IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 19, NO.9, SEPTEMBER 2008

Solving Systems of Linear Equations on the

1175

CELL Processor Using Cholesky Factorization

1

Jakub Kurzak, Member, IEEE, Alfredo Buttari, and Jack Dongarra, Fellow, IEEE

Abstract—The Sony/Toshiba/IBM (STI) CELL processor introduces pioneering solutions in processor architecture. At the same time,
it presents new challenges for the development of numerical algorithms. One is the effective exploitation of the differential between the
speed of single- and double-precision arithmetic; the other is the efficient parallelization between the short-vector Single-Instruction,
Multiple-Data (SIMD) cores. The first challenge is addressed by utilizing the well-known technique of iterative refinement for the
solution of a dense symmetric positive definite system of linear equations, resulting in a mixed-precision algorithm, which delivers
double-precision accuracy while performing the bulk of the work in single precision. The main contribution of this paper lies in
addressing the second challenge by successful thread-level parallelization, exploiting fine-grained task granularity and a lightweight
decentralized synchronization. The implementation of the computationally intensive sections gets within 90 percent of the peak
floating-point performance, while the implementation of the memory-intensive sections reaches within 90 percent of the peak memory
bandwidth. On a single CELL processor, the algorithm achieves more than 170 Gflops when solving a symmetric positive definite
system of linear equations in single precision and more than 150 Gflops when delivering the result in double-precision accuracy.

Index Terms—Parallel algorithms, numerical linear algebra, CELL broadband engine.

<+

MOTIVATION

N numerical computing, there is a fundamental perfor-

mance advantage in using the single-precision floating-
point data format over the double-precision data format,
due to the more compact representation, thanks to which
twice the number of single-precision data elements can be
stored at each stage of the memory hierarchy. Short-vector
Single-Instruction, Multiple-Data (SIMD) processing pro-
vides yet more potential for performance gains from using
single-precision arithmetic over double precision. Since the
goal is to process the entire vector in a single operation, the
computation throughput can be doubled when the data
representation is halved. Unfortunately, the accuracy of the
solution is also halved.

Most of the processor architectures available today have
been at some point augmented with short-vector SIMD
extensions. Examples include

e Streaming SIMD Extensions (SSE) for the AMD and
Intel lines of processors,

PowerPC Velocity Engine/AltiVec/VMX,

Sparc Visual Instruction Set (VIS),

Alpha Motion Video Instructions (MVI),

PA-RISC Multimedia Acceleration eXtensions (MAX),
MIPS-3D Application Specific Extensions (ASP) and
Digital Media Extensions (MDMX), and

e ARM NEON.

e The authors are with the Department of Electrical Engineering and
Computer Science, University of Tennessee, 1122 Volunteer Blvd Ste
413 Claxton, Knoxville, TN 37996-3450.

E-mail: {kurzak, buttari, dongarra}@cs.utk.edu.

Manuscript received 10 May 2007; revised 23 Oct. 2007; accepted 8 Nov.
2007; published online 28 Nov. 2007.

Recommended for acceptance by T. Davis.

For information on obtaining reprints of this article, please send e-mail to:
tpds@computer.org, and reference IEEECS Log Number TPDS-2007-05-0150.
Digital Object Identifier no. 10.1109/TPDS.2007.70813.

1045-9219/08/$25.00 © 2008 IEEE

The different architectures exhibit big differences in their
capabilities. The vector size is either 64 bits or, more
commonly, 128 bits. The register file size ranges from just a
few to as many as 128 registers. Some extensions only
support integer types, others also operate on single-
precision floating-point numbers, and yet others also
process double-precision values.

Today, the Synergistic Processing Element (SPE) of the
Sony/Toshiba/IBM (STI) CELL processor [1], [2], [3] can
probably be considered the state of the art in short-vector
SIMD processing. Possessing 128-byte-long registers and a
fully pipelined, fused add-multiply instruction, it is
capable of completing eight single-precision floating-point
operations each clock cycle, which, combined with the size
of the register file of 128 registers, delivers close-to-peak
performance on many common workloads. At the same
time, built with multimedia and embedded applications in
mind, the current incarnation of the CELL architecture
does not implement double-precision arithmetic on par
with single-precision performance, which makes the
processor a very attractive target for exploring mixed-
precision approaches.

Another important phenomenon in recent years has
been the gradual shift of focus in processor architecture
from aggressive exploitation of instruction-level parallelism
toward thread-level parallelism, resulting in the introduc-
tion of chips with multiple processing units commonly
referred to as multicore processors. The new architectures
deliver the much desired improvement in performance
and, at the same time, challenge the scalability of existing
algorithms and force the programmers to seek more
parallelism by going to much finer levels of problem
granularity. In linear algebra, it enforces the departure
from the model relying on parallelism encapsulated at the
level of BLAS and shifts to more flexible methods of
scheduling work.

Published by the IEEE Computer Society

Authorized licensed use limited to: IEEE Xplore. Downloaded on April 21, 2009 at 15:20 from IEEE Xplore. Restrictions apply.

1176

2 RELATED WORK

Iterative refinement is a well-known method for improving
the solution of a linear system of equations of the form
Az =b. Typically, a dense system of linear equations is
solved by applying a factorization to the coefficient matrix,
followed by a back solve. Due to round-off errors, the
solution carries an error related to the condition number of
the coefficient matrix. In order to improve the computed
solution, an iterative refinement process can be applied,
which produces a correction to the computed solution at
each iteration. In principle, the algorithm can produce a
solution correct to the working precision.

Iterative refinement is a fairly well-understood concept
and was analyzed by Wilkinson [4], Moler [5], and Stewart
[6]. Higham gives error bounds for both single- and double-
precision iterative refinement algorithms, where the entire
algorithm is implemented with the same precision (single or
double, respectively) [7]. He also gives error bounds in
single-precision arithmetic, with refinement performed in
double-precision arithmetic. An error analysis for the case
described in this work, where the factorization is performed
in single precision and the refinement in double precision, is
given by Langou et al. [8].

The authors of this work have previously presented an
initial implementation of the mixed-precision algorithm for
the general nonsymmetric case using LU factorization on the
CELL processors. Although respectable performance num-
bers were presented, both the factorization and the refine-
ment steps relied on rather classic parallelization approaches.
Also, a somewhat general discussion of algorithmic and
implementation details was presented. This work extends the
previous presentation by introducing a novel scheme for the
parallelization of the computational components of the
algorithm and also describes in much more detail the
implementation of both computationally intensive and
memory-intensive operations.

Although the thread-level parallelization of the Cholesky
factorizations presented here is quite unique, due to the
unique nature of the CELL processor, many of the concepts
are not new. Seminal work in the area of parallel dense
matrix factorizations was done by Agarwal and Gustavson
(9], [10].

3 ALGORITHM

The standard approach to solving symmetric positive
definite systems of linear equations is to use the
Cholesky factorization. The Cholesky factorization of a
real symmetric positive definite matrix A has the form
A=LL", where L is a real lower triangular matrix with
positive diagonal elements. The system is solved by
first solving Ly = b (forward substitution) and then solving
LTz =y (backward substitution). In order to improve the
accuracy of the computed solution, an iterative refinement
process is applied, which produces a correction to the
computed solution, x.

The mixed-precision iterative refinement algorithm
using Cholesky factorization is outlined in Algorithm 1.
The factorization A = LL” (line 2) and the solution of the
triangular systems Ly = b and L'z = y (lines 3 and 8) are

IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 19, NO.9, SEPTEMBER 2008

computed using single-precision arithmetic. The residual
calculation (line 6) and the update of the solution (line 10)
are computed using double-precision arithmetic and the
original double-precision coefficients. The most computa-
tionally expensive operations, including the factorization of
the coefficient matrix A and the forward and backward
substitution, are performed using single-precision arith-
metic, and they take advantage of the single-precision
speed. The only operations executed in double precision are
the residual calculation and the update of the solution.

Algorithm 1. Solution of a symmetric positive definite
system of linear equations using mixed-precision iterative
refinement based on Cholesky factorization.
10 Agg), bzgy «— A, b
Lsa), Lgﬂ) — SPOTRF“(A39)
— SPOTRS" (L(32)7 Lhy), b(32)>
(1)

=
]
la=]
o
o
=

—_ =
= e
8
'
8
+
D3N

: until 21 is accurate enough

“LAPACK name for Cholesky factorization
'LAPACK name for symmetric forward/backward
substitution
A 64-bit representation is used in all cases where a 32-bit
representation is not indicated by a subscript.

It can be observed that all operations of O(n?) complexity
are handled in single precision, and all operations per-
formed in double precision are of at most O(n?) complexity.
The coefficient matrix A is converted to single precision for
the Cholesky factorization. At the same time, the original
matrix in double precision is preserved for the residual
calculation.

The algorithm described above and shown in Algorithm 1
is available in the LAPACK 3.1 library and implemented by
the routine DSGESV.

4 |MPLEMENTATION

4.1 Essential Hardware Features

An extensive hardware overview would be beyond the
scope of this publication. Vast amounts of information are
publicly available for both experienced programmers [11]
and newcomers to the field [12], [13]. It is assumed that the
reader has some familiarity with the architecture. Here, the
features that have the most influence on the implementation
presented are mentioned.

The CELL is a multicore chip that includes nine different
processing elements. One core, the POWER Processing Ele-
ment (PPE), represents a standard processor design imple-
menting the PowerPC instruction set. The remaining eight
cores, the SPEs, are short-vector SIMD engines with big
register files of 128 128-bit vector registers and 256 Kbytes of
local memory, referred to as local store (LS).

Authorized licensed use limited to: IEEE Xplore. Downloaded on April 21, 2009 at 15:20 from IEEE Xplore. Restrictions apply.

KURZAK ET AL.: SOLVING SYSTEMS OF LINEAR EQUATIONS ON THE CELL PROCESSOR USING CHOLESKY FACTORIZATION

T=LLT
SPOTRF

T=T-AxAT
SSYRK

i

N

1177

C=C\T
STRSM

C=C-BxAT
SGEMM

AN
N

N N

A

Fig. 1. Top—steps of the left-looking Cholesky factorization. Bottom—tiling of operations.

Although standard C code can be compiled for the
execution on the SPEs, the SPEs do not execute scalar code
efficiently. For efficient execution, the code has to be
vectorized in the SIMD sense, by using C language vector
extensions (intrinsics) or by using assembly code. The
system’s main memory is accessible to the PPE through L1
and L2 caches and to the SPEs through DMA engines
associated with them. The SPEs can only execute the code
residing in the LS and can only operate on the data in the
LS. All data has to be transferred in and out of LS via
DMA transfers.

The theoretical computing power of a single SPE is
25.6 Gflops in single precision and roughly 1.8 Gflops in
double precision. The floating-point arithmetic follows the
IEEE format, with double-precision operations complying
numerically with the standard and single precision provid-
ing only rounding toward zero. The theoretical commu-
nication speed for a single SPE is 25.6 Gbytes/s. The
theoretical peak bandwidth of the main memory is
25.6 Gbytes/s as well (shared by the PPE and all SPEs).

The size of the register file and the size of the LS dictate
the size of the elementary operation subject to scheduling to
the SPEs. The ratio of computing power to the memory
bandwidth dictates the overall problem decomposition for
parallel execution.

4.2 Factorization

A few varieties of Cholesky factorization are known, in
particular the right-looking variant and the [eft-looking
variant [14]. It has also been pointed out that those variants
are borders of a continuous spectrum of possible execution
paths [15].

Generally, the left-looking factorization is preferred for
several reasons. During the factorization, most time is spent
calculating a matrix-matrix product. In the case of the right-
looking factorization, this product involves a triangular
matrix. In the case of the left-looking factorization, this
product only involves rectangular matrices. It is generally
more efficient to implement a matrix-matrix product for
rectangular matrices, and it is easier to balance the load in
parallel execution. The implementation presented here is

derived from the left-looking formulation of the Cholesky
factorization, which follows the implementation of the
LAPACK routine SPOTRF.

Due to the limited size of the LS, all numerical operations
have to be decomposed into elementary operations that fit
in the LS. The simplicity of implementing the Cholesky
factorization lies in the fact that it can be easily decomposed
into tile operations—operations on fixed-size submatrices
that take one to three tiles as input and produce one tile as
output. These elementary operations will further be
referred to as tile kernels. Fig. 1 illustrates the steps of the
left-looking Cholesky factorization and how each step is
broken down to tile operations.

4.2.1 Computational Kernels

Implementation of the tile kernels assumes a fixed size of
the tiles. Smaller tiles (finer granularity) have a positive
effect on scheduling for parallel execution and facilitate
better load balance and higher parallel efficiency. Bigger
tiles provide better performance in sequential execution on
a single SPE.

In the case of the CELL chip, the crossover point is rather
simple to find for problems in dense linear algebra. From
the standpoint of this work, the most important operation is
matrix multiplication in single precision. It turns out that
this operation can achieve within a few percent off the peak
performance on a single SPE for matrices of size 64 x 64.
The fact that the peak performance can be achieved for a
tile of such a small size has to be attributed to the large size
of the register file and fast access to the LS, undisturbed
with any intermediate levels of memory. Also, such a
matrix occupies a 16-Kbyte block of memory, which is the
maximum size of a single DMA transfer. Eight such
matrices fit in half of the LS, providing enough flexibility
for multibuffering and, at the same time, leaving enough
room for the code. A discussion of tile-size consideration
was also presented before by the authors of this publication
[16]. Table 1 represents the Cholesky tile kernels for a tile
size of 64 x 64 as BLAS and LAPACK calls.

It has already been pointed out that a few derivations of
the Cholesky factorization are known, in particular the

Authorized licensed use limited to: IEEE Xplore. Downloaded on April 21, 2009 at 15:20 from IEEE Xplore. Restrictions apply.

1178

TABLE 1
Single-Precision Cholesky Tile Kernels

BLAS / LAPACK Call
cblas_ssyrk(CblasRowMajor,
CblasLower, CblasNoTrans,
64,64,1.0, A, 64,1.0, T, 64);
cblas_sgemm(CblasRowMajor,
CblasNoTrans, CblasTrans,
64, 64, 64,
1.0, B, 64, A, 64, 1.0, C, 64);

Operation
T—T—AxAT

C—C—-BxAT

B—BxT T cblas_strsm(CblasRowMajor,
CblasRight, CblasLower,

(B=B/TT)* CblasTrans, CblasNonUnit,
64, 64, 1.0, T, 64, B, 64);

LxLT —T lapack_spotrf(lapack_lower,

64, trans(T), 64, &info);’
“using MATLAB notation
busing LAPACK C interface by R. Delmas and J. Langou,
http://icl.cs.utk.edu/~delmas/lapwrapc.html

right-looking variant and the left-looking variant [14].
Dynamic scheduling of operations is another possibility.
However, no matter which static variant is used or whether
dynamic execution is used, the same set of tile kernels is
needed. The change from one to another will only alter the
order in which the tile operations execute.

All the kernels were developed using SIMD C language
extensions. Extra effort was invested into optimizing the
matrix multiplication (SGEMM") kernel performing the
calculation C = C — B x AT, since this operation dominates
the execution time. All the tile kernels were written by
consistently applying the idea of blocking with a block size
of four. A short discussion of each case follows.

The SSYRK kernel applies a symmetric rank-k update
to a tile. In other words, it performs the operation
T « T — A x AT, where only the lower triangular part of
T is modified. The SSYRK kernel consists of two nested
loops, where in each inner iteration, a 4 x 4 block of the
output tile is produced, and the body of the inner loop is
completely unrolled. The #define and nested #define
C language directives are used to create a single basic
block—a block of straight-line code. Static offsets are used
within the basic block, and pointer arithmetic is used to
advance pointers between iterations.

The construction of the SSYRK tile kernel is presented in
Algorithm 2. The unrolled code consists of four distinct
segments. A computation segment (line 3) includes only
multiply and add operations to calculate a product of
two 4 x 64 blocks of tile A, and it produces 16 four-element
vectors as output. A permutation/reduction segment (line 4)
performs transpositions and reductions on these 16 vectors
and delivers the four four-element vectors constituting the
4 x 4 block of the output tile. The two segments mentioned
above handle the off-diagonal square blocks (lines 3 and 4),
and two more segments handle the triangular diagonal blocks
(lines 6 and 7). It is an elegant and compact but suboptimal
design. The kernel could be further optimized by using
pipelining of iterations (double buffering), similar to the
SGEMM kernel described in the following paragraphs.

1. Tile kernels are referred to using the names of BLAS and LAPACK
routines implementing the same functionality.

IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 19, NO.9, SEPTEMBER 2008

Algorithm 2. SSYRK tile kernel 7'« T — A x AT.
1: for j =0 to 15 do
2: fori=0toj—1do
Compute block [j, i]
Permute/reduce block [j, i]
end for
Compute block [j, j]
Permute/reduce block [j, jl
end for

block is a 4 x 4 submatrix of tile T

The SGEMM kernel performs the operation C «— C —
B x AT, which is very similar to the operation performed
by the SSYRK kernel. One difference is that it updates the
tile C with a product of two tiles, B and AT, and not the
tile A and its transpose. The second difference is that the
output is the entire tile and not just its lower triangular
portion. Also, since the SGEMM kernel is performance
critical, it is subject to more optimizations compared to the
SSYRK kernel.

The main idea behind the additional optimization of the
SGEMM kernel comes from the fact that the SPE is a dual-
issue architecture, where arithmetic operations can execute
in parallel with permutations of vector elements. Therefore,
a pipelined implementation is possible, where the opera-
tions of the permutation/reduction segment from iteration &
can be mixed with the operations of the computation
segment from iteration k+ 1. The two nested loops used
for SSYRK are replaced with a single loop, where the
256 4 x 4 blocks of the output tile are produced in a linear
row-major order, which results in Algorithm 3.

Algorithm 3. SGEMM tile kernel C « C — B x AT
1: Compute block 0
2: fori =1 to 127 do
3 Permute/reduce blk 2i — 2 & compute blk 2 — 1
4. Permute/reduce blk 2i — 1 & compute blk 2:
5: end for
6: Permute/reduce blk 254 & compute blk 255
7: Permute/reduce blk 255

blk is a 4 x 4 submatrix of tile C.

The STRSM kernel computes a triangular solve with
multiple right-hand sides B < B x T~T. The computation is
conceptually easiest to SIMDize if the same step is applied at
the same time to different right-hand sides. This can be
easily achieved if the memory layout of tile Bis such thateach
four-element vector contains elements of the same index of
different right-hand sides. Since this is not the case here,
each 4 x 4 block of the tile is transposed, in place, before and
after the main loop implementing the solve. The operation
introduces a minor overhead but allows for a very efficient
implementation of the solve—one that achieves a good ratio
of the peak with small and simple code.

Algorithm 4 presents the structure of the code implement-
ing the triangular solve, which is an application of the lazy
variant of the algorithm. The choice of the lazy algorithm
versus the aggressive algorithm is arbitrary. The code
includes two segments of fully unrolled code, both of which

Authorized licensed use limited to: IEEE Xplore. Downloaded on April 21, 2009 at 15:20 from IEEE Xplore. Restrictions apply.

KURZAK ET AL.: SOLVING SYSTEMS OF LINEAR EQUATIONS ON THE CELL PROCESSOR USING CHOLESKY FACTORIZATION

1179

TABLE 2
Performance of Single-Precision Cholesky Factorization Tile Kernels

Kernel Source Compilation Object Execution Execution Fraction
Kernel Code Code Time Rate of Peak

[LOC] [KB] (18] [Gflop/s] [%]
SSYRK 160 spuxlc® -O3 4.7 13.23 20.12 78
SGEMM 330 spu-gec® -Os 9.0 22.78 23.01 90
STRSM 310 spuxlc® -O3 8.2 16.47 15.91 62
SPOTRF 340 spu-gec? -03 4.1 15.16 5.84 23

“version 1.0 (SDK 1.1)
byersion 4.0.2 (toolchain 3.2 - SDK 1.1)

operate on 64 x 4 blocks of data. The outer loop segment
(line 5) produces a 64 x 4 block j of the solution. The inner
loop segment (line 3) applies the update of step 4 to block j.

Algorithm 4. STRSM tile kernel B < B x T~ '.
1: for j =0 to 15 do
2: fori=0toj—1do

3 Apply block i toward block j
4 end for

5: Solve block j

6: end for

block is a 64 x 4 submatrix of tile B.

The SPOTREF kernel computes the Cholesky factorization,
T «— L x LT, of a 64 x 64 tile. This is the lazy variant of the
algorithm, more commonly referred to as the left-looking
factorization, where updates to the trailing submatrix do not
immediately follow panel factorization. Instead, updates
are applied to a panel right before the factorization of
that panel.

It could be expected that this kernel is implemented using
Level-2 BLAS operations, as this is the usual way of
implementing panel factorizations. Such a solution would,
however, lead to the code being difficult to SIMDize and
yield very poor performance. Instead, the implementation of
this routine is simply an application of the idea of blocking
with a block size equal to the SIMD vector size of four.
Algorithm 5 presents the structure of the SPOTRF tile kernel.

Algorithm 5. SPOTREF tile kernel T« L x LT.
1: for k=0 to 15 do
2: fori=0to k—1do

3: SSYRK (apply block [k, i] to block [k, k])
4: end for
5. SPOTF2 (factorize block [k, k])
6: forj=kto15do
7 fori=0tok—1do
8: SGEMM (apply block [j, i] to block [j, k])
9: end for
10: end for
11: for j =k to 15 do
12: STRSM (apply block [k, k] to block [j, k])
13: end for
14: end for

block is a 4 x 4 submatrix of tile T.

Table 2 compares the tile kernels in terms of source and
object code size and performance. Although performance is
the most important metric, code size is not without meaning,
due to the limited size of LS. Despite the fact that the code
can be replaced in the LS at runtime, it is desirable that
the entire code that implements the single-precision factor-
ization fits into the LS at the same time. Code motion during
the factorization would both complicate the code and
adversely affect the performance.

Although the matrix multiplication achieves quite good
performance—23 Gflops, which is 90 percent of the
peak—there is no doubt that better performance could be
achieved by using assembly code instead C language SIMD
extensions. Performance in excess of 25 Gflops has been
reported for similar although not identical SGEMM kernels
[17]. Itis remarkable that this performance can be achieved for
operations of such small granularity, which has to be
attributed to the unique features of the CELL architecture,
especially register file and memory organization.

It is worth noting that although significant effort was
required to optimize the SGEMM kernel (and yet more would
be required to further optimize it), the other kernels involved
a rather small programming effort in a higher level language
to deliver satisfactory performance (execution time shorter
than execution time of SGEMM kernel). This means that the
Pareto principle (also known as the 80-20 rule) (http://
en.wikipedia.org/wiki/Pareto_principle) applies very well
in this case. Only a small portion of the code requires
strenuous optimizations for the application to deliver close-
to-peak performance.

4.2.2 Parallelization

The presentation of the parallelization of the Cholesky
factorization needs to be preceded by a discussion of
memory bandwidth considerations.

The SGEMM kernel can potentially execute at a rate
very close to 25.6 Gflops on a single SPE. In such a case,
it performs the 2 x 64° = 524,288 operations in 20.48 ps.
The operation requires the transmission of three tiles
from the main memory to the LS (tiles A, B, and C) and a
transmission of one tile from LS to the main memory
(updated tile C), consuming a bandwidth equal to

Aites X 642 x dyie of(float) [B]
20.48[us]

This means that eight SPEs performing the SGEMM
operation at the same time will require a bandwidth of

= 3.2[Gbytes/s].

Authorized licensed use limited to: IEEE Xplore. Downloaded on April 21, 2009 at 15:20 from IEEE Xplore. Restrictions apply.

1180

IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 19, NO.9, SEPTEMBER 2008

Fig. 2. Execution chart of Cholesky factorization of a matrix of size 1,024 x 1,024. The color scheme follows the one in Fig. 1. Different shades of

green correspond to odd and even steps of the factorization.

8 x 3.2 Gbytes/s = 25.6 Gbytes/s, which is the theoretical
peak main memory bandwidth.

It has been shown that arithmetic can execute almost at the
theoretical peak rate on the SPE. At the same time, it would
not be realistic to expect the theoretical peak bandwidth
from the memory system. By the same token, data reuse has
to be introduced into the algorithm to decrease the load on
the main memory. A straightforward solution is to introduce
1D processing, where each SPE processes one row of tiles of
the coefficient matrix at a time.

Please see Fig. 1 for the following discussion. In the
SSYRK part, one SPE applies a row of tiles A to the diagonal
tile T', followed by the SPOTRF operation (factorization) of
the tile T'. Tile T only needs to be read in at the beginning of
this step and written back at the end. The only transfers
taking place in between are reads of tiles A. Similarly, in the
SGEMM part, one SPE applies a row of tiles A and a row of
tiles B to tile C, followed by the STRSM operation
(triangular solve) on tile C' using the diagonal triangular
tile T'. Tile C only needs to be read in at the beginning of this
step and written back at the end. Tile T' only needs to be
read in right before the triangular solve. The only transfers
taking place in between are reads of tiles A and B. Such
work partitioning approximately halves the load on the
memory system.

It may also be noted that 1D processing is a natural
match for the left-looking factorization. In the right-looking
factorization, the update to the trailing submatrix can easily
be partitioned in two dimensions. However, in the case of
the left-looking factorization, 2D partitioning would not be
feasible due to the write dependency on the panel blocks
(tiles T and C).

One-dimensional partitioning introduces a load balan-
cing problem. With work being distributed by block rows,
in each step of the factorization, a number of processors are
going to be idle, which are equal to the number of block

(N |,

O |N(fo|Uv| b
O(N|jo|u|h~|lW

Fig. 3. Load imbalance caused by 1D processing.

rows factorized in a particular step modulo the number of
processors. Fig. 3 shows three consecutive steps on a
factorization with the processors being occupied and idle in
these steps. Such behavior is going to put a harsh upper
bound on achievable performance.

It can be observed, however, that at each step of the
factorization, a substantial amount of work can be sched-
uled, to the otherwise idle processors, from the upcoming
steps of the factorization. The only operations that cannot be
scheduled at a given point in time are those that involve
panels that have not been factorized yet. This situation is
illustrated in Fig. 4. Of course, this kind of processing
requires dependency tracking in two dimensions, but since
all operations proceed at the granularity of tiles, this does
not pose a problem.

In the implementation presented here, all SPEs follow a
static schedule, presented in Fig. 4, with cyclic distribution
of work from the steps of the factorization. In this case, a
static schedule works well, due to the fact that the
performance of the SPEs is very deterministic (unaffected
by any nondeterministic phenomena like cache misses).
This way, the potential bottleneck of a centralized schedul-
ing mechanism is avoided.

Fig. 2 presents the execution chart (Gantt chart) of
factorization of a 1,024 x 1,024 matrix. The colors
correspond to the ones in Fig. 1. The two shades of green
distinguish the SGEMM operation in odd and even steps of
the factorization. The yellow color marks the barrier
operation, which corresponds to the load imbalance of the
algorithm.

It can be observed that load imbalance is minimal
(the yellow region), dependency stalls are minimal (the
white gaps), and communication and computation over-
lapping is very good (the colored blocks represent purely
computational blocks).

4.2.3 Synchronization
With the SPEs following a static schedule, synchronization
is required such that an SPE does not proceed if data
dependencies for an operation are not satisfied.

Several dependencies have to be tracked. The SSYRK and
SGEMM operations cannot use as input tiles A and B that

Fig. 4. Pipelining of factorization steps.

Authorized licensed use limited to: IEEE Xplore. Downloaded on April 21, 2009 at 15:20 from IEEE Xplore. Restrictions apply.

KURZAK ET AL.: SOLVING SYSTEMS OF LINEAR EQUATIONS ON THE CELL PROCESSOR USING CHOLESKY FACTORIZATION

Fig. 5. Magnification of a portion of the execution chart in Fig. 2.

have not been factorized yet. The off-diagonal tiles A and B
are factorized if the STRSM operation has completed on
these tiles. In turn, the STRSM operation cannot use as input
a diagonal tile 7" that has not been factorized yet. A diagonal
tile T is factorized if the SPOTRF operation has completed
on this tile.

Dependency tracking is implemented by means of a
replicated progress table. The progress tableis a 2D triangular
array with each entry representing a tile of the coefficient
matrix and specifies if the tile has been factorized or not,
which means the completion of an SPOTRF operation for
diagonal tiles and an STRSM operation for off-diagonal tiles.

By replication of the progress table, the potential bottle-
neck of a centralized progress tracking mechanism is
avoided. Each SPE can check dependencies by testing an
entry in its local copy of the progress table. The SPE
completing the factorization of a tile updates the progress
tables of all other SPEs, which is done by a DMA transfer
and introduces no overhead due to the nonblocking nature
of these transfers. Since the smallest amount of data subject
to DMA transfer is 1 byte, the progress table entries are
1 byte in size. These transfers consume an insignificant
amount of bandwidth of the EIB, and their latency is
irrelevant to the algorithm.

4.2.4 Communication

The most important feature of communication is double
buffering of data (overlapping computation and commu-
nication). With eight tile buffers available, each operation
involved in the factorization can be double-buffered
independently.

Thanks to this fact, double buffering is implemented not
only between operations of the same type but also between
different operations. In other words, data is always
prefetched for the upcoming operation, no matter what
operation it is. In the absence of dependency stalls, the
SPEs never wait for data, which results in big portions of
the execution chart without any gaps between computa-
tional blocks (Fig. 5).

Tiles are never exchanged internally between LSs but
always read from the main memory and written to the main
memory. An attempt to do otherwise could tie up buffers in
the LS and prevent the asynchronous operation of SPEs. At

1181

2001 sp peak

175 SGEMM peak ———t

150 SPOTRF /"‘.‘W—V

125 /

100 /

o]

50 /
25 //

{

0 1000

Gflop/s

DP peak

2000 3000 4000

Size
Fig. 6. Performance of single-precision Cholesky factorization.

the same time, with the work partitioning implemented
here, the memory system provides enough bandwidth to
fully overlap communication and computation.

Reads of tiles involve dependency checks. When it comes
to the prefetching of a tile, a dependency is tested, and a
DMA transfer is initiated if the dependency is satisfied. The
DMA completion is tested right before the processing of
the tile. If the dependency is not satisfied in time for the
prefetch, the prefetch is abandoned in order to not stall
the execution. Instead, right before the processing of the
tile, the SPE busy-waits for the dependency and then
transfers the tile in a blocking way (initiates the transfer and
immediately waits for its completion).

4.2.5 Performance

Fig. 6 shows the performance of the single-precision
Cholesky factorization calculated as the ratio of execution
time to the number of floating-point operations calculated
as N3/3, where N is the matrix size of the input matrix.

Table 3 gives numerical performance values for selected
matrix sizes in gigaflops and also as ratios relative to the
peak of the processor of 204.8 Gflops and the peak of the
SGEMM kernel of 8 x 23.01 = 184.8 Gflops.

The factorization achieves 95 percent of the peak of the
SGEMM kernel, which means that overheads of data
communication, synchronization, and load imbalance are
minimal, and at this point, the only inefficiency comes
from the suboptimal performance of the SGEMM kernel.

TABLE 3
Selected Performance Points of
Single-Precision Cholesky Factorization

Size Gflop/s % CELL Peak % SGEMM Peak
512 92 45 50
640 113 55 62
1024 151 74 82
1280 160 78 87
1536 165 80 89
1664 166 81 90
2176 170 83 92
4096 175 85 95

Authorized licensed use limited to: IEEE Xplore. Downloaded on April 21, 2009 at 15:20 from IEEE Xplore. Restrictions apply.

1182

X

Fig. 7. Distribution of work in the triangular solve routine.

Hopefully, in the future, the kernel will be fully optimized,
perhaps using hand-coded assembly.

4.3 Refinement

The two most expensive operations of the refinement are
the back solve (Algorithm 1, steps 3 and 8) and residual
calculation (Algorithm 1, step 6).

The back solve consists of two triangular solves invol-
ving the entire coefficient matrix and a single right-hand side
(BLAS STRSV operation). The residual calculation is a
double-precision matrix-vector product using a symmetric
matrix (BLAS DSYMYV operation).

Both operations are BLAS Level-2 operations and, on
most processors, would be strictly memory bound. The
STRSV operation actually is a perfect example of a strictly
memory-bound operation on the CELL processor. How-
ever, the DSYMV operation is on the borderline of being
memory bound versus computationally bound due to the
very high speed of the memory system versus the relatively
low performance of the double-precision arithmetic.

4.3.1 Triangular Solve

The triangular solve is a perfect example of a memory-
bound workload, where the memory access rate sets the
upper limit on achievable performance. The STRSV per-
forms approximately two floating-point operations per each
data element of 4 bytes, which means that the peak memory
bandwidth of 25.6 Gbytes/s allows for at most

25.6 Gbytes/s X Zops/ﬂmt/41)3/,553//#]0“ =12.8 GﬂOp/S,

which is only 1/16 or 0.625 percent of the single-precision
floating-point peak of the processor. Owing to this fact, the
goal of implementing memory-bound operations is to get
close to the peak memory bandwidth, unlike for computa-
tionally bound operations, where the goal is to get close to
the floating-point peak. This task should be readily
achievable, given that a single SPE possesses as much
bandwidth as the main memory.

Practice shows, however, that a single SPE is not capable
of generating enough traffic to fully exploit the bandwidth,
and a few SPEs solving the problem in parallel should be
used. Efficient parallel implementation of the STRSV
operation has to pursue two goals: continuous generation
of traffic in order to saturate the memory system and
aggressive pursuit of the algorithmic critical path in order
to avoid dependency stalls. A related question is the desired
level of parallelism—the optimal number of processing

IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 19, NO.9, SEPTEMBER 2008

24 Memory peak

20

164

GB/s

2000 3000 4000

Size

0 1000

Fig. 8. Performance of the triangular solve routines.

elements used. Since the triangular solve is rich in
dependencies, increasing the number of SPEs increases
the number of execution stalls caused by interprocessor
dependencies. Obviously, there is a crossover point, a sweet
spot, for the number of SPEs used for the operation.

Same as other routines in the code, the STRSV operation
processes the coefficient matrix by 64 x 64 tiles. Triangular
solve is performed on the diagonal tiles, and a matrix-vector
product (SGEMV equivalent) is performed on the off-
diagonal tiles. Processing of the diagonal tiles constitutes
the critical path in the algorithm. One SPE is solely devoted to
the processing of the diagonal tiles, while the goal of the
others is to saturate the memory system with processing of
the off-diagonal tiles. The number of SPEs used to process the
off-diagonal tiles is a function of a few parameters. The
efficiency of the computational kernels used is one of the
factors. In this case, the number four turned out to deliver the
best results, with one SPE pursuing the critical path and three
others fulfilling the task of memory saturation. Fig. 7 presents
the distribution of work in the triangular solve routines.

The solve is done in place. The unknown/solution vector
is read in its entirety by each SPE to its LS at the beginning
and returned to the main memory at the end. As the
computation proceeds, updated pieces of the vector are
exchanged internally by means of direct LS-to-LS commu-
nication. At the end, SPE 0 possesses the full solution vector
and writes it back to the main memory. Synchronization is
implemented analogously to the synchronization in the
factorization and is based on the replicated triangular
progress table (the same data structure is reused).

Fig. 8 shows the performance, in terms of gigabytes per
second, of the two triangular solve routines required in the
solution/refinement step of the algorithm. The two routines
perform slightly differently due to the different perfor-
mance of their computational kernels. The figure shows
clearly that the goal of saturating the memory system is
achieved quite well. Performance as high as 23.77 Gbytes/s
is obtained, which is 93 percent of the peak.

4.3.2 Matrix-Vector Product

For most hardware platforms the matrix-vector product
would be a memory-bound operation, the same as the

Authorized licensed use limited to: IEEE Xplore. Downloaded on April 21, 2009 at 15:20 from IEEE Xplore. Restrictions apply.

KURZAK ET AL.: SOLVING SYSTEMS OF LINEAR EQUATIONS ON THE CELL PROCESSOR USING CHOLESKY FACTORIZATION

>
IpERYEER
— LeE

y
reduce
i V] G -

Fig. 9. Distribution of work in the matrix-vector product routine.

triangular solve. On the CELL processor, however, due to
the relative slowness of the double-precision arithmetic, the
operation is on the border of being memory bound and
computationally bound. Even with the use of all eight SPEs,
saturation of the memory is harder than in the case of the
STRSV routine.

The DSYMV routine also operates on tiles. Here,
however, the double-precision representation of the coeffi-
cient matrix is used with a tile size of 32 x 32 such that an
entire tile can also be transferred with a single DMA
request. The input vector is only read in once, at the
beginning, in its entirety, and the output vector is written
back after the computation is completed. Since the input
matrix is symmetric, only the lower portion is accessed, and
implicit transposition is used to reflect the effect of the
upper portion—each tile is read in only once but applied to
the output vector twice (with and without transposition).

Since load balance is a very important aspect of the
implementation, work is split among SPEs very evenly by
applying the partitioning reflected in Fig. 9. Such work
distribution causes multiple write dependencies on the
output vector, and in order to let each SPE proceed without
stalls, the output vector is replicated on each SPE, and the
multiplication is followed by a reduction step. The
reduction is also performed in parallel by all SPEs and
introduces a very small overhead, compensated by the
benefits of very good load balance.

Fig. 10 shows the performance, in terms of gigabytes per
second, of the double-precision symmetric matrix-vector
product routine. A performance of 20.93 Gbytes/s is
achieved, which is 82 percent of the peak. Although the
DSYMV routine represents a Level-2 BLAS operation and is
parallelized among all SPEs, it is still computationally
bound. Perhaps, its computational components could be
further optimized. Nevertheless, at this point, the delivered
level of performance is considered satisfactory.

5 LIMITATIONS

The implementation presented here should be considered a
proof-of-concept prototype with the purpose of establishing
an upper bound on the performance achievable for mixed-
precision dense linear algebra algorithms on the CELL
processor. As such, it has a number of limitations. Only
systems that are multiples of 64 in size are accepted, which
means that the cost of solving a system of size 65 x 65 is
equal to the cost of solving a system of size 128 x 128. Also,
only systems with a single right-hand side are supported.

1183

M k
24 | Memory pea

20

164

GB/s

2000 3000 4000

Size

0 1000

Fig. 10. Performance of the matrix-vector product routine.

There are no tests for overflow during conversions from
double to single precision. There is no test for the positive
definite property during the single-precision factorization
step, so it is up to the user to guarantee this attribute. The
maximum size of the coefficient matrix is set to 4,096,
which makes it possible to fit the progress table in each LS.
This also makes it possible to fit the entire unknown/
solution vector in each LS, which facilitates internal LS-to-
LS communication and is very beneficial for performance.
The current implementation is wasteful in its use of the
main memory. The entire coefficient matrix is stored
explicitly without taking advantage of its symmetry, in
both single-precision representation and double-precision
representation, an issue that can be resolved by using
specialized storage formats [18].

6 RESuULTS AND DISCUSSION

Fig. 11 compares the performance of a single-precision
factorization (SPOTRE), the solution of the system in single
precision (SPOSV), and the solution of the system in double
precision by using factorization in single precision and
iterative refinement to double precision (DSPOSV). These
results were obtained on an IBM CELL blade using one of
the two available CELL processors. Huge memory pages
(16 Mbytes) were used for improved performance [16]. The
performance is calculated as the ratio of the execution time
to the number of floating-point operations, which is set in
all cases to N®/3. In all cases, well-conditioned input
matrices were used, resulting in two steps of refinement
delivering accuracy equal to or higher than the one
delivered by the purely double-precision algorithm.

At the maximum size of 4,096, the factorization achieves
175 Gflops, and the system solution runs at the relative speed
of 171 Gflops. At the same time, the solution in double
precision using the refinement technique delivers the
relative performance of 156 Gflops, which is an overhead
of less than 9 percent compared to the solution of the system
in single precision. It can also be pointed outthat by using the
mixed-precision algorithm, double-precision results are
delivered at a speed more than 10 times greater than the
double-precision peak of the processor.

Authorized licensed use limited to: IEEE Xplore. Downloaded on April 21, 2009 at 15:20 from IEEE Xplore. Restrictions apply.

1184

SP peak

SGEMM peak

SPOTRF

DSPOSV

DP peak

oL

0 1000

2000 3000 4000

Size
Fig. 11. Performance of the mixed-precision algorithm versus the

single-precision algorithm on IBM CELL blade system (using
one CELL processor).

160

SP peak

140
SGEMM peak

126 SPOTRF

100 1
DSPOSV

80

Gflop/s

60

40

20 DP peak

e

0 500

1000 1500 2000

Size
Fig. 12. Performance of the mixed-precision algorithm versus the
single-precision algorithm on Sony PlayStation 3.

Fig. 12 shows results obtained on the Sony PlayStation 3,
using the six available SPEs and 256 Kbytes® of available
memory allocated using huge pages (16 Mbytes). For the
maximum problem size of 2,048, a performance of
127 Gflops was achieved for the factorization, 122 Gflops
for the single-precision solution, and 104 Gflops for the
double-precision solution. In this case, the double-precision
solution comes at the cost of roughly 15 percent overhead
compared to the single-precision solution.

7 CONCLUSIONS

The CELL Broadband Engine has a very high potential for
dense linear algebra workloads, offering a very high peak
floating-point performance and a capability to deliver
performance close to the peak even for quite small problems.
The same applies to the memory system of the CELL

2. Only approximately 200 KB available to the application.

IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 19, NO.9, SEPTEMBER 2008

processor, which allows for data transfer rates very close to
the peak bandwidth for memory-intensive workloads.

Although the double-precision performance of the
CELL processor is much lower than the single-precision
performance, mixed-precision algorithms permit exploiting
the single-precision speed while achieving full double-
precision accuracy.

8 FUTURE PLANS

One of the main considerations for the future is application
of the pipelined processing techniques to factorizations
where the panel does not easily split into independent
operations, like the factorizations where pivoting is used.
Another important question is the one of replacing the
static scheduling of operations with dynamic scheduling by
an automated system and also the impact of such
mechanisms on programming ease and productivity.

9 COoDE

The code is publicly available at http://icl.cs.utk.edu/
iter-ref/ — CELL BE Code.

ACKNOWLEDGMENTS

The authors thank Gary Rancourt and Kirk Jordan at IBM
for taking care of their hardware needs and arranging for
partial financial support for this work. The authors are
thankful to numerous IBM researchers for generously
sharing their CELL expertise, in particular Sidney Manning,
Daniel Brokenshire, Mike Kistler, Gordon Fossum, Thomas
Chen, and Michael Perrone. This work was supported in
part by grants from the US National Science Foundation
(NSF) and US Department of Energy (DoE).

REFERENCES

[1] H.P. Hofstee, “Power Efficient Processor Architecture and the
Cell Processor,” Proc. 11th Int’l Symp. High-Performance Computer
Architecture (HPCA), 2005.

[2] J.A. Kahle, M.N. Day, H.P. Hofstee, C.R. Johns, T.R. Maeurer,
and D. Shippy, “Introduction to the Cell Multiprocessor,” IBM
J. Research and Development, vol. 49, no. 4/5, pp. 589-604, 2005.

[3] Cell Broadband Engine Architecture, Version 1.0. IBM, Aug. 2005.

[4] JH. Wilkinson, Rounding Errors in Algebraic Processes. Prentice
Hall, 1963.

[5] C.B. Moler, “Iterative Refinement in Floating Point,” J. ACM,
vol. 14, no. 2, pp. 316-321, 1967.

[6] GW. Stewart, Introduction to Matrix Computations. Academic
Press, 1973.

[71 N.J. Higham, Accuracy and Stability of Numerical Algorithms. SIAM,
1996.

[8] J. Langou, J. Langou, P. Luszczek,]. Kurzak, A. Buttari, and J.J.
Dongarraa, “Exploiting the Performance of 32 Bit Floating Point
Arithmetic in Obtaining 64 Bit Accuracy,” Proc. ACM/IEEE Conf.
Supercomputing, 2006.

[9] R.C. Agarwal and F.G. Gustavson, “A Parallel Implementation of
Matrix Multiplication and LU Factorization on the IBM 3090,” Proc.
IFIP WG 2.5 Working Conf. Aspects of Computation on Asynchronous
Parallel Processors, M.H. Wright, ed., pp. 217-221, 1988.

[10] R.C. Agarwal and F.G. Gustavson, “Vector and Parallel Algorithm
for Cholesky Factorization on IBM 3090,” Proc. ACM/IEEE Conf.
Supercomputing, 1989.

[11] Cell Broadband Engine Programming Handbook, Version 1.0. IBM,
Apr. 2006.

[12] Cell Broadband Engine Programming Tutorial, Version 2.0. IBM, Dec.
2006.

Authorized licensed use limited to: IEEE Xplore. Downloaded on April 21, 2009 at 15:20 from IEEE Xplore. Restrictions apply.

KURZAK ET AL.: SOLVING SYSTEMS OF LINEAR EQUATIONS ON THE CELL PROCESSOR USING CHOLESKY FACTORIZATION

[13] A. Buttari, P. Luszczek, J. Kurzak, J.J. Dongarra, and G. Bosilca,
“A Rough Guide to Scientific Computing on the PlayStation 3,
Version 1.0,” Technical Report UT-CS-07-595, Computer Science
Dept., Univ. of Tennessee, http://www.cs.utk.edu/library/
TechReports /2007 /ut-cs-07-595.pdf, 2007.

[14] J.J. Dongarra, 1.S. Duff, D.C. Sorensen, and H.A. van der Vorst,
Numerical Linear Algebra for High-Performance Computers. SIAM,
1998.

[15] J. Kurzak and].J. Dongarra, “Implementing Linear Algebra
Routines on Multi-Core Processors with Pipelining and a Look-
Ahead,” Proc. Workshop State-of-the-Art in Scientific and Parallel
Computing (PARA), 2006.

[16] J. Kurzak and J.J. Dongarra, “Implementation of Mixed Precision
in Solving Systems of Linear Equations on the CELL Processor,”
Concurrency Computation: Practice & Experience, vol. 19, no. 10,
pp- 1371-1385, July 2007, DOI: 10.1002/cpe.1164.

[17] T.Chen, R. Raghavan,]J. Dale, and E. Iwata, Cell Broadband Engine
Architecture and Its First Implementation, a Performance View,
http:/ /www-128.ibm.com/developerworks/power/library/pa-
cellperf/, Nov. 2005.

[18] B.S. Andersen, J.A. Gunnels, F.G. Gustavson, J.K. Reid, and J.
Wasniewski, “A Fully Portable High Performance Minimal
Storage Hybrid Format Cholesky Algorithm,” ACM Trans. Math.
Software, vol. 31, no. 2, pp. 201-227, 2005.

T

Jakub Kurzak received the MSc degree in
electrical and computer engineering from the
Wroclaw University of Technology, Poland, and
the PhD degree in computer science from the
University of Houston, Texas. He is a research
associate in the Innovative Computing Labora-
tory, Department of Electrical Engineering and
Computer Science, University of Tennessee,
Knoxville. His research interests include parallel
algorithms, specifically in the area of numerical
linear algebra, and also parallel programming models and performance
optimization for parallel architectures spanning distributed- and shared-
memory systems, as well as next-generation multicore and many-core
processors. He is a member of the IEEE and the IEEE Computer Society.

1185

Alfredo Buttari received the MSc degree in
computer science and the PhD degree in
computer science and control engineering from
the University of Rome, ltaly. He is a research
associate in the Innovative Computing Labora-
tory, Department of Electrical Engineering and
Computer Science, University of Tennessee,
Knoxville. His research interests include numer-
ical linear algebra, dense and sparse methods,
direct and iterative solvers, parallel algorithms,
and performance optimization for parallel architectures including next-
generation multicore and many-core processors.

Jack Dongarra received the BS degree in
mathematics from Chicago State University in
1972, the MS degree in computer science from
the lllinois Institute of Technology in 1973, and
the PhD degree in applied mathematics from the
University of New Mexico in 1980. He worked at
the Argonne National Laboratory until 1989,
where he was a senior scientist. He now holds
an appointment as a university distinguished

) professor of computer science in the Depart-
ment of Electncal Engineering and Computer Science, University of
Tennessee, Knoxville. He is a distinguished research staff member in
the Computer Science and Mathematics Division, Oak Ridge National
Laboratory (ORNL), a Turing fellow in the Computer Science and
Mathematics Schools, University of Manchester, and an adjunct
professor in the Computer Science Department, Rice University. He is
a fellow of the IEEE and the IEEE Computer Society.

> For more information on this or any other computing topic,
please visit our Digital Library at www.computer.org/publications/dlib.

Authorized licensed use limited to: IEEE Xplore. Downloaded on April 21, 2009 at 15:20 from IEEE Xplore. Restrictions apply.

