinar: http://www.doeleadershipcomputing.org/faqs

OLCF Allocation Programs Selecting applications of national importance

¹⁶ OLCF 20

	60% INCITE		30% ALCC		10% Director's Discretionary	
Mission	High-risk, high-payoff science that requires <u>LCF-scale</u> <u>resources*</u>		High-risk, high-payoff science aligned with DOE mission		Strategic LCF goals	
Call	1x/year – (Closes June)		1x/year – (Closes February)		Rolling	
Duration	1-3 years, yearly renewal		1 year		3m,6m,1 year	
Typical Size	30 - 4010M - 100Mprojectscore-hours/yr.		5 - 10 projects	1M – 75M core-hours/yr.	100s of projects	10K – 1M core-hours
Review Process	Scientific Peer-Review	Computational Readiness	Scientific Peer-Review	Computational Readiness	Strategic in feasibility	npact and
Managed By	INCITE management committee (ALCF & OLCF)		DOE Office of Science		LCF management	
Availability	Open to all scientific researchers and organization Capability >20% of cores				nizations	i

OLCF User Demographics

¹⁷ OLCF 20

Leadership Metric & Scheduling

- As a DOE Leadership Computing Facility, the OLCF has a mandate to be used for large, leadership-class (aka capability) jobs.
- To that end, the OLCF implements queue policies that enable large jobs to run in a timely fashion.

Bin	Min Cores	Max Cores	Max Walltime (hours)	Aging Boost (Days)
5	180,000		24.0	15
4	60,000	179,999	24.0	5
3	5,008	59,999	12.0	0
2	2,004	5,007	6.0	0
1	1	2,003	2.0	0

Leadership Usage Metric:

35% of the CPU time used on the system will be accumulated by jobs using 20% or more of the available processors (60,000 cores)

www.olcf.ornl.gov/support/user-guides-policies/jaguar-xk6-user-guide

The OLCF

OLCF Training Programs

• 2012

- January:

- February:

- Titan Workshop
- Electronic Structure Calculation Methods on Accelerators
- March: Performance Analysis Tools
- April: OLCF Spring Training & User's Meeting
- May: GPU Technology Conference, San Jose
- June: Crash Course in Supercomputing
- June August: HPC Fundamentals Series Summer
- October 9: Cray technical Workshop on XK6 Programming
- <u>www.olcf.ornl.gov</u> | <u>help@nccs.gov</u>
- Presentations, webinars available

20 OLGF 20

Questions

Hai Ah Nam namha@ornl.gov

The activities described in this presentation were performed using the resources of the National Center for Computational Sciences at Oak Ridge National Laboratory, which is supported by the Office of Science of the U.S. Department of Energy under Contract No. DE-AC0500OR22725.

²¹ OLCF 20