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ABSTRACT 
Dense LU factorization has a high ratio of computation to 

communication and, as evidenced by the High Performance 

Linpack (HPL) benchmark, this property makes it scale well on 

most parallel machines. Nevertheless, the standard algorithm for 

this problem has non-trivial dependence patterns which limit 

parallelism, and local computations require large matrices in order 

to achieve good single processor performance. We present an 

alternative programming model for this type of problem, which 

combines UPC's global address space with lightweight 

multithreading. We introduce the concept of memory-constrained 

lookahead where the amount of concurrency managed by each 

processor is controlled by the amount of memory available. We 

implement novel techniques for steering the computation to 

optimize for high performance and demonstrate the scalability and 

portability of UPC with Teraflop level performance on some 

machines, comparing favourably to other state-of-the-art MPI 

codes. 

Categories and Subject Descriptors 
D.1.3 [Parallel Programming] 

 

General Terms 
Algorithms, Performance, Languages. 
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1. INTRODUCTION 
Much of scientific computation is organized into a bulk-

synchronous model having distinct phases of communication and 

computation.  In this paper we describe a parallel execution model 

for a problem that is not naturally bulk-synchronous, namely 

matrix factorization.   We start with the UPC language 

[14][11][34], which has one-sided communication via its global 

address space, locality control through the partitioning of the 

address space, and a static parallelism model with barrier 

synchronization which lends itself well to a bulk-synchronous 

style.  We then explore extensions of the basic UPC execution 

model to better support problems such as matrix factorization with 

interesting dependence patterns. 

The long term goal of our project is to develop highly optimized 

matrix factorization routines for both dense and sparse matrices.  

In addition, the UPC community is exploring possible extensions 

to UPC to improve productivity and performance.  In this paper 

we use dense LU factorization, which is simpler than the sparse 

case, but still has nontrivial dependences that lead to many 

possible parallel schedules and some challenges for Partitioned 

Global Address Space (PGAS) languages such as UPC.  In 

addition, the high computational intensity of dense LU 

factorization means that arithmetic unit utilization should be very 

high, and the prevalence of LU performance data across machines 

from benchmark implementations of LU [20][25][33] sets a high 

standard for success.   For an arbitrarily large dense matrix, the 

high computation to communication ratio leads to a computation 

that scales with machine size and processor performance, as long 

as the input matrix is large enough to mask communication, 

memory, and synchronization costs.  For small matrices or for 

sparse ones, the dependencies inherent in the algorithm can result 

in poor scaling due to memory costs, communication overhead, 

synchronization, and load imbalance.   

Two of the most common parallel LU factorization codes for 

distributed memory machines are from the ScaLAPACK library 

[12] and the High Performance Linpack (HPL) benchmark used in 

determining the Top 500 list [33].  Both of these codes are written 

for portability and scalability using the two-sided message passing 

model in MPI [32], and are written to keep the processors 

somewhat synchronized in order to manage the matching of sends 

and receives and the associated buffer space for messages.  The 

ScaLAPACK code synchronizes for each distinct phase of the 

algorithm, while the HPL code allows for a statically determined 

amount of communication and algorithmic overlap.   In this paper 

we present an alternative parallelization strategy for LU based on 

(c) 2007 Association for Computing Machinery. ACM acknowledges 

that this contribution was authored or co-authored by a contractor or 

affiliate of the [U.S.] Government. As such, the Government retains a 

nonexclusive, royalty-free right to publish or reproduce this article, or 

to allow others to do so, for Government purposes only. 

 

SC07 November 10-16, 2007, Reno, Nevada, USA 

(c) 2007 ACM 978-1-59593-764-3/07/0011…$5.00 



the PGAS model in UPC augmented with an event-driven 

multithreaded execution model.  The global address space 

provides for one-sided communication, which decouples data 

transfer from synchronization; the partitioning gives application 

control over data layout; and the multithreading relaxes the static 

(SPMD) model used in UPC.  Our code is designed with latency 

hiding as primary goal, and we explore the programmability and 

performance benefits of UPC’s one-sided communication model, 

coupled with a dynamic parallelism model.  Our experience 

highlights some of the subtle pitfalls of dynamic threading and the 

need for application-level control for thread management, which 

is relevant to the HPCS languages (X10 [13], Fortress [2] and 

Chapel [10]) as well as existing libraries like Charm++  [21] or (if 

augmented with locality control) Cilk [5].  Scheduling decisions 

must be made to balance the needs of parallel progress, memory 

utilization, and cache performance. 

Latency tolerance for both memory and network latencies has 

become increasingly important in high performance algorithm 

design, as latencies have remained relatively stagnant over years 

of tremendous gains in clock speed and bandwidth scaling.  Our 

implementation is designed to respect Little’s Law, which 

quantifies the need for parallelism to mask latency: to run at 

bandwidth rather than latency speeds, sufficient parallelism 

(bandwidth*latency) in the memory and network streams is 

required to keep pipelines full [3].  Current high performance 

implementations, such as HPL and ScaLAPACK, view each task's 

execution as a single thread of control, which unnecessarily 

serializes the computation, and results in ad hoc and restrictive 

solutions to latency hiding.  Rather than designing an algorithm 

for a specific degree of parallelism, we will use a dataflow 

interpretation of the algorithm with a multithreaded 

implementation [28][30] that exposes all available parallelism at 

runtime.   Lewis and Richards [23] used this dataflow approach 

successfully for LU in a shared memory parallel setting on up to 

24 processors, but not in a scalable distributed memory context.  

This work was continued by Kurzak and Dongarra [22] and 

colleagues [8][9] for additional matrix factorizations on multi-

core processors.  A mixed shared/distributed memory code in this 

style was also run on the NASA Columbia machine, using the 

data driven approach within shared memory [29].      

Several challenges arise in using a highly parallel dataflow view 

of the algorithm as we do.  First, because we want to run on 

hundreds or even thousands of processors and across clusters, 

locality is critical.  We use UPC’s global address space to 

statically distribute blocks of the input matrix and build 

scheduling queues for the tasks associated with each block; both 

the matrix blocks and queues are remotely accessed through the 

global address space.  Second, the multithreading support that is 

needed to expose available parallelism can have a significant 

runtime cost; we explore several different strategies for 

implementing fast user-level threads.  Third, while the algorithm 

is highly dynamic, control over task scheduling is critical and 

non-obvious.  For highest performance we use an application-

specific scheduling policy to ensure proper prioritization.  Fourth, 

as with any attempt to expose all available parallelism to the 

runtime layer, memory resources can easily be strained, and 

deadlock may result in a constrained memory environment, 

because tasks that have been allocated may not be able to run until 

other unallocated tasks complete.  We use a novel dependence-

constrained task allocation mechanism to avoid deadlock.  

Finally, we incorporate some of the best-practice optimizations 

from prior work, including recursive algorithms to increase 

granularity and the combining certain tasks to improve local task 

size and thereby boost serial performance.  We found each of 

these optimizations necessary to high performance.  

2. A MULTI-THREADED VIEW OF LU 

2.1 The LU Factorization Algorithm 
The LU factorization algorithm that is most commonly used on 

parallel machines is simply a reorganization of classic Gaussian 

Elimination.  The basic algorithm proceeds row by row, 

attempting to “eliminate” entries below the main diagonal.  

Multiples of row i are subtracted from rows below i in order to 

ensure that the part of column i below the main diagonal becomes 

zero.  To enhance numerical stability pivoting, the swapping of 

rows to place a large value on the diagonal, is performed prior to 

each elimination step.  The steps for a matrix A are1: 

for i = 1 to n-1 

1. find maximum absolute element in column i below the 

diagonal 

2. swap the row of maximum element with row i 

3. scale column i below diagonal by 1/A(i,i) 

L(i,i)=1 

for j = i+1 to n 

   L(j,i)=A(j,i)/A(i,i)  

4. Set row i of U 

for j = i  to n 

  U(i,j)=A(i,j) 

5. Perform a “trailing matrix update”, i.e. update the part 

of the matrix below and to the right of A(i,i) 

for j=i+1 to n 

  for k = i+1 to n 

    A(j,k) = A(j,k)-L(j,i)*U(i,k) 

 

This step can equivalently be expressed as a “rank-one 

update”: 

  A(i+1:n,i+1:n) = A(i+1:n,i+1:n) - 

                                 L(i+1:n,i)*U(i,i+1:n) 

After this process is completed, the solution of Ax=b can be 

obtained by forward and back substitution with L and U.   For 

benchmarking purposes both HPL and our code append b to A as 

an extra column and perform the above operations on this 

augmented matrix.  In this way, only substitution with U is needed 

to find x. 

One can view this algorithm from a dataflow perspective and see 

that there are several dependencies between the first few steps, but 

the update in the last step is both parallel in itself and, if it is 

broken into smaller tasks, the subsequent elimination steps may be 

started as soon as column i+1 is computed.   This view exposes 

extremely fine-grained parallelism, but uses only inefficient 

matrix-vector and vector-vector operations.   

                                                                 

1  Note that the lower triangular part of the input matrix is 

commonly overwritten with L and the upper triangular part with 

U 



The blocked algorithm, schematically depicted in Figure 1, is 

critical to high performance on cache-based and distributed 

memory machines, and emerges when we note that 

mathematically the result stays the same if we replace matrix 

elements by blocks, division by linear solves, and scalar 

multiplication with matrix multiplication.  Pivots are still 

computed (maximums) within a single column, and individual 

rows, not blocks, are swapped during pivoting.  In addition, a 

slight modification is required in the computation of the blocks of 

U.  In this algorithm, blocks of columns referred to as “panels”, 

are first factored (steps 1-3), a number of rows of U are computed 

(step 4), then the trailing matrix is updated (step 5). A more 

detailed treatment of the algorithmic issues can be found in Golub 

and van Loan [16]. 
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Figure 1. Dataflow in LU Factorization.  The computation 

proceeds from left to right, factoring panels then updating 

higher number numbered panels. 

2.2 The Parallel Case 
Load balancing considerations motivate the use of a blocked 

cyclic layout for the parallel algorithm, which is standard in 

distributed memory implementations.  Returning to Figure 1, we 

note that if, for example, the matrix is distributed by block 

columns, as the computation proceeds fewer and fewer processors 

perform useful work (because the factorization proceeds from left 

to right).  In order to keep all the processors busy for as long as 

possible we use a layout such as the one shown in Figure 2 where 

4 processors are logically viewed as a 2x2 processor grid and 

matrix blocks distributed to the processors.   

The bulk of the computation comes from the matrix 

multiplications in the blocked version of step 5, which multiply 

thin rectangular matrices to update the trailing submatrices of the 

original.  Each processor is responsible for updating the blocks it 

owns, including the multiplication of blocks for this update, 

which it generally does not own.  The blocked cyclic layout 

spreads out the work of the multiplication across most of the 

processors, except possibly at the end of the computation, where 

there may not be enough matrix blocks to distribute across the 

entire machine. Figure 2 also reveals the importance of choosing 

the block size, since a block size that it too large will result in 

significant time spent in the beginning or ending phases (the left 

and right edges of the Figure) when some processors are idle. 

 

Figure 2. Block cyclic decomposition with a 2x2 processor 

grid.  The numbers denote the processor owning the respective 

block. 

2.2.1 The Major Operations 
The major operations of the algorithm are blocked versions of the 

steps detailed in Section 2.1.  They sweep through the matrix 

performing: 

1. Panel factorizations encompassing  algorithm steps 1-3. 

2. Updates to U (step 4).  In this step the pivots are applied 

to the rest of the matrix, for pivots are only applied to 

the panel when it is factored. 

3. The trailing matrix updates. 

Note that these operations are carried out in parallel on the 

processors owning the corresponding blocks of the matrix.  They 

can execute concurrently but are, however subject to a few 

constraints, discussed below. 

2.2.2 The Constraints 
The constraints on the operations come from the algorithm’s 

dependencies: 

• A panel can be factorized after all previous trailing 

updates to its rows and columns have been performed 

• The pivot sequence can be applied to a region of the 

matrix when all previous trailing updates to it are 

complete 

• U is updated after the pivot sequence is applied 

• The trailing submatrix updates can be performed after 

the pivot sequence is applied 

For the triangular solve using the upper triangular factor, U: 

• A block triangular solve on a block of the solution 

vector (for computing x via back-substitution) can be 

performed only after all the updates from previous block 
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solves (with higher block numbers) have been 

accumulated 

In our event-driven execution model, the dependencies are 

handled in part by dynamically creating threads for dependent 

operations: 

• The panel factorization creates U update and trailing 

sub-matrix update threads 

• Block triangular solves in back-substitution create 

update threads for lower numbered vector blocks. 

The task graph for LU factorization, shown schematically in 

Figure 3 below,  is not a tree, because update operations have two 

input dependencies.  The first is from the thread created by panel 

factorization above, and the second is a result of updating U: 

• Updates to U provide the other argument to the trailing 

update 

The factorization process is initiated by noting that the constraints 

on the leftmost panel of the matrix are trivially satisfied and so a 

panel factorization can commence immediately. 

 

Figure 3. Dependencies in LU factorization 

The constraints are handled in two ways.  Operations that are 

dependent on remote events, such as the completion of the 

factorization of a panel, are triggered by the receipt of a 

notification.  In addition, because we can perform operations on 

matrix blocks in any legal order, an additional synchronization 

method is needed.  For example, a panel cannot be factored until 

all trailing updates and pivots are performed.  In order to keep 

track of this, a count of the number of remaining updates is kept 

for each matrix block.   When this count reaches zero, it is then 

safe to continue. 

3. IMPLEMENTING THE ALGORITHM IN 

UPC 
Our implementation is written entirely in UPC, except for the 

single node matrix kernels, such as matrix multiplication, which 

are performed using calls to an optimized Basic Linear Algebra 

Subroutine (BLAS) library [4], and a heap data structure taken 

from the C++ Standard Template Library.  Our code was written 

in approximately 4,000 lines of code (not counting the threading 

system) compared to about 12,000 lines for HPL.  Comparisons to 

ScaLAPACK LU are difficult because it depends on a large 

amount of supporting infrastructure that is used in other linear 

algebra routines. In this Section, we detail how our code dealt 

with many of the challenges of implementing the algorithm using 

distributed multithreading. 

3.1 The Data Layout 
As mentioned in Section 2.2, the input matrix is distributed in 2-D 

block cyclic fashion among the processors.  All the blocks owned 

by a particular processor are stored contiguously in its local 

shared memory region.  This allows update operations to be 

aggregated across blocks by viewing several matrix 

multiplications as one larger one, which can improve individual 

processor efficiency.    Although UPC supports distributed arrays, 

including blocked and cyclic layouts, we chose to avoid them for 

a few reasons.  First, they do not directly support blocking in 

multiple dimensions, which is necessary for the layout in Figure 2.  

Second, the block size must be a compile-time constant, whereas 

we would like it to be an input parameter.  Finally, our prior 

experience has shown that use of blocked layouts can incur 

significant overheads in some compilers, although this is an active 

area in which optimizations are under development.   

Although we do not use UPC’s distributed arrays, we do take 

advantage of the global address space to build a distributed data 

structure that uses global pointers, which can refer to memory 

associated with other UPC processes.   

3.2 Managing the concurrency 
We use a multithreaded implementation of the algorithm with 

threads running on each processor for the major operations of 

Section 2.2.1.  These threads are built over the fixed set of UPC 

threads and are scheduled co-operatively, which means they are 

never preempted, but instead explicitly yield when they reach a 

long-latency operation or synchronization dependence.  Because 

there are many threads sharing a single processor and performance 

of the dense matrix operations suffers if cache context is lost, mid-

execution, pre-emption is not viable. In addition, co-operative 

threads simplify maintenance of data structure consistency (no 

critical regions are necessary) as the threads give up control of the 

processor by explicit yielding only when the data structures are in 

a consistent state.  Co-operative threads also provide a convenient 

abstraction for managing the multiple dependent operations that 

each processor may have in flight at any given time [1]. 

For managing these co-operative threads, we experimented with a 

number of threading packages, from GNU Pth [15] to POSIX 

Threads where only one thread executes at any time.   For reasons 

of portability (to machines such as the Cray X1) and performance 

(context switches in our package cost only a function call or two) 

we eventually settled on a home-grown package that uses only 

function calls combined with the use of a variant of Duff’s Device 

[31].   

3.3 Enforcing locality 
As discussed before, our implementation spawns threads on 

remote processors to perform certain matrix operations.  Because 

we have a global address space a natural question is why we 

choose to spawn a thread on a particular processor.  The answer, 

of course, is locality.  Although not implemented this way, this 

can be viewed as giving a locality hint to a “global” thread 

scheduler: execute, for example, a trailing update on the processor 

that owns the block being updated.   

3.4 Coalescing Updates 
Each trailing update operates on a single block of the matrix (see 

Figure 3).  These blocks are of size b x b, where b is the block 

size used to partition that matrix.  We can obtain higher 

some edges  omitted 



performance if we observe that we can update an entire block 

column with a single matrix-matrix multiplication: 
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In our implementation, this optimization was manually performed, 

but it is conceivable that in the future, some high level language 

constructs can be provided for coalescing the threads that 

implement a trailing update on a single block.   Our coalescing 

strategy departs from the standard HPL code.   HPL also coalesces 

multiple block columns to produce even larger trailing update 

matrices.  Because these matrices are larger, the matrix 

multiplications can potentially run at a higher fraction of peak.  

The trade-off is that this approach exposes less concurrency 

because a panel factorization can start when the update to the 

panel (and not the whole submatrix stored on the processors) is 

completed.  In future work we will consider a compromise hybrid 

scheme that coalesces larger blocks for panels that are not about 

to be used for panel factorizations.  Note that our scheme requires 

that we use larger block sizes than HPL because of the need for 

large matrices for multiplication. 

3.5 Memory-Constrained Lookahead 
In matrix factorization, lookahead refers to the technique of 

overlapping panel factorizations with trailing matrix updates.  In 

HPL lookahead is static in the sense that, at program startup time, 

the user must define the number of panel factorizations that can be 

overlapped.  In our case, lookahead is dynamic.  As long as the 

dependencies are satisfied, any amount of overlap is permissible. 

 

Figure 4. Timeline for an LU run with no lookahead (SGI 

Altix Itanium 2 1.4GHz, n=12,800, process grid = 2x4, block 

size = 400).  Grey blocks represent matrix multiplication and 

black blocks denote panel factorization. 

Figures 4 and 5 show timelines for processors on a small problem 

with and without lookahead.  They show how the dynamic 

lookahead version can overlap panel factorizations with matrix 

multiplications,  filling “holes” in the execution schedule of the 

more synchronous code. 

 

Figure 5. Timeline for the same problem as Figure 4 with 

dynamic lookahead (a buffer size of 512MB).  As a very small 

problem was used for illustrative purposes, the processors 

were not very busy towards the end of the computation. 

One of the ways we create opportunities for overlap is by coding 

the operations that require remote blocks in a split-phase manner.  

For example, an update operation on a trailing block requires two 

other blocks (one to the left and one above) to be multiplied.  One 

or both of these input blocks may be remote, and we use bulk 

UPC operations such as upc_memget.  On most machines we use 

a Berkeley compiler extension to these bulk operations, which 

provide non-blocking functionality [6][7].   In this way we can 

hide the latency of the transfer by yielding and only resuming 

once the transfer is complete. 

The remote blocks used during updates and in the computation of 

U require storage on the processor where the computation is to be 

performed.  In the current implementation we decide at startup 

time on the amount of memory we wish to devote for latency 

hiding.  Memory allocated for buffering trailing matrix updates is 

tracked.  When initiating an operation we reserve a buffer from 

this memory pool, start the transfer(s), then return to other work.  

When all the transfers for a particular update are complete, the 

operation is performed, then the memory returned to the pool.   In 

this way we can hide the latency of as many transfers as we have 

memory.  In addition we have a stored “reservoir” of work that 

can be performed when the processor would otherwise be idle.  If 

we find that we cannot allocate enough memory to hold a transfer, 

we simply defer the operation and return to it at a later (and 

hopefully more favourable) time. 

It is important to note that there is the potential for deadlock.  If 

the notification for the completion of the factorization of panel 3, 

for example,  arrives before panel 2’s notification and the last bit 

of memory on a processor is allocated for buffering panel 3’s 

updates, progress is stopped because panel 2’s updates can’t be 

run and these must come before panel 3’s updates release the 

required memory.  This is avoided by always allocating memory 

in the order of the panel number that spawned the update with no 

“holes” in the sequence.  In the previous example, no memory 

would be allocated for panel 3 until panel 2 is taken care of.  This 

strategy ensures that all the trailing updates to a panel can be 

buffered and so complete before dealing with any higher panels.   

While application specific, this suggests a possible general 



solution that looks at dependency information before making 

memory management and scheduling decisions. 

3.6 Panel Factorization Issues 
The panel factorization is managed by the processor owning the 

corresponding diagonal block.  It sends requests to the other 

participants in its process column (that own the part of the matrix 

below its diagonal block) asking them to: 

• Return the absolute maximum element of a particular 

column.  The managing processor can then perform the 

pivots. 

• Scale a column 

• Perform a trailing matrix update to other columns in the 

block column. 

Note that at this point the processor controlling the factorization 

can choose to either yield or wait for completion of the operations 

it initiates on other processors.  Because the panel factorization is 

a critical operation (as it produces work for the other processors) 

the controlling processor only performs its portion of the panel 

factorization and handles event notifications while waiting for 

completion of the operations.  It suspends the threads that perform 

trailing updates and updates to U. 

The algorithm implemented by this master processor is either a 

simple blocked version of Gaussian Elimination or a recursive 

version in the style of Gustavson [19].  After some 

experimentation we determined that the recursive version 

provides better performance and is used in all the experiments 

below. 

After the panel factorization is complete, the processors that own 

blocks of U in the same block row as the diagonal block are 

notified of its completion.  The pivots that were needed for the 

panel factorization are then applied to each block column of the 

trailing submatrix, but only after all updates for all previous 

factorizations have been applied. The corresponding blocks of U 

can then be computed.  Because we use one-sided 

communication, only the processor involved in the update to U 

needs to actively participate in applying the pivots.  It is notified 

when previous trailing matrix updates in its block column are 

complete to indicate when it is safe to begin pivoting.  These 

notifications are sent by the processors in its process column that 

perform trailing submatrix computations. 

4. TUNING 
Tuning the code for performance involves finding good values of 

the following parameters; the block size, process grid, base case 

of the panel recursion, and amount of memory to use for 

buffering.  The goal is simple: to keep the processors as busy as 

possible.  

In order to accomplish this task, the local thread scheduler needs 

to make some decisions about what operations to perform.  As 

such, we have the following prioritization of operations: 

• Panel factorizations run as soon as possible.  This is 

motivated by the fact that the panel factorizations drive 

the whole process and expose the concurrency in the 

algorithm.   In fact, when panel factorizations have 

started, the participating processors suspend all other 

activities (including trailing updates) in order to focus 

on the task.  In a small experiment on 32 2.2GHz 

Opteron processors on a 40,000 x 40,000 matrix, block 

size 200, performance dropped from 107.87 GFlop/s to 

89.64 GFlop/s when other threads weren’t suspended 

for panel factorizations. 

• Trailing updates (matrix multiplications) to panels with 

lower column numbers are performed before all others.  

This is accomplished by organizing all ready updates 

(those for which all remote data has been transferred) in 

a priority queue.  This is of use primarily at large scales 

when lots of panels are buffered.  To simulate this on a 

small number of processors we ran a 25,600 x 25,600 

matrix on 16 Opteron processors with a small block size 

(50).  Absolute performance naturally suffered, but we 

observed an additional 20% decrease in performance 

with a poorer schedule that always used the panel with 

the highest block number. 

These rules ensure that panel factorizations (the generators of 

work) start as soon as all their dependencies are satisfied.    

The rate at which the dependencies are satisfied, however, 

depends on the amount of memory available.  If memory isn’t 

available to buffer panels of L and strips of U, the trailing updates 

cannot be executed.  Thus there is a dependency between the 

amount of memory available and the degree of utilization of the 

processors.   

The block size used plays a very interesting role.  It must be large 

enough to enable the trailing updates to run at a high fraction of 

peak performance.  However, it must not be so large that the panel 

factorizations (a very communication-intensive process due to 

pivoting) take a long time to complete, resulting in idle 

processors.  In addition, the larger the panels, the fewer of them 

that can be buffered for a fixed amount of memory.   

Table 1 shows how performance varies when all other parameters 

are fixed and the block size is varied.  For this configuration, a 

block size of 400 gives the best performance, but the matrix 

multiplications (using the Goto BLAS [17]) run slower compared 

to a large block size such as 1600.   The combination of longer 

panel factorization times and less space for buffering dooms this 

parameter choice as it results in an execution that cannot hide 

latency sufficiently well to achieve high performance. 

Table 1. Variation of performance with block size on SGI Altix 

Itanium 2 1.4GHz, n=25,600, process grid = 2x4, buffer size = 

512MB 

Block 

Size 

Max dgemm() 

performance 

(Gflop/s) 

Total 

Performance 

(Gflop/s) 

200 5.03 33.77 

400 5.26 35.52 

800 5.40 32.75 

1600 5.44 24.03 

 



In addition to the optimizations described above that are specific 

to our particular implementation strategy, we also implemented 

the common “tricks” that Linpack benchmark writers have used 

over the years: 

• Each block is stored in row major order so that, when 

rows are exchanged in the pivot operation, contiguous 

portions of memory are transferred. 

• The blocks are arranged in memory in column major 

order so that the trailing matrix update on a block 

column can be performed with a single BLAS-3 call, 

obviating the need for memory copies. 

5. PERFORMANCE RESULTS 
Our experimental setup is similar to any HPL experiment.  A 

random dense matrix, A, and random vector, b, are created (using 

the “Mersenne Twister” code of Matsumoto and Nishimura [27]), 

and the code solves for x where Ax=b.  In order to keep the code 

as clean as possible there are some restrictions on the matrix size 

and block size.  The block size must evenly divide into the matrix 

size and the total number of row and column blocks must be an 

exact multiple of the process row and process column size 

respectively.  These ensure that each task contains the same 

number of blocks.  A future version will relax this restriction, 

primarily by upgrading the 2-D distribution and global to local 

address computation routines. 

Our UPC code is compiled with the Berkeley UPC compiler, 

except on the Cray X1 where Cray’s UPC compiler is used.  The 

Berkeley compiler supports some non-blocking extensions of the 

bulk memory operations which are important on some machines.    

5.1 Single Processor Performance 
In order to evaluate the overheads incurred by our multithreaded 

implementation, we first collect performance numbers for single 

processor runs.   These are reported in Table 2.  The data shows 

that the overall performance of the code is within 10% of the 

performance of the matrix multiplications on their own, which are 

entirely BLAS 3 calls.  Here, only the block size needs to be tuned 

as there isn’t any parallel execution.  Threads are, however, 

created and managed as in the parallel case. 

Table 2. Single Processor Performance of UPC-LU code 

Processor Performance  

GFlop/sec 

% peak matrix mult. 

%peak in run 

Opteron  

2.2 GHz 

3.6 81.9 89.2 

Itanium 2  

1.5GHz 

6.0 91.8 95.2 

5.2 Parallel Performance 
In this Section, we present our results for parallel execution.  Fair 

performance comparisons across implementations are difficult, 

because each one has to be tuned using parameters such as block 

size, and in the case of the HPL code, the amount of overlap.  We 

primarily provide comparisons to HPL because our UPC-LU code 

greatly outperforms synchronous codes such as ScaLAPACK. For 

example, we observe a 62% increase in performance on a sample 

16 processor, n=32,000 problem run on the SGI Altix.   

Comparisons to HPL numbers from the HPC Challenge survey 

are shown in Tables 3 and 4.  Because of the difficulty of gaining 

access to large amounts of time at supercomputing centers, we 

attempted to match machine configurations as closely as possible, 

always reporting HPL results on a machine as least as powerful as 

we used for our code.  Although the random matrices used are 

also different and this affects the time spent in pivoting, we later 

note that pivoting only accounts for a negligible fraction of our 

running time. 

Table 3. Parallel Performance of UPC-LU 

Machine #  

proc. 

Perf. 

(Gflop/s) 

% 

peak 

n 

Cray X1 (800 MHz) 64 576.7 70.4 128,000 

Cray X1 (800 MHz) 128 1215.8 74.2 230,400 

Opteron (2.2 GHz) 

Infiniband 
64 216.3 76.8 76,800 

SGI Altix  (Itanium 

2 1.5GHz) 
32 149.8 78.0 64,000 

Itanium 2 1.4GHz 

(Elan4) 
512 2249.4 78.5 230,400 

Cray XT3 (2.4 

GHz) 
512 2041.1 76.6 229,376 

 

Table 4. Parallel Performance of HPL.  Source: HPC 

Challenge [20][26]. 

Machine # 

proc. 

Perf.  

(Gflop/s) 

% 

peak 
n 

Cray X1 (800 MHz) 64 521.6 63.7 160,000 

Cray X1 (800 MHz) 60 578.8 75.4 135,555 

Cray XD1  (2.2 GHz 

Opteron) 
64 223.4 79.3 84,000 

Cray XD1 (2.4 GHz 

Opteron) 
128 502.1 81.7 110,000 

SGI Altix  (Itanium 

2 1.6GHz) 
32 147.3 71.9 49,152 

SGI Altix  (Itanium 

2 1.6GHz) 
64 297.0 72.5 98,304 

 

The data in the Tables 3 and 4 show very good performance for 

our UPC implementation.  On a 512 processor Itanium/Quadrics 

machine (the Thunder machine at LLNL), the UPC code achieves 

over 2 TFlop/s, which validates the scalability of the Berkeley 

UPC implementation and multi-threaded approach to LU.  Our 

historical data from the development of our LU code indicates 

that non-blocking communication, the use of a very lightweight 

thread layer, and careful task prioritization are all critical.   



The UPC code also performs very well in comparison to the HPL 

implementation written in MPI, but in approximately 1/3rd  the 

program size.  The following graph summarizes the data for a few 

machine configurations.  As noted, the HPL/MPI numbers are 

taken by other researchers, since the effort of tuning these codes 

to a particular machine and problem size can be substantial.  We 

were unable to access identical machines for the Opteron cluster 

and Altix comparisons, but chose machines that should favor the 

HPL/MPI code.  For the Opteron cluster comparison (denoted 

“Opt” in Figure 6), we used numbers from a Cray XD1 for the 

HPL code and an Infiniband cluster at NERSC for the UPC code, 

both with the same Opteron clock rate.  This should give a 

substantial advantage to the HPL implementation because of the 

more tightly integrated network, but we see that the UPC 

performance is quite close. Similarly, the clock rate on the Altix 

machine is slightly faster on the machine used for the HPL/MPI 

code, but the UPC code slightly outperforms the MPI. 
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Figure 6. Performance Summary 

5.3 Other Performance Factors 
To conclude our performance discussion, we present some 

performance aspects of our code that, while not the most 

important, shed some light on how the use of multi-threading and 

one-sided communication influence the final Gflop/s number. 

There is some conventional wisdom in the HPC community that 

the application of the pivots is an intricate, time consuming 

process.  However, because we use one-sided communication 

(along with the row-major layout) we find that this is not the case.  

For example, on the n=76,800 run from Table 3, on a loosely 

coupled cluster, the application of the pivot sequences to the 

trailing sub-matrices only accounted for a maximum (over all 

UPC tasks) of 0.36% of the execution time.  By comparison, the 

overhead of managing the queues took up 5.04% of the total time.  

In addition, UPC Task 0 spawned 46,193 threads locally.  This 

validates our decision to implement a low-overhead threading 

system. 

6. CONCLUSION 
This paper presents a set of parallelism primitives for the UPC 

language, including non-blocking bulk communication, 

lightweight user-level threading to mask communication and 

synchronization latency, and a remote thread spawning 

mechanism.  We demonstrate this in a running example, which 

results in a new implementation of LU factorization and the High 

Performance Linpack benchmark written from the ground up 

using UPC extended with user-level threading.  The performance 

meets and sometimes exceeds that of the MPI-based HPL and 

ScaLAPACK codes, including runs that have been tuned by 

others for benchmark reporting.   The code was run on up to 512 

processors so far, with performance exceeding 2 TFlop/s.  The 

UPC code uses non-blocking remote memory operations (one-

sided communication), remote task creation, and dynamic 

threading to allow computations to suspend mid-execution at 

statically determined points.  The code is roughly 1/3rd  the size of 

the HPL and requires less manual tuning, since the degree of 

lookahead in the HPL is handled automatically and dynamically 

through our memory-constrained approach.  

Our experience touches on several areas of relevance to language 

designers and users of parallel programming systems: 

• We demonstrated the effectiveness of combining 

multithreading for communication overlap with user-

controlled data layout for locality.  While both 

multithreading and locality control exist in isolation in 

previous systems, and are proposed for the HPCS 

languages, there is little experience with this 

combination at scale.  Control over data and task 

placement are essential to the performance of our code 

and many other applications. 

• We demonstrated the use of latency tolerance 

mechanisms including non-blocking one-sided 

communication and multi-threading with threads that 

automatically deschedule themselves when they reach a 

long-latency operation.  It is our contention (see Gürsoy 

and Kale [18] for a supporting viewpoint) that parallel 

systems of the future must include some facilities for 

handling this issue. 

• We presented a technique for memory deadlock 

avoidance in latency tolerant programs.  This is a 

critical problem with the kinds of scheduling flexibility 

that can arise in a distributed multithreaded 

environment.  Combined with constrained resources 

(such as limited memory) a system can easily deadlock 

by allocating all available resources to tasks that are 

unable to run to completion due to dependencies.  Our 

solution so far is application-dependent, but we believe 

it can be generalized. 

• We leveraged UPC’s partitioned global address space to 

ensure locality in multi-threaded computations.  The 

global address space was used for updating remote 

information about dependencies, for access to remote 

blocks of the matrix, and for scheduling remote tasks.   

• We identified three of the major issues concerning 

scheduling and prioritization of multiple local threads in 

a distributed memory environment.  We observed that 

using application-dependent information was critical.  

In our case:  

• Parallel progress was ensured by prioritizing panel 

factorizations and lower numbered trailing updates 



• Memory was controlled using our dependency based 

allocation scheme 

• Cache performance was maximized by increasing the 

size of the matrix multiplications.  While not strictly a 

scheduling concern in this case, this issue will become 

more important in, say, sparse matrix factorization 

algorithms [24] where very large BLAS 3 operations 

may not always be available. 

We intend to continue research in these matters, gaining 

experience from implementing a wide range of applications in this 

style on a wide range of machines (including those with explicitly 

managed memory hierarchies such as Cell), in the hopes of 

discovering a concise yet complete set of primitives that are useful 

for building high performance parallel applications. 
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