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SUMMARY

HPCTOOLKIT is an integrated suite of tools that supports measurement, analysis, attribution, and
presentation of application performance for both sequential and parallel programs. HPCTOOLKIT can
pinpoint and quantify scalability bottlenecks in fully-optimized parallel programs with a measurement
overhead of only a few percent. Recently, new capabilities were added to HPCTOOLKIT for collecting
call path profiles for fully-optimized codes without any compiler support, pinpointing and quantifying
bottlenecks in multithreaded programs, exploring performance information and source code using a new
user interface, and displaying hierarchical space-time diagrams based on traces of asynchronous call stack
samples. This paper provides an overview of HPCTOOLKIT and illustrates its utility for performance
analysis of parallel applications.
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1 INTRODUCTION
High performance computers have become enormously complex. Today, the largest systems

consist of tens of thousands of nodes. Nodes themselves are equipped with one or more multi-core
microprocessors. Often these processor cores support additional levels of parallelism, such as short
vector operations and pipelined execution of multiple instructions. Microprocessor-based nodes rely on
deep multi-level memory hierarchies for managing latency and improving data bandwidth to processor
cores. Subsystems for interprocessor communication and parallel I/O add to the overall complexity of
these platforms. Recently, accelerators such as graphics chips and other co-processors have started to
become more common on nodes. As the complexity of HPC systems has grown, the complexity of
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2 L. ADHIANTO ET AL.

applications has grown as well. Multi-scale and multi-physics applications are increasingly common,
as are coupled applications. As always, achieving top performance on leading edge systems is critical.
The inability to harness such machines efficiently limits their ability to tackle the largest problems of
interest. As a result, there is an urgent need for effective and scalable tools that can pinpoint a variety
of performance and scalability bottlenecks in complex applications.

Nearly a decade ago, Rice University began developing a suite of performance tools now known as
HPCTOOLKIT. This effort initially began with the objective of building tools that would help guide
our own research on compiler technology. As our tools matured, it became clear that they would
also be useful for application developers attempting to harness the power of parallel systems. Since
HPCTOOLKIT was developed in large part for our own use, our design goals were that it be simple
to use and yet provide fine-grain detail about application performance bottlenecks. We have achieved
both of these goals.

This paper provides an overview of HPCTOOLKIT and its capabilities. HPCTOOLKIT consists
of tools for collecting performance measurements of fully-optimized executables without adding
instrumentation, analyzing application binaries to understand the structure of optimized code,
correlating measurements with program structure, and presenting the resulting performance data
in a top-down fashion to facilitate rapid analysis. Section 2 outlines the methodology that shaped
HPCTOOLKIT’s development and provides an overview of some of HPCTOOLKIT’s key components.
Sections 3 and 4 describe HPCTOOLKIT’s components in more detail. We use a parallel particle-in-
cell simulation of tubulent plasma in a tokamak to illustrate HPCTOOLKIT’s capabilities for analyzing
the performance of complex scientific applications. Section 7 offers some conclusions and sketches our
plans for enhancing HPCTOOLKIT for emerging petascale systems.

2 METHODOLOGY
We have developed a performance analysis methodology, based on a set of complementary principles

that, while not novel in themselves, form a coherent synthesis that is greater than the constituent parts.
Our approach is accurate, because it assiduously avoids systematic measurement error (such as that
introduced by instrumentation), and effective, because it associates useful performance metrics (such as
parallel idleness or memory bandwidth) with important source code abstractions (such as loops) as well
as dynamic calling context. The following principles form the basis of our methodology. Although we
identified several of these principles in earlier work [19], it is helpful to revisit them as they continually
stimulate our ideas for revision and enhancement.

Be language independent. Modern parallel scientific programs often have a numerical core written in
some modern dialect of Fortran and leverage frameworks and communication libraries written in C or
C++. For this reason, the ability to analyze multi-lingual programs is essential. To provide language
independence, HPCTOOLKIT works directly with application binaries rather than source code.

Avoid code instrumentation. Manual instrumentation is unacceptable for large applications. In addition
to the effort it involves, adding instrumentation manually requires users to make a priori assumptions
about where performance bottlenecks might be before they have any information.

Even using tools to automatically add instrumentation can be problematic. For instance, using the
Tau performance analysis tools to add source-level instrumentation to the Chroma code [15] from
the US Lattice Quantum Chromodynamics project [33] required seven hours of recompilation [31].
Although binary instrumentation, such as that performed by Dyninst [13] or Pin [18], avoids
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HPCTOOLKIT 3

this problem, any instrumentation-based measurement approach can be problematic. Adding
instrumentation to every procedure can substantially dilate a program’s execution time. Experiments
with gprof [11], a well-known call graph profiler, and the SPEC integer benchmarks showed that
on average gprof dilates execution time by 82% [10]. Also, we have seen instrumentation added by
Intel’s VTune [14] dilate execution time by as much as a factor of 31 [9]. Adding instrumentation
to loops presents an even greater risk of high overhead. Unless analysis of instrumentation-based
measurements compensate for measurement overhead, the cost of small routines can appear inflated. To
avoid the pitfalls of instrumentation, HPCTOOLKIT uses statistical sampling to measure performance.

Avoid blind spots. Production applications frequently link against fully optimized and even partially
stripped binaries, e.g., math and communication libraries, for which source code is not available. To
avoid systematic error, one must measure costs for routines in these libraries; for this reason, source
code instrumentation is insufficient. However, fully optimized binaries create challenges for call path
profiling and hierarchical aggregation of performance measurements (see Sections 3 and 4.1). To deftly
handle optimized and stripped binaries, HPCTOOLKIT performs several types of binary analysis.

Context is essential for understanding layered and object-oriented software. In modern, modular
programs, it is important to attribute the costs incurred by each procedure to the different contexts
in which the procedure is called. The costs incurred for calls to communication primitives (e.g.,
MPI_Wait) or code that results from instantiating C++ templates for data structures can vary
widely depending upon their calling context. Because there are often layered implementations within
applications and libraries, it is insufficient either to insert instrumentation at any one level or to
distinguish costs based only upon the immediate caller. For this reason, HPCTOOLKIT supports call
path profiling to attribute costs to the full calling contexts in which they are incurred.

Any one performance measure produces a myopic view. Measuring time or only one species of event
seldom diagnoses a correctable performance problem. One set of metrics may be necessary to identify
a problem and another set may be necessary to diagnose its causes. For example, counts of cache
misses indicate problems only if both the miss rate is high and the latency of the misses is not hidden.
HPCTOOLKIT supports collection, correlation and presentation of multiple metrics.

Derived performance metrics are essential for effective analysis. Typical metrics such as elapsed time
are useful for identifying program hot spots. However, tuning a program usually requires a measure
of not where resources are consumed, but where they are consumed inefficiently. For this purpose,
derived measures such as the difference between peak and actual performance are far more useful than
raw data such as operation counts. HPCTOOLKIT’s hpcviewer user interface supports computation
of user-defined derived metrics and enables users to rank and sort program scopes using such metrics.

Performance analysis should be top down. It is unreasonable to require users to wade through
mountains of data to hunt for evidence of important problems. To make analysis of large programs
tractable, performance tools should present measurement data in a hierarchical fashion, prioritize what
appear to be important problems, and support a top-down analysis methodology that helps users quickly
locate bottlenecks without the need to wade through irrelevant details. HPCTOOLKIT’s user interface
supports hierarchical presentation of performance data according to both static and dynamic contexts,
along with ranking and sorting based on metrics.

Hierarchical aggregation is vital. The amount of instruction-level parallelism in processor cores can
make it difficult or expensive for hardware counters to precisely attribute particular events to specific
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4 L. ADHIANTO ET AL.

instructions. However, even if fine-grain attribution of events is flawed, total event counts within loops
or procedures will typically be accurate. In most cases, it is the balance of operation counts within
loops that matters—for instance, the ratio between floating point arithmetic and memory operations.
HPCTOOLKIT’s hierarchical attribution and presentation of measurement data deftly addresses this
issue; loop level information available with HPCTOOLKIT is particularly useful.

Measurement and analysis must be scalable. Today, large parallel systems may have tens of thousands
of nodes, each equipped with one or more multi-core processors. For performance tools to be useful on
these systems, measurement and analysis techniques must scale to tens and even hundreds of thousands
of threads. HPCTOOLKIT’s sampling based measurements are compact and the data for large-scale
systems won’t be unmanageably large. Furthermore, as we describe later, HPCTOOLKIT supports
a novel approach for quantifying and pinpointing scalability bottlenecks conveniently on systems
independent of scale.

2.1 From principles to practice

From these principles, we have devised a general methodology embodied by the workflow depicted
in accompanying figure. The workflow is organized around four principal capabilities:

1. measurement of performance metrics
while an application executes,

2. analysis of application binaries to recover
program structure,

3. correlation of dynamic performance met-
rics with source code structure, and

4. presentation of performance metrics and
associated source code.

app. 
source

optimized
binary

compile & link call stack 
profile

profile 
execution
[hpcrun]

binary 
analysis

[hpcstruct]

interpret profile
correlate w/ source

[hpcprof]

database
presentation
[hpcviewer]

program 
structure

HPCTOOLKIT workflow.

To use HPCTOOLKIT to measure and analyze an application’s performance, one first compiles
and links the application for a production run, using full optimization. Second, one launches an
application with HPCTOOLKIT’s measurement tool, hpcrun, which uses statistical sampling to
collect a performance profile. Third, one invokes hpcstruct, HPCTOOLKIT’s tool for analyzing
the application binary to recover information about files, functions, loops, and inlined code.† Fourth,
one uses hpcprof to combine information about an application’s structure with dynamic performance
measurements to produce a performance database. Finally, one explores a performance database with
HPCTOOLKIT’s hpcviewer graphical user interface.

At this level of detail, much of the HPCTOOLKIT workflow approximates other peformance analysis
systems, with the most unusual step being binary analysis. In the following sections, we outline

†For the most detailed attribution of application performance data using HPCTOOLKIT, one should ensure that the compiler
includes line map information in the object code it generates. While HPCTOOLKIT does not need this information to function,
it can be helpful to users trying to interpret the results. Since compilers can usually provide line map information for fully-
optimized code, this requirement need not require a special build process.
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HPCTOOLKIT 5

how the methodological principles described above suggest several novel approaches to both accurate
measurement (Section 3) and effective analysis (Section 4).

3 ACCURATE PERFORMANCE MEASUREMENT
This section highlights the ways in which we apply the methodological principles from Section 2

to measurement. Without accurate performance measurements for fully optimized applications,
analysis is unproductive. Consequently, one of our chief concerns has been designing an accurate
measurement approach that simultaneously exposes low-level execution details while avoiding
systematic measurement error, either through large overheads or through systematic dilation of
execution. For this reason, HPCTOOLKIT avoids instrumentation and favors statistical sampling.

Statistical sampling. Statistical sampling uses a recurring event trigger to send signals to the program
being profiled. When the event trigger occurs, a signal is sent to the program. A signal handler then
records the context where the sample occurred. The recurring nature of the event trigger means that
the program counter is sampled many times, resulting in a histogram of program contexts. As long as
the number of samples collected during execution is sufficiently large, their distribution is expected to
approximate the true distribution of the costs that the event triggers are intended to measure.

Event triggers. Different kinds of event triggers measure different aspects of program performance.
Event triggers can be either asynchronous or synchronous. Asynchronous triggers are not initiated by
direct program action. HPCTOOLKIT triggers asynchronous samples using either an interval timer
or hardware performance counter events. Hardware performance counters enable HPCTOOLKIT to
statistically profile events such as cache misses and issue stall cycles. Synchronous triggers, on the
other hand, are generated via direct program action. Examples of interesting events for synchronous
profiling are memory allocation, I/O, and inter-process communication. For such events, one might
measure bytes allocated, written, or communicated, respectively.

Measuring dynamically and statically linked executables. To support measurement of unmodified,
dynamically-linked, optimized application binaries, HPCTOOLKIT uses the library preloading feature
of modern dynamic loaders to preload a profiling library as an application is launched. For
asynchronous triggers, the library’s initialization routine allocates and initializes profiler state,
configures signal handlers and asynchronous event triggers, and then initiates profiling. The library’s
finalization routine halts profiling and writes the profile state to disk for post-mortem analysis.
Synchronous sampling does not need signal handlers or asynchronous event triggers; instead, dynamic
preloading overrides library routines of interest and logs information of interest when the routine is
called in addition to performing the requested operation. Because static linking is mandatory on some
lightweight operating systems such as Catamount and Compute Node Linux for the Cray XT, we have
developed a script that arranges for symbols to be overridden at link time.

Call path profiling and tracing. Experience has shown that comprehensive performance analysis of
modern modular software requires information about the full calling context in which costs are
incurred. The calling context for a sample event is the set of procedure frames active on the call stack at
the time the event trigger fires. We refer to the process of monitoring an execution to record the calling
contexts in which event triggers fire as call path profiling. To provide insight into an application’s
dynamic behavior, HPCTOOLKIT also offers the option to collect call path traces.

When synchronous or asynchronous events occur, hpcrun records the full calling context for each
event. A calling context collected by hpcrun is a list of instruction pointers, one for each procedure
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6 L. ADHIANTO ET AL.

frame active at the time the event occurred. The first instruction pointer in the list is the program address
at which the event occurred. The rest of the list contains the return address for each active procedure
frame. Rather than storing the call path independently for each sample event, we represent all of the
call paths for events as a calling context tree (CCT) [1]. In a calling context tree, the path from the
root of the tree to a node corresponds to a distinct call path observed during execution; a count at each
node in the tree indicates the number of times that the path to that node was sampled. Since the calling
context for a sample may be completely represented by a node id in the CCT, to form a trace we simply
augment a CCT profile with a sequence of tuples, each consisting of a 32-bit CCT node id and a 64-bit
time stamp.

Coping with fully optimized binaries. Collecting a call path profile or trace requires capturing the
calling context for each sample event. To capture the calling context for a sample event, hpcrun must
be able to unwind the call stack at any point in a program’s execution. Obtaining the return address for
a procedure frame that does not use a frame pointer is challenging since the frame may dynamically
grow (space is reserved for the caller’s registers and local variables; the frame is extended with calls
to alloca; arguments to called procedures are pushed) and shrink (space for the aforementioned
purposes is deallocated) as the procedure executes. To cope with this situation, we developed a fast,
on-the-fly binary analyzer that examines a routine’s machine instructions and computes how to unwind
a stack frame for the procedure. For each address in the routine, there must be a recipe for how to
unwind. Different recipes may be needed for different intervals of addresses within the routine. Each
interval ends in an instruction that changes the state of the routine’s stack frame. Each recipe describes
(1) where to find the current frame’s return address, (2) how to recover the value of the stack pointer
for the caller’s frame, and (3) how to recover the value that the base pointer register had in the caller’s
frame. Once we compute unwind recipes for all intervals in a routine, we memoize them for later reuse.

To apply our binary analysis to compute unwind recipes, we must know where each routine starts and
ends. When working with applications, one often encounters partially-stripped libraries or executables
that are missing information about function boundaries. To address this problem, we developed a binary
analyzer that infers routine boundaries by noting instructions that are reached by call instructions or
instructions following unconditional control transfers (jumps and returns) that are not reachable by
conditional control flow.

Maintaining control over applications. For hpcrun to maintain control over an application, certain
calls to standard C library functions must be intercepted. For instance, hpcrun must be aware of
when threads are created or destroyed, or when new dynamic libraries are loaded with dlopen. When
such library calls occur, certain actions must be performed by hpcrun. To intercept such function
calls in dynamically-linked executables, hpcrun uses library preloading to interpose its own wrapped
versions of library routines.

Handling dynamic loading. Modern operating systems such as Linux enable programs to load and
unload shared libraries at run time, a process known as dynamic loading. Dynamic loading presents
the possibility that multiple functions may be mapped to the same address at different times during
a program’s execution. As hpcrun only collects a sequence of one or more program counter values
when a sample is taken, post-mortem analysis must map these instruction addresses to the functions
that contained them. For this reason, hpcrun identifies each sample recorded with an epoch, a list of
shared objects that can be loaded without conflict during one execution phase. hpcrun forms epochs
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HPCTOOLKIT 7

lazily, i.e., just before a shared library is loaded into the space formerly occupied by another library.
Epochs may also naturally be used to divide phases of a program’s execution.

Handling threads. When multiple threads are involved in a program, each thread maintains its own
calling context tree. To initiate profiling for a thread, hpcrun intercepts thread creation and destruction
to initialize and finalize profile state.

4 ANALYSIS
This section describes HPCTOOLKIT’s general approach to analyzing performance measurements,

correlating them with source code, and preparing them for presentation.

4.1 Correlating performance metrics with optimized code
To enable effective analysis, measurements of fully optimized programs must be correlated with

important source code abstractions. Since measurements are made with reference to executables and
shared libraries, for analysis, it is necessary to map measurements back to the program source. To
perform this translation, i.e., to associate sample-based performance measurements with the static
structure of fully optimized binaries, we need a mapping between object code and its associated source
code structure.‡ HPCTOOLKIT’s hpcstruct constructs this mapping using binary analysis; we call
this process “recovering program structure.”
hpcstruct focuses its efforts on recovering procedures and loop nests, the most important

elements of source code structure. To recover program structure, hpcstruct parses a load module’s
machine instructions, reconstructs a control flow graph, combines line map information with interval
analysis on the control flow graph in a way that enables it to identify transformations to procedures
such as inlining and account for transformations to loops [31].§

Several benefits naturally accrue from this approach. First, HPCTOOLKIT can expose the structure
of and assign metrics to what is actually executed, even if source code is unavailable. For example,
hpcstruct’s program structure naturally reveals transformations such as loop fusion and scalarized
loops implementing Fortran 90 array notation. Similarly, it exposes calls to compiler support routines
and wait loops in communication libraries of which one would otherwise be unaware. hpcrun’s
function discovery heuristics expose distinct logical procedures within stripped binaries.

4.2 Computed metrics
Identifying performance problems and opportunities for tuning may require synthetic performance

metrics. To identify where an algorithm that is not effectively using hardware resources, one should
compute a metric that reflects wasted rather than consumed resources. For instance, when tuning a
floating-point intensive scientific code, it is often less useful to know where the majority of the floating-
point operations occur than where floating-point performance is low. Knowing where the most cycles
are spent doing things other than floating-point computation hints at opportunities for tuning. Such a
metric can be directly computed by taking the difference between the cycle count and FLOP count

‡This object to source code mapping should be contrasted with the binary’s line map, which (if present) is typically
fundamentally line based.
§Without line map information, hpcstruct can still identify procedures and loops, but is not able to account for inlining or
loop transformations.
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8 L. ADHIANTO ET AL.

divided by a target FLOPs-per-cycle value, and displaying this measure for loops and procedures. Our
experiences with using multiple computed metrics such as miss ratios, instruction balance, and “lost
cycles” underscore the power of this approach.

4.3 Analyzing scalability of parallel programs

One novel application of HPCTOOLKIT’s call path profiles is to use them to pinpoint and quantify
scalability bottlenecks in SPMD parallel programs [5]. Combining call path profiles with program
structure information, HPCTOOLKIT can use this excess work metric to quantify scalability losses
and attribute them to the full calling context in which these losses occur. In addition, we recently
developed general techniques for effectively analyzing multithreaded applications [32]. Using them,
HPCTOOLKIT can attribute precise measures of parallel work, idleness, and overhead to user-level
calling contexts—even for multithreaded languages such as Cilk [8], which uses a work-stealing run-
time system.

5 PRESENTATION
This section describes hpcviewer and hpctraceview, HPCTOOLKIT’s two presentation tools.

We illustrate the functionality of these tools by applying them to measurements of parallel executions
of the Gyrokinetic Toroidal Code (GTC) [17]. GTC is a particle-in-cell (PIC) code for simulating
turbulent transport in fusion plasma in devices such as the International Thermonuclear Experimental
Reactor (ITER). GTC is a production code with 8M processor hours allocated to its executions during
2008. To briefly summarize the nature of GTC’s computation, each time step repeatedly executes
charge, solve, and push operations. In the charge step, it deposits the charge from each particle
onto grid points nearby. Next, the solve step computes the electrostatic potential and field at each
grid point by solving the Poisson equation on the grid. In the push step, the force on each particle is
computed from the potential at nearby grid points. Particles move according to the forces on them.

5.1 hpcviewer

HPCTOOLKIT’s hpcviewer user interface presents performance metrics correlated to program
structure (Section 4.1) and mapped to a program’s source code, if available. Figure 1 shows a snapshot
of the hpcviewer user interface viewing data from several parallel executions of GTC. The user
interface is composed of two principal panes. The top pane displays program source code. The bottom
pane associates a table of performance metrics with static or dynamic program structure. hpcviewer
provides three different views of performance measurements collected using call path profiling. We
briefly describe the three views and their corresponding purposes.

• Calling context view. This top-down view associates an execution’s dynamic calling contexts
with their costs. Using this view, one can readily see how much of the application’s cost was
incurred by a function when called from a particular context. If finer detail is of interest, one
can explore how the costs incurred by a call in a particular context are divided between the
callee itself and the procedures it calls. HPCTOOLKIT distinguishes calling context precisely by
individual call sites; this means that if a procedure g contains calls to procedure f in different
places, each call represents a separate calling context. Figure 1 shows a calling context view.
This view is created by integrating static program structure (e.g., loops) with dynamic calling
contexts gathered by hpcrun. Loops appear explicitly in the call chains shown in Figure 1.
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HPCTOOLKIT 9

Figure 1. Using hpcviewer to assess the hotspots in GTC.

• Callers view. This bottom-up view enables one to look upward along call paths. This view is
particularly useful for understanding the performance of software components or procedures
that are called in more than one context. For instance, a message-passing program may call
MPI Wait in many different calling contexts. The cost of any particular call will depend upon
its context. Serialization or load imbalance may cause long waits in some calling contexts but
not others. Figure 2 shows a caller’s view of costs for processes from two parallel runs of GTC.

• Flat view. This view organizes performance data according to an application’s static structure.
All costs incurred in any calling context by a procedure are aggregated together in the flat view.
This complements the calling context view, in which the costs incurred by a particular procedure
are represented separately for each call to the procedure from a different calling context.

hpcviewer can present an arbitrary collection of performance metrics gathered during one or
more runs, or compute derived metrics expressed as formulae with existing metrics as terms. For any
given scope, hpcviewer computes both exclusive and inclusive metric values. Exclusive metrics
only reflect costs for a scope itself; inclusive metrics reflect costs for the entire subtree rooted at that
scope. Within a view, a user may order program scopes by sorting them using any performance metric.
hpcviewer supports several convenient operations to facilitate analysis: revealing a hot path within
the hierarchy below a scope, flattening out one or more levels of the static hierarchy, e.g., to facilitate
comparison of costs between loops in different procedures, and zooming to focus on a particular scope
and its children.
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10 L. ADHIANTO ET AL.

Figure 2. Using hpcviewer to assess the scalability of particle decomposition in GTC.

5.1.1 Using hpcviewer

In this section, we illustrate the capabilities of hpcviewer by using it to examine profile data
collected for GTC. The version of GTC that we studied uses a domain decomposition along the
toroidal dimension of a tokamak. Each toroidal domain contains one poloidal plane. One or more MPI
processes can be assigned to each toroidal domain. In GTC, many of the more expensive loops are
parallelized using OpenMP. Particles in each poloidal plane are randomly distributed in equal number
to MPI processes assigned to a toroidal domain. Particles move between poloidal planes via MPI
communication.

We used hpcrun to collect call stack profiles of three parallel configurations using timer-based
asynchronous sampling. All three configurations use the same problem size and domain decomposition
along the toroidal dimension; only the degree and type of parallelism within each poloidal plane
varies. The baseline configuration uses a single MPI process in each of 32 poloidal planes. The second
configuration doubles the amount of parallelism by assigning a second MPI process to each plane. The
third configuration uses a hybrid MPI+OpenMP approach, with two threads in each plane.

Figure 1 shows side-by-side views of profile data collected for the MPI rank 0 process of the 32-
processor run, along with data for the MPI ranks 0 and 1—the processes for the first poloidal plane in
a 64-process MPI execution. For each MPI process, we show two metrics, representing the inclusive
and the exclusive wall time spent in each scope. The bottom left of Figure 1 shows the hot call path
for the MPI process in the 32-process configuration. A loop nested four levels deep in the main routine
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HPCTOOLKIT 11

accounts for 81% of the total execution time. This loop simulates electron motion. hpcviewer’s
ability to attribute cost to individual loops comes from information provided by hpcstruct’s binary
analysis. The cost of simulating electron motion is so high in this simulation because electrons move
through the tokamak much faster than ions and need to be simulated at a much finer time scale. From
Figure 1 we notice that when we increase the parallelism by a factor of two, the contribution of the
electron sub-cycle loop to the total execution time drops to approximately 78%. This is due to a less
efficient scaling of other sections of the program, which we explore next.

Figure 2 presents a second snapshot of hpcviewer displaying a bottom-up view of the profile data
shown in Figure 1. The last metric shown in this figure is a derived metric representing the percentage
of excess work performed in the 64-process run relative to the 32-process run. As we doubled the
amount of parallelism within each poloidal plane, the total amount of work performed by the two MPI
processes for a plane is roughly 9% larger than the amount of work performed by a single MPI process
in the 32-process run. Sorting the program scopes by this derived metric, as shown in Figure 2, enables
us to pinpoint those routines whose execution cost has been dilated the most in absolute terms.

We notice that the routine accounting for the highest amount of excess work is
viutil spinandwaitcq. Expanding the calling contexts that lead to this routine reveals that this
is an internal routine of the MPI library that waits for the completion of MPI operations. The second
most significant routine according to our derived metric is poisson, a GTC routine that solves
Poisson equations to compute the electrostatic potential. While this routine accounts for only 1.7%
of the execution time in the baseline configuration, we see that its execution time increases as we
double the level of parallelism in each poloidal plane. In fact, the work performed by this routine is
replicated in each MPI process working on a poloidal plane. As a result, the contribution of poisson
increases to 3.3% of the total time for the 64-process run. This routine may become a bottleneck as we
increase the amount of parallelism within each poloidal plane by higher factors. On a more positive
note, Figure 2 shows that routine pushe, which performs electron simulation and accounts for 50% of
the total execution time, has very good scaling. Its execution time is dilated less than that of poisson,
causing it to be ranked lower according to the excess work metric.

This brief study of GTC shows how the measurement, analysis, attribution, and presentation
capabilities of HPCTOOLKIT make it straightforward to pinpoint and quantify the reasons for subtle
differences in the relative scaling of different parallel configurations of an application.

5.2 hpctraceview

hpctraceview is a prototype visualization tool that was added to HPCTOOLKIT in summer 2008.
hpctraceview renders space-time diagrams that show how a parallel execution unfolds over time.
Figure 3 shows a screen snapshot of hpctraceview displaying an interval of execution for a hybrid
version of the GTC code running on 64 processors. Although hpctraceview’s visualizations on the
surface seem rather similar to those by many contemporary tools, the nature of its visualizations and
the data upon which they are based is rather different than that of other tools, as we explain.

As we describe in more detail in Section 6, other tools for rendering execution traces of parallel
programs rely on embedded program instrumentation that synchronously records information about
the entry and exit of program procedures, communication operations, and/or program phase markers.
Unlike other tools, hpctraceview’s traces are collected using asynchronous sampling. Each time
line in hpctraceview represents a sequence of asynchronous samples taken over the life of a thread
or process, which we refer to hereafter as threads in both cases. Also, hpctraceview’s samples are
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12 L. ADHIANTO ET AL.

Figure 3. hpctraceview showing part of a execution trace for GTC.

multi-level. Each sample for a thread represents the entire stack of the thread’s active procedures at
the instant when the sample event occurred. As described previously, at a sample event hpcrun uses
call stack unwinding to identify the stack of active procedures. Call stacks for sample events include
all active procedures, not just procedures the user wrote. Namely, stack unwinding may reveal calls
to math library routines, routines in the MPI API, device driver routines layered underneath an MPI
implementation, and even machine-generated procedures outlined from user code when compiling
parallel loops in OpenMP programs.

A closer look at Figure 3 reveals hpctraceview’s capabilities. The heart of the display is the two
center panels that display a set of time lines for threads. Within each panel, time lines for different
threads are stacked top to bottom. Even numbered threads (starting from 0) represent MPI processes;
odd-numbered threads represent OpenMP slave threads. A thread’s activity over time unfolds left to
right. The top center panel represents a low-resolution view of the time lines, known as the context
view. Each distinct color on the time lines represents a different procedure. Casual inspection of
the context view shows three complete repetitions of a “pattern” and part of a fourth. A closer look
reveals that the first and third repetitions are somewhat different in nature than the second and fourth:
the aforementioned patterns contain a band of yellow bars, whereas the latter do not. Space-time
visualizations are good for spotting and understanding such temporal varying behavior. The bottom
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center pane shows a detailed view of timelines in the context view. One selects a region in the context
view to display it in the detail view. Within the detail view, one can scroll and zoom to adjust the
content of the view. Unlike other trace visualizers, hpctraceview’s visualizations are hierarchical.
Since each sample in each thread timeline represents a call stack, we can view the thread timelines at
different call stack depths. To the left of the context and detail panes is a slider that can be used to set
the level of the view. The space-time diagrams show colored bars representing samples at the selected
stack depth; any samples at shallower depth are shown at their deepest level. Figure 3 shows the trace
at a call stack depth of seven. In the detailed view, one can use a pointing device to select a colored
sample in the detailed view. The rightmost pane of the display shows the complete call stack for the
yellow bar representing the conditional copy loop for the topmost process in the context view.

6 RELATED WORK
Many performance tools focus on a particular dimension of measurement. For example, several

tools use tracing [4, 12, 26, 37, 39, 41] to measure how an execution unfolds over time. Tracing
can provide valuable insight into phase and time-dependent behavior and is often used to detect
MPI communication inefficiencies. In contrast, profiling may miss time-dependent behavior, but its
measurement, analysis, and presentation strategies scale more easily to long executions. For this reason,
other tools employ profiling [2,6,19]. Some tools [14,16,28,29], now including HPCTOOLKIT, support
both profiling and tracing. Because either profiling or tracing may be the best form of measurement for
a given situation, tools that support both forms have a practical advantage.

Either profiling or tracing may expose aspects of an execution’s state such as calling context to
form call path profiles or call path traces. Although other tools [14, 28, 36] collect calling contexts,
HPCTOOLKIT is unique in supporting both call path profiling and call path tracing. In addition, our
call path measurement has novel aspects that make it more accurate and impose lower overhead than
other call graph or call path profilers; a detailed comparison can be found elsewhere [9, 10].

Tools for measuring parallel application performance are typically model dependent, such as
libraries for monitoring MPI communication (e.g., [35, 36, 40]), interfaces for monitoring OpenMP
programs (e.g., [4, 24]), or global address space languages (e.g., [30]). In contrast, HPCTOOLKIT can
pinpoint contextual performance problems independent of model—and even within stripped, vendor-
supplied math and communication libraries.

Although performance tools may measure the same dimensions of an execution, they may differ
with respect to their measurement methodology. Tau [28], OPARI [24], and Pablo [27] among others
add instrumentation to source code during the build process. Model-dependent strategies often use
instrumented libraries [4, 20, 21, 23, 35]. Other tools analyze unmodified application binaries by
using dynamic instrumentation [3, 7, 14, 22] or library preloading [6, 9, 16, 25, 29]. These different
measurement approaches affect a tool’s ease of use, but more importantly fundamentally affect
its potential for accurate and scalable measurements. Tools that permit monitoring of unmodified
executables are critical for applications with long build processes or for attaching to an existing
production run. More significantly, source code instrumentation cannot measure binary-only library
code, may affect compiler transformations, and incurs large overheads. Binary instrumentation may
also have blind spots and incur large overheads. For example, the widely used VTune [14] call
path profiler employs binary instrumentation that fails to measure functions in stripped object
code and imposes enough overhead that Intel explicitly discourages program-wide measurement.
HPCTOOLKIT’s call path profiler uniquely combines preloading (to monitor unmodified dynamically-
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linked binaries), asynchronous sampling (to control overhead), and binary analysis (to assist handling
of unruly object code) for measurement.

Tracing on large-scale systems is widely recognized to be costly and to produce massive trace
files [35]. Consequently, many scalable performance tools manage data by collecting summaries based
on synchronous monitoring (or sampling) of library calls (e.g., [35, 36]) or by profiling based on
asynchronous events (e.g., [2, 6, 19]). HPCTOOLKIT’s call path tracer uses asynchronous sampling
and novel techniques to manage measurement overhead and data size better than a flat tracer.

Tools for analyzing bottlenecks in parallel programs are typically problem focused. Paradyn [22] uses
a performance problem search strategy and focused instrumentation to look for well-known causes
of inefficiency. Strategies based on instrumentation of communication libraries, such as Photon and
mpiP, focus only on communication performance. Vetter [34] describes an assisted learning based
system that analyzes MPI traces and automatically classifies communication inefficiencies, based on
the duration of primitives such as blocking and non-blocking send and receive. EXPERT [38] also
examines communication traces for patterns that correspond to known inefficiencies. In contrast,
HPCTOOLKIT’s scaling analysis is problem-independent.

7 CONCLUSIONS AND FUTURE DIRECTIONS
Much of the focus of the HPCTOOLKIT project has been on measurement, analysis, and attribution

of performance within processor nodes. Our early work on measurement focused on “flat” statistical
sampling of hardware performance counters that attributed costs to the instructions and loops that
incurred them. As the scope of our work broadened from analysis of computation-intensive Fortran
programs (whose static call graphs were often tree-like) to programs that make extensive use of multi-
layered libraries, such as those for communication and math, it became important to gather and attribute
information about costs to the full calling contexts in which they were incurred. HPCTOOLKIT’s
use of binary analysis to support both measurement (call stack unwinding of unmodified optimized
code) and attribution to loops and inlined functions has enabled its use on today’s grand challenge
applications—multi-lingual programs that leverage third-party libraries for which source code and
symbol information may not be available.

Our observation that one could use differential analysis of call path profiles to pinpoint and quantify
scalability bottlenecks led to an effective technique that can be used to pinpoint scalability bottlenecks
of all types on systems of any size, independent of the programming model. We have applied this
approach to pinpoint synchronization, communication, and I/O bottlenecks on applications on large-
scale distributed-memory machines. In addition, we’ve used this technique to pinpoint scalability
bottlenecks on multi-core processors—program regions where scaling from one core to multiple cores
is less than ideal.

A blind spot when our tools used profiling exclusively was understanding program behavior that
differs over time. Call stack tracing and the hpctraceview visualizer enables us to address this
issue. A benefit of our tracing approach based on asynchronous rather than synchronous sampling
is that we can control measurement overhead by reducing sampling frequency, whereas synchronous
sampling approaches have less effective options.

We are in the process of working to scale our measurement and analysis techniques to emerging
petascale systems. Many challenges remain. Collecting and saving measurement data to disk for tens
to hundreds of thousands of cores is a problem in its own right. The size of the data is not the problem; it
is OS limits on the maximum number of open files or files in a directory. This is not an insurmountable
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problem, but it cannot be ignored either. Our current approach of post-processing call path profiles for
parallel programs after execution on a head node of a cluster becomes unrealistic when one wants to
analyze profiles for tens of thousands of nodes. Clearly, we need to bring parallelism to bear in our
post-processing of measurement data. At present, hpctraceview is a prototype tool constructed as
a proof of concept that visualizing traces of call stack samples for parallel programs leads to insight
into temporal behavior of programs. In building the prototype, we focused on functionality first rather
than designing a tool meant to scale to long traces for thousands of processors. Making this tool useful
for the largest systems of today will require a redesign so that the tool manipulates traces out of core
rather than requiring that all data be memory resident.
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