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Abstract
The next generations of supercomputers are projected to have hun-
dreds of thousands of processors. However, as the numbers of pro-
cessors grow, the scalability of applications will be the dominant
challenge. This forces us to reexamine some of our fundamental
ways that we approach the design and use of parallel languages
and runtime systems.

In this paper we show how the globally shared arrays in a pop-
ular Partitioned Global Address Space (PGAS) language, Unified
Parallel C (UPC), can be combined with a new collective interface
to improve both performance and scalability. This interface allows
subsets, or teams, of threads to perform a collective together. As op-
posed to MPI’s communicators, our interface allows set of threads
to be placed in teams instantly rather than explicitly constructing
communicators, thus allowing for a more dynamic team construc-
tion and manipulation.

We motivate our ideas with three application kernels: Dense
Matrix Multiplication, Dense Cholesky factorization and multi-
dimensional Fourier transforms. We describe how the three afore-
mentioned applications can be succinctly written in UPC thereby
aiding productivity. We also show how such an interface allows
for scalability by running on up to 16,384 processors on the Blue-
Gene/L. In a few lines of UPC code, we wrote a dense matrix mul-
tiply routine achieves 28.8 TFlop/s and a 3D FFT that achieves 2.1
TFlop/s. We analyze our performance results through models and
show that the machine resources rather than the interfaces them-
selves limit the performance.

Keywords Parallel programming, PGAS, UPC, Collective com-
munication, Programming productivity, Blue Gene

1. Introduction
As the demand for computational power continues to increase for
both scientific and commercial applications, machines exhibiting
large scale parallelism are becoming ubiquitous. Leading the way,
the IBM Blue Gene architecture already provides more than a
hundred thousand processors in its largest configuration [26].
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One of the biggest challenges facing programmers for these ma-
chines is application scalability. This affects not only algorithm de-
sign, but also the design of parallel languages and runtime systems.
A new class of languages, called Partitioned Global Address Space
(PGAS) languages, has recently emerged to aid in the performance
and scalability of these applications. Rooted in traditional shared
memory programming models, these languages expose a global ad-
dress space that is logically partitioned across the processors. The
design of these languages recognizes the fact that memory access
in modern machines is non-uniform. Compared to OpenMP [36]
which assumes a shared memory system or MPI [32] that is de-
signed for distributed memory systems, PGAS languages are better
positioned to provide a suitable programming model for modern
machines.

Our experiences in writing parallel applications and their sup-
porting runtime systems have exposed the following three impor-
tant considerations when writing optimized parallel code: (1) the
need for optimal data distributions, (2) the ability to leverage exist-
ing efficient serial libraries such as BLAS[12] and FFTW[25], and
(3) a simple interface to an optimized communication infrastructure
to communicate and coordinate between the various processors. In
order for a language to be considered productive it must be able to
let the programmer concisely express these considerations without
sacrificing performance and scalability.

In this paper we demonstrate how applications written in Uni-
fied Parallel C (UPC) [41], one of the most popular PGAS lan-
guages, can perform on par with hand-coded MPI applications
while offering brevity and superior clarity. We make a minor ex-
tension to the shared arrays in the language to allow for multidi-
mensional blocked arrays. This enables data layouts more suitable
to the linear algebra domain. In addition, we develop a new collec-
tive communication library that takes advantage of the data affinity
and one-sided communication expressed in UPC. While we demon-
strate these ideas in the context of UPC, these optimizations are
equally applicable to other PGAS languages, such as Titanium [48]
and Co-Array Fortran [34].

Most large scale machines have hardware support for collective
communication and optimized MPI libraries that take advantage
of this support. However, MPI libraries are typically designed to
be thread-centric, that is, the user is forced to think about which
threads or processors it must communicate with. To exploit the
collective communication hardware primitives in PGAS languages,
we propose a new, data-centric, collective communication interface
that takes advantage of the shared data semantics expressed in a
PGAS program.

To summarize, our paper makes the following contributions:



• propose simple annotations to enable data distributions and
layouts that allow the programmer to exploit high-performance
serial libraries, such as those developed for linear algebra, in
conjunction with multidimensional shared arrays;
• a new, data-centric collective communication interface design

that takes advantage of shared data semantics, instant teams,
and one-sided communication to provide the user with high-
performance collective communication;
• demonstrate productivity and performance for three application

kernels: parallel dense matrix multiplication, 3D Fast Fourier
Transform (FFT) and Cholesky factorization on a large scale
Blue Gene/L configuration – with a few lines of UPC code
we show linear scalability to thousands of processors on Blue-
Gene/L and performance comparable to the best hand tuned
kernels developed specifically for this machine.

In Section 2 we first outline the basics of PGAS languages. We
then discuss the limiting factors for the performance and scalability
of applications on large scale machines in Section 3. In addition we
also outline a minor extension to the UPC language to make the
shared arrays more amenable to applications in the linear algebra
domain. We then continue our discussion with a description of a
new collectives interface that is designed to operate on the shared
arrays in Section 4. We then show how these ideas can be tied
together to write the three aforementioned kernel applications in
Section 5. We then analyze the performance and scalability of our
interfaces and these kernels in Section 6. We finally conclude with
related work and observations in Sections 7 and 8.

2. Partitioned Global Address Space Languages
The primary aim of PGAS languages [47] is to provide a single pro-
gramming model for shared memory and distributed memory plat-
forms (and everything in between) by exposing a globally shared
address space to the user. These languages also explicitly expose
memory affinity and non-uniform memory access to the end user by
having each thread be logically associated with a part of the shared
global address space. The globally shared address space allows the
processors to directly read and write remote data without notifying
the application running on the remote processor through language
level one-sided communication operations (i.e. put and get versus
send and receive). Similar to traditional shared memory program-
ming, the user is responsible for handling any race-conditions that
might arise. Many related projects have shown the performance and
productivity advantages of such an approach [15, 17, 21].

With the following declaration in UPC (for example):

shared [5] A[10*THREADS];

we can declare an array that is distributed across all the threads
such that each thread has 10 elements. The blocking factor of 5
denotes that the elements are distributed block-cyclically in groups
of 5. Thus the first 5 elements are on processor 0 while the next 5
are on processor 1 etc. Through simple language level array index
operations (e.g. A[7]) all processors can access any location in
the array regardless of the affinity of the data. The compiler and
runtime systems will generate the appropriate communication calls.
Related work by the Berkeley UPC group [11] has shown that
a portable and efficient source-to-source translator and optimized
runtime system can be written for such an approach.

3. Performance Considerations
High performance versions of the sequential linear algebra sub-
routines exist for most architectures: Atlas [45], ESSL [23], the
Intel Math Kernel Library [30], OSKI [44], FFTW [25] and SPI-
RAL [37]. However, for large scale parallel machines the landscape

shared [b][b] double A[M][P], B[P][N], C[M][N];
double alpha=1.0,beta=1.0;
for (kk=0; kk<P; kk+=b) {

double a_local[b*b], b_local[b*b];
upc_forall (int ii=0; ii<M; ii+=b; continue)

upc_forall (int jj=0; jj<N; jj+=b; &C[ii][jj]) {
upc_memget (a_local, &A[ii][kk], sizeof(double)*b*b);
upc_memget (b_local, &B[kk][jj], sizeof(double)*b*b);
dgemm (‘T’, ‘T’, &m, &n, &p, &alpha, a_local, &b,

b_local, &b, &beta, (void *)&C[ii][jj], &b);
}

}

Figure 1. UPC code for parallel matrix multiplication

is completely different: application programmers have to hand-
code parallel kernels, distribute data and load balance the compu-
tation for each workload, incurring significant effort and cost. For
example, individually optimized versions of HPL and FFT for these
architectures run to many lines of code, encompass multiple man-
years of effort, and are far from ubiquitous.

One of the key questions that we are addressing in this paper
is “Can a high productivity language be used to express the in-
herently complicated set of requirements posed by a high perfor-
mance parallel algorithm?” To answer the question, we shall go
through a simple exercise: write a parallel version of a simple al-
gorithm, such as matrix multiplication (MM), for a large scale ma-
chine and strive to achieve performance on par with the best hand-
optimized codes, without sacrificing readability and programma-
bility. We choose UPC as the high productivity language.

High performance parallel implementations of MM are typ-
ically parallelized and blocked at multiple levels. Parallelism is
employed at instruction level to take advantage of ILP and at
thread/CPU level to take advantage of multiple functional units.
Blocking is used to take advantage of locality at register, cache,
memory and network level. A number of parallel matrix multiply
algorithms exist [14, 43, 18]. Our implementation is essentially a
blocked version of the SUMMA algorithm.

The UPC language constructs provide easy parallelism through
the upc forall construct and data blocking. However, upon closer
examination we note that UPC does not support data blocking in
more than one dimension, requiring the user to manually linearize
two-dimensional matrix indices. To alleviate this problem, we pro-
posed UPC syntax additions in [9] to enable multidimensional tiled
arrays in UPC. Tiled arrays are declared as follows:

shared [b0][b1]...[bn] <type> A[d0][d1] ... [dn];

As many blocking factors can be added as there are array di-
mensions. The runtime stores the elements within a tile contigu-
ously with a row-major ordering. The tiles with affinity to a par-
ticular processor are then stored contiguously in memory with a
row-major order. The blocking factors are not required to divide ar-
ray dimensions. Since the data within a tile is stored contiguously
we can directly pass any portion of the tile to optimized serial li-
braries without any data reorganization. In our example we are able
to directly call the serial BLAS optimized version of the kernel and
thus the resulting matrix multiply code is very simply as shown in
Figure 1. It relies on a sequential BLAS implementation for per-
formance, but takes explicit care of parallelism (by means of the
upc forall loops) and communication (by using the upc memget
built-ins). Communication is aggregated, which makes for better
efficiency.

However, the code snippet in Figure 1 also suffers from unpre-
dictable performance and has scalability issues. In [9] we demon-
strated good scaling up to about 16 UPC threads, beyond which par-



allel efficiency decayed rapidly. Subsequent examination revealed
two major causes for this decay.

• Processor layout: While the matrices are tiled, the programmer
has no real control over the distribution of tiles among the
processing elements, making a mapping to a high performance
network topology next to impossible.
• Communication pattern: Communication in Figure 1 is point-

to-point, resulting in communication imbalance and waste of
bandwidth.

We address these problems by means of two techniques. First,
we allow the programmer to specify a Cartesian processor dis-
tribution for a UPC array. This roughly corresponds to Cartesian
topologies in MPI: an ability to denote threads with a tuple <
t0, t1, ...tn > instead of a single number t, 0 ≤ t < THREADS.
This has been done by other languages, such as HPF[27] and
ZPL[16]. We propose a syntax similar to HPF, in which proces-
sor mappings are named and shared arrays are mapped to these
distributions. E.g.:

#pragma processors MyDistribution(10, 10)
shared [B1][B2] (MyDistribution) int A[N1][N2];

The distribution directive above establishes a 10× 10 Cartesian
distribution, and array A is declared to be of that distribution. The
system verifies at runtime whether the distribution is legal and
ignores it if it does not match the current running configuration
(e.g. not enough running threads to fill up a 10× 10 distribution).

Our second technique is to replace point-to-point communica-
tion primitives with UPC collectives that are both easy and intuitive
to program and can take advantage of the Cartesian topologies. We
discuss these issues in the next section. Section 5 goes into more
depth about how these methods can be combined together.

4. Collective Communication
Since the PGAS languages explicitly expose the non-uniform na-
ture of memory access times to the memory of different proces-
sors, operations to local data (i.e. the portion of the address space
that a particular processor has affinity to) will tend to be much
faster than operations on remote data (i.e. any part of the shared
data space that a processor does not have affinity to). Thus, unlike
traditional shared memory programming, the languages necessitate
global data re-localization operations in order to improve perfor-
mance which will be served by the collective communication oper-
ations.

Collective communication operations (or collectives) are ab-
stractions that encapsulate common data movement patterns that
most parallel programming models provide. This section describes
how our new interface can succinctly express common communi-
cation patterns across shared arrays found in PGAS languages. The
main attributes of these new collective interface are the following:
(1) data-centric communication, (2) subsets of processors partici-
pating in collectives (teams), and (3) dynamic team construction
based on data affinity.

Since UPC emphasizes global shared arrays as the primary con-
structs for parallel programming, our goal is to make the collec-
tives use a data-centric model rather than the thread-centric model
employed by many other parallel programming models. In many
applications it is important to be able to perform a collective on a
subset of the elements in a shared array. These elements are only
likely to only exist on a subset of the processors. We will call this
subset of processors a team. The closest equivalent to teams are the
MPI[32] communicators.
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Figure 2. A few example trees used in collectives

4.1 Proposed Collective Model
In MPI the user is required to explicitly specify the team mem-
bers and handle his own packing of the data into contiguous blocks
so that the collectives can handle the transfers. The current UPC
collective interface lacks support for teams and imposes very strict
thread-centric data layout rules while also requiring the user to han-
dle the packing and unpacking. Our proposed extensions would
allow the users to specify the blocks of data involved and let the
underlying runtime system handle the problem of mapping data
blocks to threads and packing the data into contiguous blocks.
Since the runtime system already has full knowledge of how the
shared arrays are mapped onto the threads, the overhead of obtain-
ing this information is relatively small.

For efficiency reasons we require that all threads that have
affinity to one of the active blocks of data to make a call into the
collective, similar to the current MPI and UPC collective models.
If a thread that does not have affinity to any of the the data involved
in the call, the operation is treated like a no-op. This allows us to
build a scalable implementation of the communication schedule by
letting the collective build a tree over all threads participating in
the collective. Tree-based collectives are critical to performance
[20]. Since the overhead of injecting messages onto the network
cannot be parallelized, using intermediary nodes alleviates this
serial bottleneck by sending to different parts of the network. In a
broadcast, for example, the root thread can then send data to a small
set of children who then forward the data down the tree. This type
of communication schedule for broadcast increases the available
bandwidth and decreases the latency since more of the network
resources are being used in parallel. Figure 2 shows an example of
various tree topologies rooted at thread 0. Our experience showed
that the fork trees mapped well to the Blue Gene network while
other topologies are likely to do better on different networks.

Seidel et al. have also proposed an alternative model for collec-
tives in UPC [39] which would require only one thread to handle
the data movement for all the threads involved in the collective,
without the need for any of the other threads to participate in the
collective. However, this forces the implementations to either (1)
always use flat trees, which severely hinders scalability at large pro-
cessor counts, or (2) have an auxiliary thread on each node that is
not part of the runtime that handles the collective communication
responsibilities for that node. Setting aside the performance impli-
cations of devoting an extra thread to handle the collectives on ma-
chines with few cores per node, synchronization of these collectives
becomes an issue. The runtime system can not infer that a collec-



shared [] int src[4];
shared [4][4] int dst[200][200];

upc stride broadcast(dst<0:2:49,0:2:49>,
src, sizeof(int)*4, 0);

shared [10][10] int src[100][100];
shared [10][10] int dst[100][100];

upc stride exchange(dst<0,:>, src<:,0>,
sizeof(int), 0);

(a) (b)

Figure 3. Strided Collective Examples. (a) A code-snippet to perform a broadcast src to every other row and column of the dst matrix (b)
A code-snippet to exchange data from the first column of src into the first row of dst

tive is going to be active within a given barrier phase and therefore
the programmer has to either explicitly handle the synchronization,
which could get cumbersome, or wait until the next barrier phase
to use the data, which could cause over-synchronization and lead
to performance penalties. Due to the performance and productivity
disadvantages of such an approach we decided to employ a model
in which all threads with affinity to data involved in a collective
make an explicit call to the collective.

4.2 An Example Interface
As mentioned above, the main goal of this work is to show that
the data-centric collectives alongside the shared arrays in UPC
can simultaneously provide productivity as well as performance.
We are less concerned with the exact formal specification of the
collectives in the language. While we are going to work with the
UPC language consortium to propose these collectives, we first
want to demonstrate their usefulness, and consider syntax to be
outside the scope of the paper.

We use a Matlab [31] style interval notation to specify blocks of
data in each dimension that will be used in the collective. The ap-
plication experience in using these collectives motivated the speci-
fication of block indices in the interval rather than the array indices
themselves. However this decision is not fundamental to the inter-
face. Our interface adheres to the current UPC collective synchro-
nization specification.

To motivate the interface we will discuss one example in each
of the two collective categories: (1) one-to-many (e.g., broadcast)
and (2) many-to-many (e.g., exchange1). Section 5 goes into fur-
ther detail on how these operations can be incorporated into real
applications.

• One-To-Many
In the first category of collectives, one root block contains the
data to be disseminated to other blocks of the shared array.
Common collectives in this category include broadcast() and
scatter(). Typical scalable implementations of these opera-
tions construct a tree over the threads rooted on the thread that
owns the original data. In our interface (as well as the current
UPC collective specification), the user specifies a shared pointer
rather than explicitly specifying the root thread.
In addition, we allow the user to specify a list of intervals to
the destination which dictate which blocks the broadcast data
will be stored into. The number of intervals is dictated by
the number of dimensions of the shared array. The proposed
prototype for this type of collective is:

upc_stride_broadcast(shared void* dst<intervals>,
shared void* src,
size_t len, int sync_flags);

The example in Figure 3(a) declares a two-dimensional desti-
nation array. The src array broadcast the data into every other
row and column of the dst matrix.

1 In MPI parlance this operation is MPI Alltoall()

• Many-To-Many
In the next important category of collective operations, every
output block involves data from all the input blocks. The in-
put blocks are likely to be distributed across many processors.
Scalable implementations of these collectives carefully tune the
communication schedule to avoid creating hot spots in the net-
work, however the performance is often limited by the bisec-
tion bandwidth. Many methods[13] also exist for performing
the communication in O(N log N) rounds rather than O(N2)
rounds.
A popular example of a collective in this category is
exchange(). This collective breaks each block in the input ar-
ray into k pieces of len bytes each. It is assumed that there are k
blocks specified in the each of the source and destination inter-
vals. It then takes the ith slot from block j and places it into the
jth slot in block i on the destination. The following prototype
illustrates our proposed interface:

upc_stride_exchange(shared void* dst<intervals>,
shared void* src<intervals>,
size_t len, int sync_flags);

Figure 3(b) shows an example of an exchange operation. In the
example all the blocks in the first column of the source matrix
are exchanged into the first row of the destination matrix.

Notice that in neither the definition nor the example collectives
interface did we require the user to specify the identity or number
of threads involved in the communication. The threads involved are
implicitly defined by specifying which blocks of data the collective
is to be run across. Since there is no explicit mention of how many
blocks a particular thread owns, it is up to the implementation
to infer this information and make the correct decisions on how
to correctly pack the data. Allowing the runtime to make such
decisions allows for much greater performance portability.

However, since we do require all the threads with affinity to
any part of the memory being communicated call the collective we
provide a simple utility function that can query whether the calling
thread has affinity to any part of the data. Since this information is
already stored inside the runtime system such query functions will
be fast.

int upc_haveaffinity(shared void* arr<intervals>);

The function will return a nonzero value if the calling thread has
affinity to any of the data in the specified interval or 0 otherwise.

4.3 Hiding the Tuning Process
We are also witness to a large variety of processors and the in-
terconnection networks. The wide variety of machines makes the
prospect of tuning communication schedules at the application
level infeasible. By using a collective interface and a runtime sys-
tem that can handle efficient packing and unpacking of the data,
these tuning issues are left in the hands of network and runtime
system designers who often have access to much lower level net-
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Figure 4. One step of the dense matrix factorization recursion

work features to implement the operations. Our implementation,
for example, on the Blue Gene/L leveraged many features in the
Blue Gene messaging layer [4] (such as Active Messages) that have
not been exposed to the UPC programmer. Creating this abstraction
ensures performance portability since the application designer need
not worry about the intricacies of tuning the communication sched-
ules.

5. Productivity
Thus far we have motivated the use of the global shared arrays and a
new collective interface that takes advantage of these arrays. In this
section we show how three common and important computational
kernels can be written very succinctly in UPC with our proposed
additions. In Section 6 we demonstrate that the codes presented in
this section scale to thousands of processors.

5.1 Dense Matrix Multiplication and Dense Cholesky
Factorization

One of the most commonly used computational kernels in large
scale parallel applications is dense matrix multiplication. In this
kernel we perform the operation C = A×B where A, B, and C are
dense matrices of sizes M×P , P×N , and M×N , respectively. In
order to effectively parallelize the problem, each of these matrices
must be partitioned across the processors.

In addition to being an important kernel in itself, this opera-
tion is considered the rate limiting step in other dense factoriza-
tion methods such as the Dense LU decomposition (A = LU )
or the Dense Cholesky factorization (A = UT U ). As shown in
Figure 4, the popular implementations of the parallel factorization
methods of these operations[18, 33] break the matrix into 4 quad-
rants: a small upper left corner (AUL), a tall skinny lower left cor-
ner (ALL), a short and wide upper right corner (AUR), and a large
lower right corner (ALR). The methods perform serial computa-
tion on the upper right corner and update the lower left and upper
right quadrants of the matrix. Then a large parallel outer product
of the latter two quadrants is performed to update the lower right
corner. The algorithm continues by recursively factoring the lower
right quadrant. Hence the matrix elements in the lower right corner
tend to be more heavily used and updated compared to the other
parts. A purely blocked layout would induce a poor load balance
since the most heavily used elements will be concentrated amongst
a few processors. In order to alleviate this problem, a checkerboard
layout[29] of processors is used so that the load is more evenly
distributed across the processors. However, such a checkerboard

layout dramatically increases the complexity of an implementation
since the user is responsible for managing the mapping of these
blocks to the processors. With our proposed extensions, the run-
time system handles this distribution. What remains to be shown, is
how the collectives interface described in the previous section can
be applied to this problem.

Figure 5 shows an example of the outer product used in most
factorization methods. The two dense matrices A and B are mul-
tiplied together to get C. In the figure the pieces of the matrix are
color coded by the processor that owns the piece of the matrix. We
can compute a particular block, C[i][j] by performing the opera-
tion:

C[i][j]+ =

P−1∑
k=0

A[i][k]×B[k][j]

Notice that for all blocks in a given row i we need only broadcast
the elements of A[i][k] once and store into a temporary array.
The subset of the processors that own row i has size O(

√
T ),

where T is the total number of UPC threads. Next we need to
perform a column broadcast of B[k][j] into a separate scratch
array. Again notice that column broadcasts occur over a set of
O(
√

T ) processors in the column dimension. By using calls to
the collectives interface, the runtime system has much finer control
on how the communication is coordinated compared to the use of
many uncoordinated gets. This enables the algorithm to be scaled
to large processor counts.

The UPC code for matrix multiplication is shown in Figure 7
while the Cholesky factorization example can be found in Figure 11
in Appendix A. Lines 1 to 3 of Figure 7 declare the dense matri-
ces with the specified blocksizes and partitioned according to the
mapping specified in Section 3. Notice that with one simple dec-
laration that UPC offers, the entire matrix is load balanced in the
optimum checkerboard pattern. Such a task in MPI is much more
cumbersome since the matrix block to processor mapping has to be
controlled by the application writer rather than the runtime system.
We then allocate a set of scratch arrays in Line 3 that will be used
for intermediate results. We iterate through the blocks of the ma-
trix as one would do in a standard blocked implementation of the
kernel. In addition, we replace the upc memget()s in the original
code (Figure 1) with broadcast collectives. Notice all the broadcasts
in one dimension occur simultaneously and each processor is only
responsible for specifying the portion of the data that it owns. As
we will see in the Section 6, with the call to an optimized collec-
tive rather than using many upc memgets()s the code in Figure 7
scales much better without significant changes in the complexity.

5.2 Three Dimensional Fourier Transform
Unlike the Dense Matrix Multiplication algorithm (and to a lesser
extent, Dense Cholesky factorization), which is bound by the to-
tal amount of computation, a large parallel three dimensional Fast
Fourier Transform routine is typically bound by the interconnect
bandwidth. Given a rectangular prism, the three-dimensional FFT
performs an FFT in each of the dimensions of the grid. Thus each
point in the domain is involved in 3 different FFTs. When this prob-
lem is mapped across a two-dimensional processor grid, only one
of these dimensions can be computed without communication. The
FFT is used in many areas of science such as molecular dynamics,
computational fluid dynamics, image processing, signal process-
ing, nanoscience, astrophysics, etc. While we focus our analysis on
a 3D FFT, Agarwal et al.[2] show how any 1D FFT can be trans-
formed into a 3D FFT. Our techniques can equally be applied to
these lower dimension FFTs.

Figure 6 shows the mapping of a 3-dimensional domain onto
a 2 dimensional processor grid. In this example, each processor
owns NY

TY
rows of NZ complex elements each. Thus each of the
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1. #pragma processors rect(Tx,Ty)
2. shared [b][b] (rect) double A[M][P], B[P][N], C[M][N];
3. shared [b][b] (rect) double scratchA[b*Tx][b*Ty], scratchB[b*Tx][b*Ty];
4. double alpha=1.0, beta=1.0;
5. int myrow=MYTHREAD/Ty; int mycol=MYTHREAD%Ty;
6. for(k=0; k<P; k+=b) {
7. for(i=0; i<M; i+=Tx*b) {

/*broadcast across the rows*/
8. upc_stride_broadcast(scratchA<myrow,:>, &A[i+myrow*b][k],

sizeof(double)*b*b, UPC_OUT_MYSYNC);
9. for(j=0; j<N; j+=Ty*b) {

/*broadcast down the columns*/
10. upc_stride_broadcast(scratchB<:,mycol>, &B[k][j+mycol*b],

sizeof(double)*b*b, UPC_OUT_MYSYNC);
/* matmult*/

11. dgemm(‘T’, ‘T’, &b, &b, &b, &alpha,
(double*) &scratchA[myrow*b][mycol*b], &b,
(double*) &scratchB[myrow*b][mycol*b], &b, &beta,
(double*) &C[i+myrow*b][j+myrow*b], &b);

12. }
13. }
14.}

Figure 7. UPC Code for Dense Matrix Multiply

NX planes is broken up into TY pieces and our 2D processor
grid is NX × TY . We first perform the FFT in the Z direction,
which is completely local and requires no communication. In order
to perform the FFTs in the Y direction each of the planes need to be
rotated. Thus the group of TY threads that own each plane perform
an exchange amongst each other. Once the data is in place we can
easily perform the appropriate set of local FFTs. Finally we need to
perform an exchange in the X dimension. Thus all the processors
that own a common row across all the planes (e.g. all the processors
that own the green rows) will perform an exchange. Finally we
compute the last round of FFTs. Figure 12 in Appendix A shows
the UPC code to implement these operations. The calls to fft()
are calls to high-performance FFT libraries such as ESSL or FFTW
which provide the appropriate interface.

5.3 Observations
We use these benchmarks as a case study to explore the effective-
ness of the interface and examine how three of the major hurdles to
efficient and scalable parallel programming are addressed.

• Data distribution and load balancing In our examples, the
user specifies high level properties of how the data should be
laid out across processors. For example in the case of the ma-
trix multiply and Cholesky factorization, the user is responsible
for specifying the granularity of the checkerboard. In the case
of the FFT, the user specifies the TY and NX dimensions to dic-
tate how many processors are involved in each of the exchange
rounds. However, notice that once the data distribution direc-
tives are given, access to the arrays is straight forward. Mapping
the data distribution and array indices to the processors is left
to the runtime.
• Constructing an efficient and scalable communication

schedule between the processors After distributing the prob-
lem across the processors it is important that these proces-
sors work together and communicate as efficiently as possi-
ble. Therefore we wrote the three benchmarks with collectives
rather than manually controlling the communication. This al-
lows the runtime layer to handle the communication more ef-
ficiently by using network features, such as Active Messages,



that were unavailable to the UPC programmer. By passing the
responsibility of tuning the communication schedule to the run-
time layer through a clean interface, the user absolves himself
from having to worry about the painstaking task of tuning com-
munication. The wide body of literature on the subject of collec-
tive tuning for a variety of architectures indicates that the pro-
cess is a non-trivial problem and very dependent on the specifics
of the interconnect.
• Efficient serial computational performance Once the data

has effectively been distributed and communicated the last
piece that remains is to perform the serial computation. Se-
rial tuning for many of the popular serial computational ker-
nels have been well studied and serial libraries such as ESSL,
FFTW, ATLAS, and OSKI have been well tuned (either by hand
or automatically) on many architectures. Any parallel program-
ming language must allow for easy ways to leverage this work
to realize optimal serial performance. In our implementations,
the data movement is handled in UPC while the computation is
handled through optimized serial libraries.

Software libraries, such as PETSc[7] and ScaLAPACK[24],
alleviate some of the pain of data distribution and coordinating
communication by providing an extensive API to handle these
operations. However, introducing these features at the language
level allows for more expressivity than a library can provide. In
order to minimize the complexity of the interface, a library writer
must try to keep the interface very simple by making an educated
guess about which data layouts to support and which data layouts
to omit. By contrast, when these data layouts are incorporated into
a language, a simple grammar can lead to a much more rich set of
data layouts that are infeasible to efficiently provide at the library
level.

By allowing the user to only specify high level language di-
rectives regarding the data distribution, letting the runtime handle
the details of the communication and allowing the user to use pre-
existing libraries we can dramatically reduce the number of lines
required to program common and important kernels.

6. Evaluation
6.1 Experimental Setup
We validated the proposed UPC language extensions and collec-
tives on the IBM Blue Gene supercomputer located at the IBM TJ
Watson Research Center. We implemented the codes discussed in
Section 5 and ran scaling experiments from 32 processors to 16384
processors.

• Compiler: we used the the IBM UPC compiler for our work.
The compiler supports a number of SMP, distributed and hybrid
architectures including Blue Gene/L. The compiler includes
a runtime, which translates UPC remote memory accesses to
messages using the Blue Gene Distributed Computing Messag-
ing Framework (DCMF) API.
The IBM UPC compiler’s front-end does not (yet) support the
language extensions described in this paper. However, an exper-
imental version of our UPC runtime supports all array layouts,
data distribution primitives and collective APIs described here.
We hand-coded our benchmarks to work with this experimental
runtime, trying to stay as faithful as we could to code that an
extended compiler front-end would have generated.
• Sequential performance: For sequential performance we used

the ESSL library provided by Blue Gene/L without any changes
or tuning. We clocked the performance of ESSL’s generic
dgemm routine between 1.8 and 2.1 GFlops; smaller matrices
resulted in somewhat lower sequential performance. For se-

quential FFT we measured about 300 MFlops/node, also using
ESSL.
• Virtual Node Mode: For the compute bound algorithms

(Cholesky factorization and matrix multiplication) we booted
the Blue Gene system in virtual node mode. Thus the largest
configuration we used was 16 racks with 512 MBytes of mem-
ory per node.
For parallel 3D FFT, which – on the Blue Gene platform – is
communication bound, we chose coprocessor mode. This al-
lowed us to double the amount of per-processor memory, re-
sulting in longer messages and, consequently, in lower relative
messaging overheads. Also, since half as many processors use
the same network in coprocessor mode, bisection bandwidth is
double on a per-processor basis.
• Optimized collectives: The UPC collectives we propose do not

map exactly on MPI collectives. Thus we were unable to use the
optimized MPI collective suite from the Blue Gene MPI library:
we implemented the broadcast and exchange routines ourselves.
MPI collective implementations on Blue Gene are notoriously
difficult and time consuming [5]. To expedite the measurement
process we settled for somewhat lower collective performance,
as long as it was enough to make the point of our paper.
• Blue Gene mapping: In order to further improve the perfor-

mance of the UPC collectives we took great care to map the
Cartesian processor grid into the Blue Gene/L’s 3D torus net-
work.
• Weak scaling: We ran all three of our algorithms in weak

scaling mode. We designed our experiments for a constant per-
processor memory load, adjusting the global problem size as the
total number of processors (and hence total available memory)
increased.
• Scaling results. Figures 8, 10 and 9 show the scaling results we

obtained. On each graph we show the computed peak as well as
the actual measured performance.

6.2 Experimental Results
Matrix multiplication: since the matrix multiply and Cholesky
algorithms are compute bound, we computed peak performance
as the product of the sequential matrix multiply performance and
the number of processors. For matrix multiplication we used the
best measured sequential performance, 2.1 GFlops, as the baseline.
The blocking factor for these measurements was held constant at
B = 500, while the problem size was always chosen to fill up all
the usable memory (approx. 240 MBytes) in each processor.

We mapped the two-dimensional matrices onto the 4-
dimensional Blue Gene torus network (we consider communica-
tion between Blue Gene coprocessors on the same node to be the
4th dimension). We achieved this by linearizing pairs of torus di-
mensions into single virtual dimensions and mapping the matrix on
these. Table 1 shows the way we performed this mapping.

Figure 8 shows that the actual measured performance closely
mirrors the theoretical peak, but is consistently 15% lower for every
machine size. The discrepancy is due to communication overhead.
With a fixed blocking factor of B the compute/communicate ratio
of the algorithm is constant: B2 doubles communicated for every
2×B3 floating-point operations. Therefore, the amount of perfor-
mance loss with respect to the theoretical peak is a function of the
achieved broadcast bandwidth. On Blue Gene this loss can be re-
duced by deploying a better broadcast algorithm (in our estimation
we are a factor of 3 away from what MPI’s own broadcast can de-
liver). The gap between theoretical and measured performance can
also be manipulated by varying the blocking factor.
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Figure 8. Matrix Multiplication
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Figure 9. Cholesky Factorization
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Figure 10. 3D FFT

Cholesky factorization: Figure 9 shows a scenario similar to
the matrix multiply algorithm, but with two important differences.
First, the discrepancy between theoretical and measured perfor-
mance is larger. This is due to the larger relative communication
overhead. Unlike matrix multiplication, where block matrices are
always broadcast along rows or columns of the Cartesian {Tx, Ty}
processor layout, the Cholesky factorization code causes block ma-
trices to be transmitted across processor rows/columns, further di-
minishing broadcast performance.

The second noteworthy fact about Figure 9 is that performance
is less predictable. This is due to load balance issues. While the pro-
cessor tile we chose is rectangular, the algorithm itself is triangular:
this causes some of the processors in the rectangular distribution
to be idle at times when other processors are performing matrix
updates, leading to overall performance degradation. Choosing a
suitable blocking factor is a more complex issue for the Cholesky
factorization algorithm. Too small a blocking factor leads to inade-
quate sequential performance of the library routines we are calling;
too large a blocking factor destroys the load balance.

Our UPC version of the Cholesky factorization code is ex-
tremely compact, adding up to less than 100 lines of code (as shown
in Appendix A), and was developed, tested and scaled to 8k proces-
sors in a few weeks. This contrasts favorably with MPI implemen-
tations, especially the ones that run on Blue Gene, where dense
numeric linear algebra codes run into thousands of lines of code
and took years to develop.

An obscure bug in the UPC runtime prevented us from measur-
ing 8 and 16 rack numbers for Cholesky factorization. However, we
believe that as the UPC runtime matures we will actually match the
performance of the very best linear algebra codes running on Blue
Gene, while maintaining the brevity and clarity of our code.

3D FFT: Figure 10 shows the computed and measured perfor-
mance of the FFT algorithm. An accurate performance model of
FFT is somewhat more difficult to obtain than in the case of matrix
multiply or Cholesky factorization. Since FFT is communication
bound, the computed peak performance has to take into account
both computation and communication.

3D FFT has three computation phases and two inter-node com-
munication phases. We model the computation phases using the
usual O(n × log(n)) FFT formula. Communication is modeled
based on the processor mapping in Figure 6. Every processor ex-
changes the entirety of its memory core with its neighbors in each
communication phase, and half of all messages in this exchange
pass through the bisection bandwidth of the network. Given the net-
work’s topology in the table, and a base bandwidth of 154 MBytes/s
of a Blue Gene torus link, we can estimate bisection bandwidths for
each communication phase, and therefore arrive at a reasonably ac-
curate total execution time for 3D FFT.

The ratio of available compute power and bisection bandwidth
changes on the Blue Gene machine as the machine itself grows. A
further complication is caused by the specifics of the Blue Gene/L
installed at IBM TJ Watson, which causes bisection bandwidth to
increase unevenly as the machine is scaled up (e.g. the 4192 node
machine we ran on had the same bisection bandwidth as the 2048
node machine). Therefore the FFT scaling curve is not as smooth
as the matrix multiply curve. This limitation is inherent to the
algorithm we chose and to the machine we ran it on. Figure 10
shows that the system’s actual behavior follows our theoretical
model reasonably accurately on up to 16,384 processors.

6.3 Interpreting the results
The measurements shown here are proof that the language exten-
sions proposed in this paper can lead to competitive performance
and scaling as well as compact representations for the codes shown
in this section. Better collective infrastructure could potentially



lead to even better results. It remains to be shown that the results
we obtained here can be generalized to other codes.

CPUs torus UPC array mapping
x y z t dim. order distribution

64 4 4 4 2 XT, YZ 8 x 16
1k 8 8 8 2 XT, YZ 16 x 64
2k 8 8 16 2 XT, YZ 16 x 128
4k 8 16 16 2 XT, YZ 16 x 256
8k 8 32 16 2 XT, YZ 16 x 512

Table 1. Mapping two-dimensional tiled arrays onto the 4 dimen-
sional Blue Gene torus network.

7. Related Work
Due to its complexity, there have been many projects over the years
that have aimed to improved the productivity of parallel program-
mers. One of the major directions has been to provide important
and computational tasks as sets of libraries that run over MPI[32].
Popular examples include ScaLAPACK [24] and PBLAS[18]. As
mentioned earlier large software engineering efforts such as PETSc
provide a common framework that encompass many popular tools.
In practice these distributions have been successful.

In order to provide a richer abstraction and expression of the
higher level semantics there have been many language efforts to
improve productivity. Popular examples of these languages include
UPC, Co-Array Fortran[35], Titanium[28], ZPL[16], HPF[27],
Chapel[1], Fortress[3], X10[46], and many others.

While each of the languages has their own corresponding per-
formance and productivity studies, we highlight those that rely on
UPC since they are more directly related. El-Ghazawi et al. [22]
demonstrate the potential of UPC as a viable programming lan-
guage and show their potential performance advantages. Bell et al.
[10] show how the performance advantages of one-sided communi-
cation models and overlap can be applied to improve performance
of bandwidth limited problems such as 3DFFTs. Barton et al. [8]
further demonstrate how the shared memory programming model
found in UPC is a good fit for large distributed memory machines.
Coarfa et al. [19] evaluate the effectiveness of these global address
space languages and highlight their limitations.

[40] is an intriguing paper advocating a minimal expansion of
Co-Array Fortran semantics to express collective communication.
Fortran-90-like strided expressions in the distributed dimensions
are used to express e.g. broadcasts or scatter operations (when used
on the left-hand-side) or gather type operations (when used on the
right-hand-side).

However Co-Array Fortran syntax limits the expressivity of
the proposed collectives, mostly because unlike in UPC, Co-Array
Fortran shared arrays are limited to blocked distributions, making
the data-centric approach irrelevant.

In addition to the language level issues there have been many
previous projects that have addressed tuning building optimum
communication schedules for collectives. Some are focused on
tuning collectives for a particular machine[38, 5] while others are
focused on tuning the collectives so that they work well on a wide
variety of machines[13, 6]. From the body of literature it is clear
that the tuning space is indeed large[42].

8. Conclusions
Programmer productivity is becoming ever more important as the
scale of machines continues to grow and parallel architectures be-
comes more common place. The most important challenge facing
the programmers of these machines is application scalability, be-
cause the way the applications scale determines how effectively

the machines are used. To address this challenge, we need to look
at both how parallel languages allow the user to express impor-
tant problems and how well parallel language implementations map
onto machines.

In this paper we analyzed how a popular parallel programming
language, UPC, handles this task. We started by implementing from
scratch three kernels used in a number of scientific applications:
matrix multiplication, Cholesky Factorization, and 3D FFT. We
identified three major areas which affect parallel performance: data
distribution and load balancing, scalable communication, and effi-
cient serial performance. For each of these we propose minimal ex-
tensions to the UPC language to make more effective use of exist-
ing libraries, such as serial, optimized high performance libraries,
and optimized collective communication libraries. We demonstrate
the effectiveness of these extensions by running the benchmarks
on 32 to 16384 processors on Blue Gene/L. Our results prove
that codes do not have to be thousands of lines to achieve best
class performance. Our 14 line matrix multiplication kernel obtains
28.8 TFlops on 16K processors (63% of peak, 84% of serial ESSL),
and Cholesky at 28 lines obtains 8.6 TFlops on 8K processors (37%
of peak and 56% of serial performance). In a few lines of UPC code
the 3D FFT obtains 2.196 TFlops on 16K processors.
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A. Example UPC Code

1. #pragma processors rect(Tx,Ty)
2. shared [b][b] (rect) double A[M][M];
3. shared [b][b] (rect) double scratchA[Tx*b][Ty*b], scratchB[Tx*b][Ty*b];
4. int i, j, k;
5. double alpha=1.0;
6. int myrow = MYTHREAD/Ty; int mycol = MYTHREAD%Ty;
7. for(k=0; k<M; k+=b) {
8. /* dense cholesky on upper left block */
9. if(upc_threadof(&A[k][k]) == MYTHREAD)
10. dpotrf(‘U’, &b, (double*) &A[k][k], &b);

11. /* triangular solve across top row of matrix */
12. int proc_row = upc_threadof(&A[k][k])/TY;
13. upc_stride_broadcast(scratchA<proc_row, :>, &A[k][k], sizeof(double)*b*b, 0);
14. for(j=k+b; j<M; j+=b) {
15. if(upc_threadof(&A[k][j]) == MYTHREAD)
16. dtrsm(‘L’, ‘U’, ‘T’, ‘T’, &b, &b,

&alpha, (double*) &scratchA[myrow*b][mycol*b], &b,
(double*) &A[k][j], &b);

17 }
18. /*update (outer product on upper triangular part)*/
19. for(i=k+b; i<M; i+=Tx*b) {
20. for(ti=i; ti<i+(Tx*b); ti++)
21. upc_stride_broadcast(scratchA<(ti/b)%TX,:>, &A[k][ti], sizeof(double)*b*b, 0);
22. for(j=i; j<M; j+=Ty*b) {
23. for(tj=j; tj<j+(Ty*b); tj++)
24. upc_stride_broadcast(scratchB<:,(tj/b)%TY>, &A[k][tj], sizeof(double)*b*b, 0);
25. dgemm(‘T’, ‘T’, &b, &b, &b, &alpha,

(double*) &scratchA[myrow*b][mycol*b], &b,
(double*) &scratchB[myrow*b][mycol*b], &b, &alpha,
(double*) &C[i+myrow*b][j+myrow*b], &b);

26. }
27. }
28. }

Figure 11. UPC Code for Dense Cholesky Factorization

1. void fft(complex_t *out, complex_t *in, int len, int howmany,
2. int instride, int indist, int outstride, int outdist);
3. void main(int argc, char **argv) {
4. #pragma processors (rect)(NX,TY,1)
5. shared [1][NY/TY][] (rect) complex_t A[NX][NY][NZ], B[NX][NY][NZ];
6. int myplane = MYTHREAD/TY; int myrow = MYTHREAD%TY;
7. complex_t *myA = (complex_t*) &A[myplane][myrow*(NY/TY)][0];
8. complex_t *myB = (complex_t*) &B[myplane][myrow*(NY/TY)][0];
9. initialize_input_array(A);
10. upc_barrier;
11. fft(myB, myA, NZ, NY/TY, 1, NZ, NY/TY, 1);
12. upc_stride_exchange(A<myplane,:,0>, B<myplane,:,0>, sizeof(complex_t)*(NY*NZ)/(TY*TY), 0);
13. local_transpose(myB, myA, NX, NY, NZ, Ty);
14. fft(myA, myB, NY, NZ/TY, 1, NY, NZ/TY, 1);
15. upc_stride_exchange(B<:,myrow,0>, A<:,myrow,0>, sizeof(complex_t)*(NZ/NX)*(NY/TY), 0);
16. fft(myA, myB, NX, (NZ/NX)*(NY/TY), (NZ/NX)*(NY/TY), 1, 1, NX);
17. upc_barrier;
18.}

Figure 12. UPC Code for Parallel 3D FFT


