
Avoiding Communication in Computing Krylov
Subspaces

James Demmel
Mark Frederick Hoemmen
Marghoob Mohiyuddin
Katherine A. Yelick

Electrical Engineering and Computer Sciences
University of California at Berkeley

Technical Report No. UCB/EECS-2007-123

http://www.eecs.berkeley.edu/Pubs/TechRpts/2007/EECS-2007-123.html

October 9, 2007

Copyright © 2007, by the author(s).
All rights reserved.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission.

Acknowledgement

The authors wish to acknowledge the contribution from Intel Corporation,
Hewlett-Packard Corporation, IBM Corporation, and the National Science
Foundation grant EIA-0303575 in making hardware and software available
for the CITRIS Cluster which was used in producing these research results.
This research used resources of the National Energy Research Scientific
Computing Center, which is supported by the Office of Science of the U.S.
Department of Energy under Contract No. DE-AC02-05CH11231.

Avoiding Communication in Computing Krylov Subspaces

James Demmel,∗Mark Hoemmen,†Marghoob Mohiyuddin,‡and Katherine Yelick,§

August 30, 2007

Abstract

Our goal is to minimize the communication costs of Krylov Subspace Methods (KSMs) to
solve either Ax = b or Ax = λx, when A is a large sparse matrix. By communication costs we
mean both bandwidth and latency costs, either between processors on a parallel computer, or
between levels of a memory hierarchy on a sequential computer. As the cost of communication is
growing exponentially relative to computation on modern computers, reducing communication
is becoming ever more important. It is possible to reduce communication costs to near their
theoretical minima: On a parallel computer this means latency costs are independent of the
dimension k of the Krylov subspace, as opposed to growing proportionally to k for a conven-
tional implementation. On a sequential computer, this mean latency and bandwidth costs are
independent of k. Achieving this speedup requires a new algorithmic formulation of KSMs.

In this paper we present just part of this new formulation, namely computing a basis of
the Krylov subspace spanned by [x,Ax,A2x, ...Akx]; other papers will present the rest of the
KSM formulation. We present theory, performance models, and computational results: Our
parallel performance models of 2D and 3D model problems predict speedups over a conventional
algorithm of up to 15x on a model Petaflop machine, and up to 22x on a model of the Grid. Our
sequential performance models of the same model problems predict speedups over a conventional
algorithm of up to 10x on an out-of-core implementation, and up to 2.5x on Intel Clovertown,
where we use our ideas to reduce off-chip latency and bandwidth to DRAM. Finally, we measured
a speedup of over 3x on an actual out-of-core implementation.

We also consider the related kernel [Ax,MAx,AMAx, ..., A(MA)k−1x, (MA)kx], which arises
in preconditioned KSMs. Under certain mathematical conditions on A and the preconditioner
M , we show how to avoid latency and bandwidth for this kernel as well.

∗Computer Science Division and Mathematics Dept., University of California, Berkeley, CA 94720
(demmel@cs.berkeley.edu).

†Computer Science Division, University of California, Berkeley, CA 94720 (mhoemmen@eecs.berkeley.edu).
‡EECS Department, University of California, Berkeley, CA 94720 (marghoob@eecs.berkeley.edu).
§Computer Science Division, University of California, Berkeley, CA 94720 (yelick@cs.berkeley.edu).

1

Contents

1 Introduction 3
1.1 Model Problems . 6

2 Parallel Algorithms 7
2.1 1D meshes . 8
2.2 2D and 3D meshes . 14

2.2.1 2D mesh with a 5 point stencil graph . 14
2.2.2 2D mesh with 9 point stencil graph . 17
2.2.3 2D mesh with (2b + 1)2 point stencil graph 17
2.2.4 3D meshes, with 7 point, 27 point and (2b + 1)3 point stencils graphs 17

2.3 Summary of Parallel Complexity of Computing [Ax, ..., Akx] on Meshes 17
2.4 General Graphs . 23
2.5 Stencils . 25

3 Sequential Algorithms 25
3.1 1D Meshes . 28
3.2 2D and 3D Meshes . 31
3.3 Summary of Sequential Complexity of Computing [Ax, ..., Akx] on Meshes 34
3.4 General Graphs . 36
3.5 Optimizing the Order of Unknowns in SA2 . 37

3.5.1 Component ordering . 37
3.5.2 Reducing the problem size for component ordering 38
3.5.3 Block ordering . 40
3.5.4 Other problem formulations . 41

3.6 Stencils . 41

4 Asymptotic Performance Models 42
4.1 Parallel Algorithms . 42
4.2 Sequential Algorithms . 44

5 Detailed Performance Modeling 46
5.1 Performance Modeling of PA2 . 46

5.1.1 2D Stencil on Peta Using Overlapping Communication 50
5.1.2 2D Stencil on Peta Using Non-Overlapping Communication 50
5.1.3 2D Stencil on Grid Using Overlapping Communication 53
5.1.4 2D Stencil on Grid Using Non-overlapping Communication 53
5.1.5 3D Stencil on Peta Using Overlapping Communication 58
5.1.6 3D Stencil on Peta Using Non-overlapping Communication 58
5.1.7 3D Stencil on Grid Using Overlapping Communication 58
5.1.8 3D Stencil on Grid Using Non-overlapping Communication 58

5.2 Performance Modeling of SA2 . 58
5.2.1 2D Stencil on OOC . 71
5.2.2 3D Stencil on OOC . 71
5.2.3 2D Stencil on Clovertown . 71

2

5.2.4 3D Stencil on Clovertown . 71

6 Measured Performance 76

7 Implementing the Preconditioned Kernel [Ax,MAx, ..., (MA)kx]. 76
7.1 Exploiting Sparsity of A and M . 78
7.2 Exploiting Low Rank Off-Diagonal Blocks of A and M 79

8 Related Work 87

1 Introduction

Our goal is to minimize the communication costs of Krylov Subspace Methods (KSMs) to solve
either Ax = b or Ax = λx, when A is a large sparse matrix. Unpreconditioned KSMs seek an
optimal solution vector (in a sense that depends on the method) in the Krylov subspace spanned
by [x,Ax,A2x, ...Akx] (we consider the preconditioned case below). Communication costs include
both latency and bandwidth costs: On a parallel computer, the communication cost of a message
of n words sent from one processor to another is modeled as the latency plus n divided by the
bandwidth. On a sequential computer with a memory hierarchy, the communication cost of moving
n (consecutive) words between slow and fast memory is similarly modeled.

Our motivation for minimizing communication costs is that current technology trends show
exponentially increasing gaps between computation, bandwidth and latency costs. A recent study
[26] of high performance computing shows floating point speeds increasing historically at 59%/year,
but interprocessor bandwidth improving only 26%/year, and interprocessor latency improving only
15%/year. Indeed, on certain very large, distributed computing platforms (like the Grid) latencies
are already speed-of-light limited and on the order of milliseconds, as opposed to fractions of
nanoseconds for floating point operations. Similarly, memory (DRAM) bandwidth is improving only
at 23%/year, and memory latency at 5.5%/year. For out-of-core algorithms, with disk bandwidth
and latency limited by the rotational speed of disks, the gaps are even larger. Another study [20]
observes that latency improves much more slowly than bandwidth across many technologies.

Conventional implementations of KSMs alternate multiplication of the sparse matrix A times
a single vector with other vector operations like multiplying vectors by scalars, adding vectors,
and dot products. Therefore both the computation and communication cost of k such steps grows
(at least) proportionally to k. Our goal is to reorganize KSMs so that the communication cost
is (nearly) as small as theoretically possible. On a parallel computer, this means with latency
costs that are independent of k. In fact if the sparse matrix has a suitable (and common) sparsity
structure described below, we will see that the latency cost of the kernel [x,Ax, ..., Akx] is just
O(1). On a sequential computer, this means that latency and bandwidth costs are independent of
k. Said another way, both the matrix A and vectors [x,Ax, ..., Akx] will need to be moved between
fast and slow memory just 1 + o(1) times (1 time is obviously the minimum), not k times. Since
bandwidth is always the bottleneck in the sequential case, our approach is always an improvement.

Our algorithms apply to general matrices, but they are easiest to understand and analyze for
sparse matrices with a suitable (and common) sparsity structure, namely a mesh of a 1D, 2D, or
3D region. More generally, the benefits are largest when it is possible to partition A into row blocks

3

with a low surface-to-volume ratio, i.e. where the components of y = Ax corresponding to each
row block depend on few components of x outside the row block. See section 1.1 for details.

In the parallel case, we use the usual mapping where row blocks j of A, x and y = Ax are all
assigned to processor j. As stated above, the latency cost of our version of a KSM will be indepen-
dent of k, requiring just 1 message between each processor and its ”neighbors”, i.e. those processors
owning components of x needed to compute the local components of y = Ax. The bandwidth and
computation costs will be nearly minimal, increasing only by lower order terms (depending on the
surface-to-volume ratio) compared to a conventional implementation. For example, suppose that
the sparsity pattern of our matrix is that of a 27 point stencil operating on an n-by-n-by-n mesh,
and that we assign n

p1/3 -by- n
p1/3 -by- n

p1/3 “cubes” of mesh points to each of p processors. Then using
our approach drops the number of messages per processor from 26k to 26, while only increasing
the number of words communicated per processor from 6kn2

p2/3 to 6kn2

p2/3 · (1 + 2kp1/3

n) and arithmetic

operations per processor from 53kn3

p to 53kn3

p · (1 + 1.5kp1/3

n). In both cases, the factor p1/3

n is pro-
portional to the surface-to-volume ratio, which will be small for problems of interest. (See Table 1
for omitted lower order terms and other details).

In the sequential case, our algorithm will mimic the parallel algorithm, processing the matrix
block by block. As stated above, all the data (matrix and vectors) will only have to move from
slow to fast memory 1 + o(1) times in order to implement k steps of a KSM, not move k times.
In other words the number of slow memory accesses (the latency cost) and the bandwidth cost
will exceed their minimal values by this 1 + o(1) factor. The o(1) term will be proportional to the
surface-to-volume ratio. See Table 2 for details.

We contrast our approach of avoiding communication with the complementary approach of
overlapping communication and computation. The latter approach can at best halve the running
time, whereas avoiding communication can achieve up to k-fold speedups when communication is
dominant. Furthermore, we can use overlapping to accelerate our algorithms as well.

We present both detailed performance models and measurements of an implementation. We
model matrices with the sparsity patterns of both a 2D and 3D stencil on a variety of parallel and
sequential computers. The two parallel computers modeled are a Petaflop machine consisting of
8100 50 GFlop/s processors connected over a fast network, and a Grid consisting of 125 1 TFlop/s
processors connected over the internet. The speedup over a conventional algorithm depends on
whether it is a 2D or 3D problem, the width of the stencil (eg 5 point, 9 point etc.), the problem size,
and how much computation and communication can be overlapped. We summarize the maximum
speedups modeled below for matrices whose graphs are 9 point 2D stencils and 27 point 3D stencils
(but stored as general sparse matrices). For Peta, the best speedups were for smaller n in the range
studied, because communication was more dominant; maximum speedups fell as n increased and
the problem became computation bound. Also for Peta, nonoverlapping computation made latency
more important, and so our approach to avoiding latency yielded larger speedups. On the Grid, for
the lower n in the range modeled, it was fastest to use just one processor because communication
was so expensive. But as n grew, it eventually became effective to use parallelism, and close to this
transition point our approach yielded large speedups. Details may be found in Section 5.1:

4

Machine Matrix Range of n Overlap Max Modeled Speedup
communication
& computation?

Peta 2D 210 to 222 Yes 6.9
No 15.1

3D 29 to 214 Yes 1.02
No 3.56

Grid 2D 210 to 222 Yes 22.22
No 15.63

3D 29 to 214 Yes 4.41
No 7.79

The two “sequential” machines modeled are (1) a uniprocessor with DRAM as fast memory
and a single disk as slow memory (called OOC for Out-Of-Core), and (2) the Intel Clovertown
multicore chip with on-chip cache as fast memory and DRAM as slow memory. The Clovertown
is a parallel machine but here we address how to avoid off-chip latency and bandwidth to DRAM.
We only modeled the non-overlapping case, with modeled speedups as shown in the table below.
In contrast to the last table, we show the range of speedups attained over all problem sizes n,
since bandwidth is always the bottleneck, so significant speedups were attained for all problems
sizes. Here, “% Peak” is the ratio of the (modeled) running time of the algorithm on a zero latency
/ infinite bandwidth machine to the (modeled) true time. The closer this is to 100%, the more
completely the algorithm masks the cost of slow memory access. On OOC, we see that we get high
speedups, though we are not near peak. On Clovertown our speedups are more modest, but still
good, and we are closer to peak. Details may be found in Section 5.2:

Machine Matrix Range of n (Range of) Modeled Speedup (Range of) % Peak
OOC 2D 214 to 225 10.2 17%

3D 28 to 217 [7.39,9.51] [14%, 18%]
Clovertown 2D 28 to 219 [2.45,2.58] [62%, 65%]

3D 28 to 212 [1.34,1.36] 38%

Section 6 describes an actual out-of-core implementation, which achieves a speedup of 3.2x,
and is 16% as fast as it would be if run on a machine with zero disk latency and infinite disk
bandwidth, up from 5%. This is both a good speedup, and shows that we are within 16% of peak.
We also describe our performance model, which uses measured machine parameters and agree with
measured performance closely.

In this paper we will only discuss how to achieve these speedups for computing [Ax,A2x, ...Akx].
The overall KSM will be described in separate papers in preparation. We will actually need to
compute the slightly different basis [p1(A)x, p2(A)x, ..., pk(A)x] of the desired Krylov subspace,
where pj(A) is a polynomial in A of degree j, i.e. a linear combination of x,Ax, ..., Ajx. This basis,
which is important for numerical stability, can easily be implemented using the same techniques
described here, but for simplicity we only describe [Ax,A2x, ...Akx] in this paper.

Preconditioning is an important technique in KSMs, so we will also describe how to mini-
mize communication cost in the preconditioned basis [Ax,MAx,AMAx, ..., A(MA)k−1x, (MA)kx],
where M is the preconditioner. Our ability to minimize communication depends not just on the
sparsity structure of A but on M . It turns out that for a large class of preconditioners, including
but not limited to H-matrices [5], it is also possible to drastically reduce communication costs.

5

The rest of this paper is organized as follows. Section 2 describes our new parallel algorithms, the
simplest one (PA1) and then a more complicated one that reduces the surface-to-volume overhead
by a factor of 2 (PA2). PA1 is well known, but we believe PA2 is new. Section 3 describes our new
sequential algorithms SA1 and SA2, both of which are based on PA1. Both sequential algorithms
assume A is too large to fit in fast memory, but differ based on whether they assume there is room
to keep all the vectors [x,Ax, ...Akx] in fast memory (SA1) or not (SA2). SA1 is well known, but
we believe SA2 is new.

In both sections 2 and 3 we first describe our algorithms for an extremely simple sparse matrix,
a tridiagonal matrix. This matrix is too sparse for our methods to be of much advantage, but is
good for explaining how they work. Then we describe our algorithms for a more interesting model
problem, the 2D analogue of a tridiagonal matrix, namely a matrix whose sparsity pattern is that
of a 2D 5 point stencil (see section 1.1 for details). Then we describe 3D meshes, summarize the
operation counts in a table for more general meshes, describe now the algorithm work for general
sparse matrices, and finally describe how the algorithm simplifies when the sparse matrix is really
a stencil operator (i.e. the matrix entries are the same for each mesh point, and so do not need to
be stored for each mesh point or communicated). In the sequential case SA2 we also show how the
problem of achieving the absolute minimal communication complexity for a general matrix can be
reduced to solving a certain instance of the Travelling Salesman Problem (TSP), and describe our
cheap approximation scheme for this NP-complete problem.

Section 4 uses the performance models for 2D and 3D meshes to describe how to optimally choose
k for asymptotically large problems. Section 5 presents the detailed performance models of the
machines Peta, Grid, OOC and Clovertown described above. Section 6 describes the performance
of our actual out-of-core implementation.

Section 7 shows how all these results may be extended to the case of preconditioned KSMs.
under suitable conditions on the preconditioner.

Section 8 discusses related work. There is a long history of contributions to this area, and we
detail what we believe is new about our work. In particular, we believe algorithms PA2 and SA2,
our extensions to preconditioned kernels, and our implementations and performance modeling are
new. We have chosen to make a comprehensive presentation including the known algorithms PA1
and SA1 to make the material more comprehensible.

1.1 Model Problems

Our techniques work for general sparse matrices that have sparsity patterns that partition “nicely”
into row blocks (perhaps after reordering) but to analyze performance more precisely we will con-
sider the following model problems. We assume a symmetric pattern (but arbitrary nonsymmetric
matrix entries) and describe the pattern in terms of its undirected graph. We use the term mesh
with bandwidth b to mean a graph whose basic connectivity is nearest neighbors on a d-dimensional
mesh along with connections to mesh points that can be reached by traversing b neighest neighbors
in the mesh in all possible directions. Another way to describe this graph is a d-dimensional mesh
with a (2b + 1)d point stencil. (We say a matrix has a stencil graph to refer only to the nonzero
pattern, not the matrix entries, which are arbitrary. We will also consider how our techniques
specialize when applied to stencil matrices, where the nonzero matrix entries are the same for each
mesh point.)

1. 1D mesh with n unknowns and bandwidth b = 1, or a 3 point stencil graph; i.e. a tridiagonal

6

matrix (we consider tridiagonal matrices in order to illustrate our techniques most clearly,
not because they are computationally challenging for computing products)

2. 1D mesh with n unknowns and bandwidth b > 1, or a 2b + 1 point stencil graph; i.e. a band
matrix with bandwidth b

3. 2D mesh with n2 unknowns and a 5 point stencil graph

4. 2D mesh with n2 unknowns and bandwidth 1, i.e. a 9 point stencil graph

5. 2D mesh with n2 unknowns and bandwidth b, i.e. a (2b + 1)2 point stencil graph

6. 3D mesh with n3 unknowns and a 7 point stencil graph

7. 3D mesh with n3 unknowns and bandwidth 1, i.e. a 27 point stencil graph

8. 3D mesh with n3 unknowns and bandwidth b, i.e. a (2b + 1)3 point stencil graph

We distribute the 1D meshes in natural order on p processors (i.e. with n/p consecutive unknowns
per processor, along with the entries of the corresponding matrix rows), the 2D meshes in nested
dissection ordering (i.e. with an n

p1/2 -by- n
p1/2 square of n2

p unknowns per processor, along with
corresponding matrix rows), and the 3D meshes in nested dissection ordering (i.e. with an n

p1/3 -

by- n
p1/3 -by- n

p1/3 cube of n3

p unknowns per processor, again with corresponding matrix rows). We

assume all the above roots (like p1/3) and fractions (like n
p1/2) are integers, for simplicity.

The surface of a mesh is the number of points xi in a processor’s partition where (Ax)i depends
on a point on another processor. For a 2D with a 5 point stencil, as just described, the surface
is 4 n

p1/2 . For a 3D mesh with a 7 point stencil, the surface is 6 n2

p2/3 . The volume of a mesh is the

total number of points in processor’s partition, namely n2

p and n3

p in the 2D and 3D cases. The

surface-to-volume ratio of a mesh is therefore 4p1/2

n in the 2D case and 6p1/3

n in the 3D case. The
surface-to-volume ratio of a partition of a general sparse matrix is defined analogously. All our
algorithm work best when the surface-to-volume ratio is small, as is the case for meshes with large
n and sufficiently smaller p. partitions described above, the surface is

2 Parallel Algorithms

We consider the conventional parallel algorithm, as well as our two new approaches:

Conventional Parallel Approach (PA0). The algorithm runs in k phases, where phase j com-
putes yj = Ajx from yj−1 = Aj−1x by each processor receiving messages with the needed
remotely stored entries of yj−1 and computing its local components of yj .

Parallel Approach 1 (PA1). We begin the computation of all locally computable components
of [Ax, ..., Akx], and simultaneously begin sending all the components of x needed by the
neighboring processors to compute the remaining components of [Ax, ..., Akx]). When the
locally computable components are complete, we block until the remote components of x
arrive. This maximizes the potential overlap of computation and communication, but does
not minimize redundant work, as we will see in PA2.

7

Parallel Approach 2 (PA2). We compute the set of local values of [Ax, ..., Akx] needed by the
neighboring processors, so as to minimize redundant computation. Then we send these values
to the neighboring processors, and simultaneously compute the remaining locally computable
values. When all the locally computable values are complete, we block until the remote
components of [Ax, ..., Akx] arrive, and complete the work. This minimizes redundant work,
but permits slightly less overlap of computation and communication.

The difference between PA1 and PA2 will become clearer when we explain them for the 1D
mesh.

We will estimate the cost of our parallel algorithms by measuring five quantities:

1. number of floating point operations per processor

2. number of floating point numbers communicated per processor (the ”bandwidth cost”)

3. number of messages sent per processor (the ”latency cost”),

4. total memory required per processor for the matrix, and

5. total memory required per processor for the vectors.

Now we argue informally why either approach PA1 or PA2 approximately minimizes communi-
cation. We assume that there is no cancellation in any of the powers Aj or Ajx that would make
them sparser than if all their nonzero entries were nonnegative, and that there are no algebraic
relations among entries of A and/or x. Thus the complexity only depends on the sparsity pattern,
and for simplicity of notation we assume all the nonzero entries of A and x are positive. In partic-
ular the set D of processors owning entries of x on which block row i of [Ax,A2x, ..., Akx] depends
may be described as the set of processors owning those xj where block row i of A + A2 + · · ·+ Ak

has a nonzero j-th column. In both algorithms PA1 and PA2, the processor owning row block i
receives exactly one message from each processor in D, which minimizes latency. Furthermore, PA1
only sends those entries of x in each message on which the answer depends, which minimizes the
bandwidth cost. PA2 sends the same amount of data although different values so as to minimize
redundant computation.

The rest of this section is organized as follows. Subsection 2.1 describes PA1 and PA2 in more
detail for 1D meshes (band matrices). Subsection 2.2 describes PA1 and PA2 in more detail for 2D
and 3D meshes. Subsection 2.3 presents a tabular summary of all the operation counts for meshes,
and discusses how they specialize to stencil matrices, where each row of the matrix has identical
nonzero entries (modulo boundaries). Subsection 2.4 describes PA1 and PA2 on general sparse
matrices.

2.1 1D meshes

We begin by considering a tradiagonal matrix (i.e. with bandwidth b = 1). In the conventional
parallel algorithm each processor executes the following code in order to compute x(j) = Ajx(0) for
j = 1 to k:

Alg PA0: Conventional Parallel Approach for 1D mesh with b = 1
... assume processor q owns x

(0)
sq ,...,x(0)

eq

8

... algorithm ignores boundaries q = 1 and q = p
for j = 1 to k

start sending x
(j−1)
sq to processor q − 1

start sending x
(j−1)
eq to processor q + 1

start receiving x
(j−1)
sq−1 from processor q − 1

start receiving x
(j−1)
eq+1 from processor q + 1

compute x
(j)
sq+1 = (Ax(j−1))sq+1, ... , x

(j)
eq−1 = (Ax(j−1))eq−1

wait for messages to arrive
compute x

(j)
sq = (Ax(j−1))sq and x

(j)
eq = (Ax(j−1))eq

endfor

The computational cost is clearly 2k messages, 2k words sent, and 5kn
p flops (3 multiplies and

2 additions per vector component computed). The memory required per processor is 3n
p matrix

entries and (k+1)n
p +2 vector entries (for the local components of [x,Ax, .., Akx] and for the values

on neighboring processors).
To explain PA1, consider Figure 1. Each row of circles represents the entries of Ajx, for j = 0

to j = 8. A subset of 30 components of each vector is shown, owned by 2 processors, one to the left
of the vertical green line, and one to the right. (There are further components and processors not
shown, to the left and to the right of the ones in the figure). The diagonal and vertical lines show
the dependencies: the three lines below each circle (component i of Ajx) connect to the circles
on which its value depends (components i − 1, i and i + 1 of Aj−1x). Figure 1 shows the local
dependencies of the left processor, i.e. all the circles (vector components) that can be computed
without communicating with the right processor. The remaining circles without attached lines to
the left of the vertical green line require information from the right processor to be computed.

Figure 2 shows how to compute these remaining circles using PA1. The dependencies are again
shown by diagonal and vertical lines below each circle, but now dependencies on data formally
owned by the right processor are shown in red. All these values in turn depend on the k = 8
leftmost value of x(0) owned by the right processor, shown as black circles containing red asterisks
in the bottom row. By sending these values from the right processor to the left processor, the left
processor can compute all the circles whose dependencies are shown in Figure 2. The black circles
indicate computations ideally done only by the left processor, and the red circles show redundant
computations, i.e. ones also done by the right processor.

The following algorithm summarizes this discussion:

Alg PA1: New Parallel Approach 1 for 1D mesh with b = 1
... assume processor q owns x

(0)
sq ,...,x(0)

eq ; ignore boundaries as in PA0
start sending x

(0)
sq through x

(0)
sq+k−1 to processor q − 1

start sending x
(0)
eq−k+1 through x

(0)
eq to processor q + 1

start receiving x
(0)
sq−k through x

(0)
sq−1 from processor q − 1

start receiving x
(0)
eq+1 through x

(0)
eq+k from processor q + 1

compute locally dependent components of Ajx(0) as shown in Figure 1
wait for messages to arrive
compute remaining red and black components of Ajx(0) as shown in Figure 2

9

5 10 15 20 25 30

0

1

2

3

4

5

6

7

8

Local Dependencies for k=8

Figure 1: Locally Computable components of [Ax, ..., A8x] for tridiagonal matrix

10

5 10 15 20 25 30

0

1

2

3

4

5

6

7

8

Type (1) Remote Dependencies for k=8

Figure 2: Remote dependencies in PA1 for [Ax, ..., A8x] for tridiagonal matrix

11

The memory required by PA1 is (k + 4)n
p as in PA0 plus 2k more words for vector entries

plus 6(k − 1) more words for matrix entries, altogether 8k − 6 more than PA0. PA1’s other costs
are 2 messages (versus 2k for the conventional method), 2k words sent (same as the conventional
method), and 5kn

p +5k(k− 1) flops, or roughly 5k2 more flops than the conventional method. This
can also be described as an increase in flops by a factor 1 + k/(n

p).
Note that we are assuming that k < n

p , so that only data from neighboring processors is needed,
rather than more distant processors. Indeed, we expect that k � n

p in practice, which will mean
that the number of extra flops (not to mention extra memory) will be negligible. We continue to
make this assumption later without repeating it, and use it to simplify some expressions in the
Summary Table 1 in Section 2.3.

Now consider PA2, illustrated in Figure 3. We note that the blue circles owned by the right
processor and attached to blue lines can be computed locally by the right processor. The 8 circles
containing red asterisks can then be sent to the left processor to compute the remaining circles
connected to black and/or red lines. This saves the redundant work represented by the blue circles,
but leaves the redundant work to compute the red circles, about half the redundant work of PA1.

The following algorithm summarizes this discussion:

Alg PA2: New Parallel Approach 2 for 1D mesh with b = 1
... assume processor q owns x

(0)
sq ,...,x(0)

eq ; ignore boundaries as in PA0
compute blue circles corresponding to own blue triangles in Figure 3
start sending appropriate blue circles with red asterisks to processor q − 1
start sending appropriate blue circles with red asterisks to processor q + 1
start receiving appropriate blue circles with red asterisks from processor q − 1
start receiving appropriate blue circles with red asterisks from processor q + 1
compute locally dependent components of Ajx(0) as shown in Figure 1
wait for messages to arrive
compute remaining red and black components of Ajx(0) as shown in Figure 3

The memory required by PA2 is (k + 4)n
p as in PA0 plus 2k more words for vector entries

plus 6bk
2c more words for matrix entries, altogether roughly 5k more words than PA0. The other

costs of PA2 are 2 messages (versus 2k for the conventional method), 2k words sent (same as the
conventional method), and 5kn

p + 10bk
2c(b

k
2c + odd(k)) flops, where odd(k) = 1 if k is odd and

odd(k) = 0 if k is even. In other words, PA2 takes roughly 5
2k2 more flops than the conventional

method, half as many extra flops as PA1.
We will not always draw the corresponding detailed pictures or algorithms for the other meshes,

but the same kinds of analyses apply. Nor will we compute the exact expressions for the number
of extra flops, but rather approximate the number of mesh points in the black red and blue regions
(pyramids, triangles, tetrahedra, and higher dimensional polyhedra) that arise by computing the
leading terms of the volumes of these geometric objects. The next sections will sketch these results,
and the Section 2.3 will summarize all the results in a table.

Now we briefly address 1D meshes with bandwidth b > 1, i.e. band matrices. The work per mesh
point is 2b+1 multiplications and 2b additions, or 4b+1 flops in all per mesh point, or (4b+1)nk/p

12

5 10 15 20 25 30

0

1

2

3

4

5

6

7

8

Type (2) Remote Dependencies for k=8

Figure 3: Remote dependencies in PA2 for [Ax, ..., A8x] for tridiagonal matrix

13

flops for the conventional method. A total of 2kb words are communicated with processors to the
left and right, in 2k messages. The memory required per processor is (k + 1)n

p + 2b words for the
vectors and (2b + 1)n

p words for the matrix entries, or (2b + k + 2)n
p + 2b words in all.

Now consider PA1. To compute the extra flops, we must count the number of mesh points in
the region corresponding to the red triangle in Figure 2, namely bk(k− 1)/2. To get the number of
extra flops, this is multiplied by 4b+1. The number of messages is again 2, containing 2kb words in
all. The number of words of memory required is (k+1)n

p +2kb for the vectors and (2b+1)(n
p +2kb)

for the matrix entries, or (2b + k + 2)n
p + kb(4b + 4) words in all.

Now consider PA2. The region corresponding to the blue region in Figure 3 has again about
half the number of mesh points as the region corresponding to the red region in Figure 2, roughly
bk(k − 1)/4. To get the number of extra flops, this is again multipled by 4b + 1, and by 2, for the
right and left boundaries. The number of words of memory required for vectors is the same as PA1,
and slightly smaller for matrix entries, (2b + 1)(n

p + kb).

2.2 2D and 3D meshes

2.2.1 2D mesh with a 5 point stencil graph

We consider multiplying by a matrix whose graph is the 5-point stencil, i.e. with North, South,
East, West (NSEW) connections on an n-by-n grid of unknowns partitioned on p1/2-by-p1/2 grid
of processors. We assume p1/2|n, so that each processor owns a n

p1/2 -by- n
p1/2 square of grid points

(vector components), and their corresponding matrix rows, and that k < n
p1/2 . We expect that

k � n
p1/2 in practice, which will justify omitting certain lower order terms in k in Table 1.

Figure 4 shows the remote domain of dependence for a single processor (demarcated by green
lines as before) owning a 10-by-10 grid of unknowns (the black circles). When k = 3, the results of
[Ax, .., Akx] will depend on the remote values shown by black circles containing red asterisks (the
same notation as Figure 2). Unlike Figure 2, Figure 4 does not show circles for components of Ajx
for j > 0, but rather a projected view. Figure 5 shows a 3D view analogous to Figure 2.

The number of messages decreases from 4k for the conventional algorithm to 8 instead of to 4
for PA1, because communication is required with the corner neighbors (NW, SW, NE and SE), as
well as side neighbors (N, S, E and W). The volume of communication also grows slightly to include
the triangles of size k − 1 owned by the 4 corner neighbors. The number of flops grows roughly
by the factor 1 + 2k/(n

p1/2). When k � n
p1/2 , this increase is quite small. It is a little harder to

visualize the regions of redundant computations than in the 1D mesh case: In the side neighbors,
the red circles denoting redundant computations form a prism with triangular cross section and
volume (and number of contained points) proportional to k n

p1/2 , and in the corner neighbors the
red circles form a pyramid with volume (and number of contained points) proportional to k3. The
memory requirement for the conventional algorithm is (k + 1)n2

p + 4 n
p1/2 vector entries and 5n2

p

matrix entries; for PA1 it increases by an additional 4k n
p1/2 + 2k2 vector entries and 5 times as

many matrix entries. The Summary Table has details.
Figure 6 shows the dependencies for PA2 applies to the 2D mesh with a 5 point stencil graph. As

in Figure 3, there are black circles that are the desired (or initial) values, red circles representing
redundant work, blue circles denoting work that was redundant in PA1 but saved by PA2, and
circles containing red asterisks that are to be communicated. In the side processors, the regions
of redundant computations again form prisms with triangular cross sections, with half the cross

14

−4 −2 0 2 4 6 8 10 12 14 16

−4

−2

0

2

4

6

8

10

12

14

16
Remote dependencies for Approach (1) to 2D mesh with 5 pt stencil

Figure 4: Remote dependencies in PA1 for [Ax, ..., A3x] for 2D mesh with 5 point stencil, projected
view

15

−5

0

5

10

15

−5

0

5

10

15

−0.5

0

0.5

1

1.5

2

2.5

3

3.5

Remote dependencies for Approach (1) to 2D mesh with 5 pt stencil, 3D view

Figure 5: Remote dependencies in PA1 for [Ax, ..., A3x] for 2D mesh with 5 point stencil, 3D view

16

sectional area of PA1. Thus, like the 1D case, this means about half the redundant work is saved.
It is somewhat more difficult to see what is happening in the corner processors. The pyramid
of redundant operations from PA1 has a smaller tetrahedron of locally computable components
subtracted from it; geometrical symmetry considerations indicate that this saves about 1/3 of the
redundant operations in the corners. The number of extra words of memory required for matrix
entries decreases by nearly a factor of 2.

2.2.2 2D mesh with 9 point stencil graph

We consider multiplying by a matrix whose graph is the 9-point stencil, i.e. with N, S, E, W, NE,
SE, SW, and NW connections on an n-by-n grid of unknowns partitioned on p1/2-by-p1/2 grid of
processors. We assume p1/2|n.

Figures 7, 8, and 9 are analogous to Figures 4, 5, and 6, respectively. A similar counting exercise
leads to the entries in the Summary Table.

2.2.3 2D mesh with (2b + 1)2 point stencil graph

We consider multiplying by a matrix A whose graph is a (2b + 1)2 point stencil, i.e. where each
vertex has connections to other vertices within b to the left, right, up or down. The 9 point stencil
graph of the last section is the special case b = 1. This can be thought of as a generalization of a
band matrix to 2D; when exhibited in natural order the matrix has 2b + 1 bands, each of which is
2b + 1 entries wide.

The conventional algorithm for multiplying Ax requires 8 messages. The 4 to the side processors
each receive b n

p1/2 vector entries, and the 4 to the corner processors each receive b2 vector entries.

The number of flops is 2(2b + 1)2 − 1 per vector entry for a total of (8b2 + 8b + 1)n2

p .
Similar counting exercises lead to the other entries in the Summary Table.

2.2.4 3D meshes, with 7 point, 27 point and (2b + 1)3 point stencils graphs

We first consider multiplying by a matrix whose graph is the 7-point stencil on an n-by-n-by-n grid
of unknowns partitioned on a p1/3-by-p1/3-by-p1/3 grid of processors. We assume p1/3|n.

The Summary Table entries are estimated as follows. There are 26 neighbors of a processor, so
26 messages need to be exchanged. The conventional algorithm will exchange n2

p2/3 boundary values

with each of its 6 “face neighbors” at each step, for a total of 6k n2

p2/3 words sent. The conventional

algorithm will also do 13 flops to compute each of the n3

p components it owns at each step, for a

total of 13kn2

p flops.
The other entries of the Summary Table are based on surface-to-volume analogies to the earlier

cases.

2.3 Summary of Parallel Complexity of Computing [Ax, ..., Akx] on Meshes

In the Summary table for Parallel Algorithms, “Mess” is the number of messages sent per processor,
“Words” is the total size of these messages, “Flops” is the number of floating point operations,
“MMem” is the amount of memory needed per processor for the matrix entries, and “VMem” is
the amount of memory needed per processor for the vector entries.

17

−5

0

5

10

15

−5

0

5

10

15

−0.5

0

0.5

1

1.5

2

2.5

3

3.5

Remote dependencies for Approach (2) to 2D mesh with 5 pt stencil, 3D view

Figure 6: Remote dependencies in PA2 for [Ax, ..., A3x] for 2D mesh with 5 point stencil, 3D view

18

−4 −2 0 2 4 6 8 10 12 14 16

−4

−2

0

2

4

6

8

10

12

14

16
Remote dependencies for Approach (1) to 2D mesh with 9 pt stencil

Figure 7: Remote dependencies in PA1 for [Ax, ..., A3x] for 2D mesh with 9 point stencil, projected
view

19

−5

0

5

10

15

−5

0

5

10

15

−0.5

0

0.5

1

1.5

2

2.5

3

3.5

Remote dependencies for Approach (1) to 2D mesh with 9 pt stencil, 3D view

Figure 8: Remote dependencies in PA1 for [Ax, ..., A3x] for 2D mesh with 9 point stencil, 3D view

20

−5

0

5

10

15

−5

0

5

10

15

−0.5

0

0.5

1

1.5

2

2.5

3

3.5

Remote dependencies for Approach (2) to 2D mesh with 9 pt stencil, 3D view

Figure 9: Remote dependencies in PA2 for [Ax, ..., A3x] for 2D mesh with 9 point stencil, 3D view

21

Lower order terms are sometimes omitted for clarity.
We consider the special case of stencil matrices, where in addition to the graph being a stencil,

each row of the matrix has the same nonzero entries (modulo boundaries). In this case at most
MMem ≤ (2b + 1)d words are needed to store the matrix entries for a d-dimensional mesh, not
(2b + 1)d nd

p , but otherwise the table entries do not change.

22

Table 1: Summary Table for Parallel Algorithms (some lower order terms omitted)
Problem Costs Conventional Parallel Parallel

Approach Approach 1 Approach 2
Mess 2k 2 2

1D mesh Words 2k 2k 2k

b = 1 Flops 5k n
p

5(k n
p

+ k2) 5(k n
p

+ k2
2)

MMem 3 n
p

3 n
p

+ 6k 3 n
p

+ 3k

VMem (k + 1) n
p

(k + 1) n
p

+ 2k (k + 1) n
p

+ 2k

Mess 2k 2 2
1D mesh Words 2bk 2bk 2bk

b ≥ 1 Flops (4b + 1)k n
p

(4b + 1)(k n
p

+ bk2) (4b + 1)(k n
p

+ bk2
2)

MMem (2b + 1) n
p

(2b + 1) n
p

+ bk(4b + 2) (2b + 1) n
p

+ bk(2b + 1)

VMem (k + 1) n
p

+ 2b (k + 1) n
p

+ 2bk (k + 1) n
p

+ 2bk

Mess 4k 8 8

2D mesh Words 4k n

p1/2 4k n

p1/2 + 2k2 4k n

p1/2 + 2k2

5 pt Flops 9k n2
p

9k n2
p

+ 18k2 n

p1/2 + 6k3 9k n2
p

+ 9k2 n

p1/2 + 4k3

MMem 5 n2
p

5 n2
p

+ 20 kn

p1/2 + 10k2 5 n2
p

+ 10 kn

p1/2 + 5k2

VMem (k + 1) n2
p

+ 4 n

p1/2 (k + 1) n2
p

+ 4 kn

p1/2 + 2k2 (k + 1) n2
p

+ 4 kn

p1/2 + 2k2

Mess 8k 8 8
2D mesh Words 4k(n

p1/2 + 1) 4k(n

p1/2 + k) 4k(n

p1/2 + 1.5k)

9 pt Flops 17k n2
p

17k n2
p

+ 34k2 n

p1/2 + 68
3 k3 17k n2

p
+ 17k2 n

p1/2 + 17k3

MMem 9 n2
p

9 n2
p

+ 36 kn

p1/2 + 36k2 9 n2
p

+ 18 kn

p1/2 + 9k2

VMem (k + 1) n2
p

+ 4 n

p1/2 (k + 1) n2
p

+ 4 kn

p1/2 + 4k2 (k + 1) n2
p

+ 4 kn

p1/2 + 6k2

Mess 8k 8 8
2D mesh Words 4bk(n

p1/2 + b) 4bk(n

p1/2 + bk) 4bk(n

p1/2 + 1.5bk)

(2b + 1)2 Flops (8b2 + 8b + 1)k n2
p

(8b2 + 8b + 1)· (8b2 + 8b + 1)·

pt (k n2
p

+ 2bk2 n

p1/2 + 4
3 b2k3) (k n2

p
+ bk2 n

p1/2 + b2k3)

stencil MMem (2b + 1)2) n2
p

(2b + 1)2(n2
p

+ 4bk n

p1/2 + 4b2k2) (2b + 1)2(n2
p

+ 2bk n

p1/2 + b2k2)

VMem (k + 1) n2
p

+ 4b n

p1/2 + 4b2 (k + 1) n2
p

+ 4bk n

p1/2 + 4b2k2 (k + 1) n2
p

+ 4bk n

p1/2 + 6b2k2

Mess 6k 26 26

3D mesh Words 6k n2

p2/3 6k n2

p2/3 + 6k2 n

p1/3 + O(k3) 6k n2

p2/3 + 6k2 n

p1/3 + O(k3)

7 pt Flops 13k n3
p

13k n3
p

+ 39k2 n2

p2/3 + O(k3 n

p1/3) 13k n3
p

+ 39
2 k2 n2

p2/3 + O(k3 n

p1/3)

stencil MMem 7 n3
p

7 n3
p

+ 42 n2

p2/3 + O(k2 n

p1/3) 7 n3
p

+ 21k n2

p2/3 + O(k2 n

p1/3)

VMem (k + 1) n3
p

+ 6 n2

p2/3 (k + 1) n3
p

+ 6k n2

p2/3 + O(k2 n

p1/3) (k + 1) n3
p

+ 6k n2

p2/3 + O(k2 n

p1/3)

Mess 26k 26 26

3D mesh Words 6k n2

p2/3 + 12k n

p1/3 + O(k) 6k n2

p2/3 + 12k2 n

p1/3 + O(k3) 6k n2

p2/3 + 12k2 n

p1/3 + O(k3)

27 pt Flops 53k n3
p

53k n3
p

+ 159k2 n2

p2/3 + O(k3 n

p1/3) 53k n3
p

+ 159
2 k2 n2

p2/3 + O(k3 n

p1/3)

stencil MMem 27 n3
p

27 n3
p

+ 162k n2

p2/3 + O(k2 n

p1/3) 27 n3
p

+ 81k n2

p2/3 + O(k2 n

p1/3)

VMem (k + 1) n3
p

+ 6 n2

p2/3 + O(n

p1/3) (k + 1) n3
p

+ 6k n2

p2/3 + O(k2 n

p1/3) (k + 1) n3
p

+ 6k n2

p2/3 + O(k2 n

p1/3)

Mess 26k 26 26

3D mesh Words 6bk n2

p2/3 6bk n2

p2/3 6bk n2

p2/3

(2b + 1)3 +12b2k n

p1/3 + O(b3k) +12b2k2 n

p1/3 + O(b3k3) +12b2k2 n

p1/3 + O(b3k3)

pt Flops (2(2b + 1)3 − 1)k n3
p

(2(2b + 1)3 − 1)· (2(2b + 1)3 − 1)·

stencil (k n3
p

+ 3bk2 n2

p2/3 + O(b2k3 n

p1/3)) (k n3
p

+ 3
2 bk2 n2

p2/3 + O(b2k3 n

p1/3))

MMem (2b + 1)3 n3
p

(2b + 1)3(n3
p

+ 6bk n2

p2/3 + O(b2k2 n

p1/3)) (2b + 1)3(n3
p

+ 3bk n2

p2/3 + O(b2k2 n

p1/3))

VMem (k + 1) n3
p

+ 6b n2

p2/3 + O(b2 n

p1/3) (k + 1) n3
p

+ 6bk n2

p2/3 + O(b2k2 n

p1/3) (k + 1) n3
p

+ 6bk n2

p2/3 + O(b2k2 n

p1/3)

2.4 General Graphs

Here we show how to extend the approaches PA1 and PA2 to general sparse matrices. To do so we
need some graph theoretic notation. It is natural to associate a directed graph with a square sparse
matrix A, with one vertex for every row/column, and an edge from vertex i to vertex j if Aij 6= 0,
meaning that component i of y = Ax depends on component j of x. We will build an analogous
graph, essentially consisting of k copies of this basic graph: Let x

(i)
j be the j-th component of

23

x(i) = Ai · x(0). We associate a vertex with each x
(i)
j for i = 0, ..., k and j = 1, ..., n (and use the

same notation to name the vertex), and an edge from x
(i+1)
j to x

(i)
m when Ajm 6= 0, and call this

graph of n(k+1) vertices G. (We will not need to construct all of G in practice, but using G makes
it easy to describe our algorithms, in a fashion analogous to Figures 1 through 3.) We say that i

is the level of vertex x
(i)
j . Each vertex will also have an affinity q, corresponding to the processor

number where it is stored; we assume all vertices x
(0)
j , x

(1)
j , ..., x

(k)
j have the same affinity, depending

only on j.
We write Gq to mean the subset of vertices of G with affinity q, G(i) to mean the subest of

vertices of G with level i, and G
(i)
q to mean the subset with affinity q and level i.

Let S be any subset of vertices of G. We let R(S) denote the set of vertices reachable by directed
paths starting at vertices in S (so S ⊂ R(S)). We need R(S) to identify dependencies of sets of
vertices on other vertices. We let R(S, m) denote vertices reachable by paths of length at most m

starting at vertices in S. We write Rq(S), R(i)(S) and R
(i)
q (S) as before to mean the subsets of

R(S) with affinity q, level i, and both affinity q and level i, respectively.
Next we need to identify the locally computable components, that processor q can compute given

only the values in G
(0)
q . We denote the set of locally computable components by

Lq ≡ {x ∈ Gq : R(x) ⊂ Gq}. As before L
(i)
q will denote the vertices in Lq at level i.

Finally, for PA2 we need to identify the minimal subset Bq,r of vertices (i.e. their values) that
processor r needs to send processor q so that processor q can finish computing all its vertices Gq

(eg the 8 circles containing red asterisks in Figure 3): We say that x ∈ Bq,r if and only if x ∈ Lr,
and there is a path from some y ∈ Gq to x such that x is the first vertex of the path in Lr.

Given all this notation, we can finally state versions of PA0, PA1 and PA2 for general graphs
and partitions among processors:

PA0 - Conventional parallel algorithm for a general graph (code for processor q)
for i = 1 to k

for all other processors r 6= q, send (values of) all x
(i−1)
j in R

(i−1)
q (G(i)

r) to processor r

for all other processors r 6= q, receive all x
(i−1)
j in R

(i−1)
r (G(i)

q) from processor r

compute all x
(i)
j in L

(i)
q

wait for receives to finish
compute remaining x

(i)
j in G

(i)
q − L

(i)
q

end for

PA1 for a general graph (code for processor q)
for all other processors r 6= q, send all x

(0)
j in R

(0)
q (Gr) to processor r

for all other processors r 6= q, receive all x
(0)
j in R

(0)
r (Gq) from processor r

compute all x
(i)
j in Lq (in order of increasing i)

... ex: circled vertices in Figure 1
wait for receives to finish
compute remaining x

(i)
j in R(Gq)− Lq (in order of increasing i)

... ex: circled vertices in Figure 2

We illustrate the algorithm PA1 on the matrix A whose graph is in Figure 10(a). The vertices
represent rows and columns of A and the edges represent nonzeros; for simplicity we use a symmetric

24

matrix so the edges can be undirected. The dotted orange lines separate vertices owned by different
processors, and we will let q denote the processor owning the 9 gray vertices in the center of the
figure. In other words the gray vertices are G

(0)
q . For all the neighboring processors r 6= q, the red

vertices are R
(0)
r (Gq) for k = 1, the red and green vertices together are R

(0)
r (Gq) for k = 2, and the

red, green and blue vertices together are R
(0)
r (Gq) for k = 3.

PA2 for a general graph (code for processor q)
Phase I: compute x

(i)
j in ∪r 6=q(R(Gr) ∩ Lq)

... ex: blue circled vertices in Figure 3
for all other processors r 6= q send x

(i)
j in Br,q to processor r

... ex: blue circled vertices containing red asterisks in Figure 3
for all other vertices r 6= q receive x

(i)
j in Bq,r from processor r

... ex: blue circled vertices containing red asterisks in Figure 3
Phase 2: compute x

(i)
j in Lq − ∪r 6=q(R(Gr) ∩ Lq)

... ex: locally computable vertices of right processor minus blue circled vertices in Figure 3
wait for receives to finish
Phase 3: compute remaining x

(i)
j in R(Gq)− Lq − ∪r 6=q(R(Gq) ∩ Lr)

... ex: black circled vertices in Figure 3 that are connected by lines

The Phases in PA2 will be referred to in section 5.
We illustrate algorithm PA2 on the same matrix (as the one used for PA1), shown in Figures

10(b) and (c), just for the case k = 3. In Figure 10(b), the red vertices are B
(0)
q,r (the members of

Bq,r at level 0), and in Figure 10(c) the green vertices are B
(1)
q,r .

2.5 Stencils

Now we discuss how computing [x,Ax, ..., Akx] simplifies when A is truly a stencil operator, i.e.
not only is the sparsity pattern described by a mesh as before, but the values of the matrix are
the same in every row (modulo mesh boundaries). This means that we do not need to store any
matrix entries. Otherwise, the PA1 and PA2 algorithms described so far are identical, with identical
communication and computation costs. (If some nonzeros in matrix row are identical, it is also be
possible to reduce the number of multiplications.)

If in addition only the final vector Akx is needed but not Ax, ..., Ak−1x, then further memory
savings are possible, but not computation or communication savings. This can complicate indexing;
see section 8 for related work.

3 Sequential Algorithms

Now consider the sequential algorithm with fast and slow memories. Let us motivate the two
situations we are trying to optimize. It is typical for a large N -by-N sparse matrix to take many
times as much memory as vector of length N . For example, a typical density of .1% means that
an N -by-N matrix takes roughly .001N2 8-byte floats and 4-byte indices to store (assuming CSR
format), so roughly .012N2 bytes, whereas a vector takes 8N bytes, which is smaller for N > 666,
and typically many times smaller. So the two cases of most interest are (1) the matrix does not fit

25

(a) PA1 example: Entries of x(0) colored red are the
ones needed when k = 1, green are the additional ones
needed when k = 2 and blue are the additional ones
needed when k = 3.

(b) PA2 example for k = 3: Entries of x(0) which need
to be fetched are colored red.

(c) PA2 example for k = 3: Entries of x(1) which need
to be fetched are colored green.

Figure 10: Example for PA1 and PA2. The dotted lines define the different blocks. Each block
resides on a different processor. The example shows from the perspective of the processor holding
the central block.

26

in fast memory but the k + 1 vectors [x,Ax, ..., Akx] do, and (2) neither the matrix nor the vectors
fit in fast memory.

We note that for our model problems, the relative sizes of the vectors and matrix depends on
k and the bandwidth b, and our algorithms are of most interest when the matrix is larger than the
vectors. While this is not the case for tridiagonal matrices and k > 2, we will still use this simple
case to illustrate how the algorithms work.

Conventional Sequential Approach (SA0). We assume the matrix does not fit in fast memory
but the vectors do. This algorithm will keep all the components of [x,Ax, ..., Akx] in fast
memory, and read all the entries of A from slow to fast memory to compute each vector Ajx,
thereby reading A k times in all.

New Sequential Approach 1 (SA1). We again assume that the matrix does not fit in fast
memory but the vectors do. SA1 will emulate PA1 by partitioning the matrix into p block
rows, and looping from i = 1 to i = p, reading from slow memory those parts of the matrix
needed to perform the same computations performed by processor i in PA1, and updating the
appropriate components of [Ax, ..., Akx] in fast memory. Since all components of [Ax, ..., Akx]
are in fast memory, no redundant computation is necessary. We choose p as small as possible,
to minimize the number of slow memory accesses, as described below.

New Sequential Approach 2 (SA2). Now we assume that neither the matrix nor the vectors
fit in memory. SA2 will still emulate PA1 by looping from i = 1 to i = p, but read from
slow memory not just parts of the matrix but also those parts x needed to perform the same
computations performed by processor i in PA1, and finally writing back to slow memory
the corresponding components of [Ax, ..., Akx]. Depending on the structure of A, redundant
computation may or may not be necessary. We again choose p as small as possible.

For SA1, the total number of slow memory accesses is roughly the minimum number needed to
read in the whole matrix once from slow memory, while also keeping [x,Ax, ..., Akx] in fast memory.
For a sparse matrix with nnz nonzeros and a fast memory of size M bytes, the number of slow
memory accesses is therefore roughly (12nnz)/(M − 8(k + 1)n). As long as M � n and nnz � n,
this number grows very slowly with k, justifying our claims of the latency cost being independent
of k.

For SA2, we also need to read and write k +1 vectors to and from slow memory, so the number
of slow memory accesses is roughly (8(k + 1)n + 12nnz)/M . As long as 8(k + 1)n

<≈ 12nnz, or

k
<≈ 3

2
· nnz

n
=

3
2
· the average number of nonzeros per row,

the number of slow memory accesses will again be roughly independent of k as claimed.
Our sequential approach is broadly similar to that of Strout [28] and Vuduc [31] but differs in

that we assume a cost of “latency + n/bandwidth” to read or write any contiguous set of n bytes
from slow memory, where latency may be dominant. Therefore it is critical for us to organize our
data structures so that data to be read from slow memory is entirely contiguous. We will see that
this leads to new data layouts where, for example, we interleave matrix and vector entries. (In
subsection 3.5 we show that finding the optimal way to reorganize the data may be formulated
via the Travelling Salesman Problem (TSP), but we only need to solve it approximately to get a

27

reasonable solution.) This reorganization is not necessary in the parallel case, because the sending
and receiving processors can pack and unpack data structures into contiguous memory segments,
something a disk or memory prefetch unit cannot do (yet). This packing/unpacking has the effect
of decreasing the effective bandwidth, but not the number of messages.

The rest of this section is organized as follows. Subsection 3.1 describes SA1 and SA2 in more
detail for 1D meshes (band matrices). Subsection 3.2 describes SA1 and SA2 in more details for 2D
and 3D meshes. Subsection 3.3 presents a tabular summary of all the operation counts for meshes.
Subsection 3.4 describes SA1 and SA2 on general sparse matrices. Subsection 3.5 describes how to
find the optimal ordering of unknowns, as well as good approximations to this ordering.

3.1 1D Meshes

We will explain both SA1 and SA2 for tridiagonal matrices, even though (as stated above) only
SA2 makes sense in practice for such matrices, since SA1 uses too much fast memory. We also
present the conventional algorithm, for contrast:

Alg SA0: Conventional Sequential Approach with Fast/Slow Memory for 1D mesh with b = 1
... assume matrix stored in slow memory in p equal sized chunks
... where chunk q consists of rows sq through eq

... assume k + 1 vectors [x,Ax, ..., Akx] all fit in fast memory

... let initial x be denoted x(0)

for j = 1 to k
for q = 1 to p

read rows sq through eq of matrix from slow memory
... this assumes that the matrix is stored by rows, so that
... rows sq through eq are located contiguously
compute x

(j)
sq = (Ax(j−1))sq , ... , x

(j)
eq = (Ax(j−1))eq

endfor
endfor

The cost of this algorithm is 5kn flops, 3kn words read from slow memory, and kp accesses
to slow memory. The memory required is (k + 1)n + 3n

p . Since the tridiagonal matrix has so few
nonzeros, this conventional approach has no memory advantages over computing (and using and
then overwriting!) the powers Ajx one at a time.

As stated in the introduction, the presence of all components of [Ax, ..., Akx] in the same memory
makes it unnecessary to perform any redundant computation in the new approach:

Alg SA1: New Sequential Approach 1 with Fast/Slow Memory for 1D mesh with b = 1
... assume matrix stored in slow memory in p equal sized chunks
... where chunk q consists of rows sq through eq;
... assume k + 1 vectors [x,Ax, ..., Akx] all fit in fast memory;
... ignore boundaries q = 1 and q = p;
for q = 1 to p

read rows sq through eq of A from slow memory
... note: for q > 1, rows sq − k through sq − 1 were already read last time,
... and must be kept in memory;

28

... this also assumes that the matrix is stored by rows, so that

... rows sq through eq are located contiguously
compute locally dependent components of Ajx as shown in Figure 11

endfor

The cost of this algorithm is 5kn flops (no more than the conventional algorithm), 3n words
read from slow memory (the matrix is read just once), and p accesses to slow memory (in contrast
to kp for the conventional algorithm). The memory required is (k + 1)n + 3n

p as for SA0, plus 3k
more for keeping rows sq − k through sq − 1 of A in fast memory.

By unrolling the loop in SA1 (but at the cost of more fast memory), the latency of the read
from slow memory could be overlapped with computation.

Alg SA2: New Sequential Approach 2 with Fast/Slow Memory for 1D mesh with b = 1
... assume matrix and vectors [x,Ax, ..., Akx] stored in slow memory in p equal sized chunks
... where chunk q consists of rows sq through eq;
... ignore boundaries q = 1 and q = p;
for q = 1 to p

read rows sq through eq of A and of [x,Ax, ..., Akx] from slow memory
... note: for q > 1, rows sq − k through sq − 1 of A and of [x,Ax, ..., Akx]
... were already read last time, and must be kept in memory
compute locally dependent components of Ajx as shown in Figure 11
write rows sq − k through eq − k = sq+1 − k − 1 of [Ax, ..., Akx] back to slow memory

endfor

In order to perform the read in SA2 in exactly one slow memory access, we would need to
interleave the data structures of A and of [x,Ax, ..., Akx] so that the first n/p consecutive rows of
A and of [x,Ax, ..., Akx] were stored contiguously together, then the second n/p rows of both, and
so on. In order to also perform the write in SA2 in exactly one slow memory access, the n/p rows
of x would have to come at the end of the corresponding rows of A and of [Ax, ..., Akx]. We can
simplify these data structures at the cost of increasing the number of slow memory accesses from
2 to at most 5, by storing A, x and [Ax, ..., Akx] separately (but still by rows).

The cost of this algorithm is 5kn flops (no more than the conventional algorithm), 3n+(k+1)n
words read from slow memory (the matrix and all the vectors are read just once), and p accesses to
slow memory, assuming the best possible interleaved layout of A and [x,Ax, ..., Akx] just described
(in contrast to kp for the conventional algorithm).

The memory required is 3n
p +3k for the matrix and (k +1)n

p + k(k +1) for the vectors, roughly
a factor of p less than the conventional algorithm. If the main memory size is M words, we get the
inequality (k +4)(n

p + k) ≤ M , or p ≥ n(k+4)
M−k(k+4) ≈

n(k+4)
M as the minimum number of slow memory

accesses.
We can avoid all redundant flops since we can “leave behind” the components of [x,Ax, ..., Akx]

in memory. This phenomenon is unfortunately limited to a 1D mesh, and higher dimensional
meshes will again have some redundant work, as they did in the parallel case.

By unrolling the loop in Alg. SA2 (but at the cost of more fast memory), the latency of the
read from slow memory can again be overlapped with computation.

Now we consider matrices with bandwidth b > 1, i.e. band matrices. The conventional algorithm
for b > 1 differs very little from the b = 1 base described above. The costs are (4b + 1)kn flops,

29

5 10 15 20 25 30
−0.5

0

0.5

1

1.5

2

2.5

3

3.5

4

4.5
Dependencies for k=4 in Alg SA1

Figure 11: Local dependencies in SA1 for [Ax, ..., A4x] for tridiagonal matrix

30

(2b + 1)kn words read from slow memory, and kp accesses to slow memory. The fast memory
required is (k + 1)n + (2b + 1)n

p .
SA1 for bandwidth b > 1 differs from b = 1 as follows: Instead of leaving rows sq − k through

sq − 1 of A in memory, we must leave rows sq − kb through sq − 1. Altogether, the costs are
(4b + 1)kn flops as before, (2b + 1)n words read from slow memory (the matrix is read once), and
p accesses to slow memory. The fast memory required is (k + 1)n words for the vector entries plus
(2b + 1)(n

p + kb) words for the matrix entries.
SA2 for bandwidth b > 1 also differs from b = 1 by needing to keep rows sq − kb through sq − 1

of A and [x,Ax, ..., Akx] in memory. The number of flops and slow memory accesses are the same
as for SA1. The fast memory required goes down to (2b + 1)(n

p + kb) words for the matrix entries
and (k + 1)(n

p + kb) for the vector entries, or (2b + k + 2)(n
p + kb) in all. The number of words read

from slow memory increases to (k + 1)n + (2b + 1)n, since the vectors and the matrix need to be
read in once.

3.2 2D and 3D Meshes

With the 1D mesh, the natural ordering of the unknowns had several attractive properties: the
matrix and vector entries were ordered to minimize the number of accesses to slow memory (i.e.
the “boundary vertices” were always contiguous to each partition), and all redundant flops could
be avoided because the required data was already in memory, without requiring extra fast memory.
Neither of these is possible for 2D or 3D meshes (or for a general graph), but we will nevertheless
minimize the amount of redundant work and number of slow memory accesses, as we did in the
parallel case. This is more difficult in the sequential than the parallel case, because in the parallel
case we could have the sending processor pack up all the desired vectors entries (matrix entries were
not communicated) into a single contiguous message to be sent. This could be modeled by using
a slightly lower communication bandwidth to account for the copying (which may be done anyway
by the communication layer). In contrast, in the sequential case, there is generally no opportunity
to reorder data in the slow memory: If data is not contiguous, either more accesses are needed
(and so more latency costs are incurred), or else more data than needed is fetched (and so more
bandwidth costs are incurred).

To illustrate, consider the grid points associated with a single partition, as shown in left of
Figure 12. The unknowns within each numbered region are ordered contiguously, and the regions
are ordered as shown. Thus, when the North region requires data, it can read regions 1 through 5
in one access. Similarly, the NE region can read region 5, the E region can read regions 4 through 8,
the SE region can read region 8, the S region can read regions 7 through 11, and the SW region can
read region 11. However, the W region needs 10, 11, 12, 1 and 2, and so requires 2 slow memory
accesses (or else fetching regions 1 through 12 in one access and throwing away the unneeded data).
Since the adjacency graph of the regions 1 through 12 has a cycle, one can easily see that no linear
order exists requiring only 1 slow memory access for all the required data.

Unlike the 1D case, we will store x and the other vectors [Ax, ..., Akx] separately, using the
order shown in left of Figure 12.

The right of Figure 12 shows a similar, simpler ordering with the same number of slow memory
accesses, and with simpler indexing, but which accesses slightly more words than necessary from
slow memory (the triangles 2, 4, 7 and 10 are unnecessarily sent to the corner processors). The
simpler indexing could result in a faster algorithm.

31

Figuring out orderings of grid points analogous to these, but for general graphs, that minimize
the number of slow memory accesses, may be reduced to an instance of the Travelling Salesman
Problem, see section 3.5.

Since the matrix entries are read-only, we can minimize the number of slow memory accesses
to the matrix by using extra slow memory (which is cheap) to store some rows of A redundantly,
so that the needed rows of A for any region are always stored contiguously. We will henceforth
assume this has been done as a preprocessing step, and not count its costs in the Summary Tables.
This extra slow memory, like other extra costs, is proportional to the size of the boundary, and so
is asymptotically small.

Using the above assumptions and data layouts, the conventional sequential algorithm works
analogously to Alg SA0 in Section 3.1: The cost is 9kn2 flops, 5kn2 words read from slow memory
in kp slow memory accesses, and (k +1)n2 fast memory words for the vectors and 5n2

p fast memory
words for the matrix.

Alg SA1: New Sequential Approach 1 with Fast/Slow Memory for 2D mesh with 5 point stencil
... assume matrix stored in slow memory in p equal sized chunks
... where chunk q consists of rows sq through eq along with
... B “boundary rows” needed for redundant computation of border regions
... assume k + 1 vectors [x,Ax, ..., Akx] all fit in fast memory;
... ignore boundaries q = 1 and q = p;
for q = 1 to p

read rows sq through eq + B of A from slow memory
... note: rows eq + 1 through eq + B are redundant copies of “boundary rows”
compute locally dependent components of Ajx as shown in Figure 5
... reusing previously computed red circles

endfor

Alg SA1 costs 9kn2 flops, accesses slow memory p times, and reads 5n2 +20kn1/2 +10pk2 words
from slow memory.

Alg SA2: New Sequential Approach 2 with Fast/Slow Memory for 2D mesh with 5 point stencil
... assume matrix stored in slow memory in p equal sized chunks
... where chunk q consists of rows sq through eq along with
... B “boundary rows” needed for redundant computation of border regions
... assume x stored in slow memory in corresponding p chunks, where
... each chunk internally ordered as in the left of Figure 12;
... assume k vectors [Ax, ..., Akx] stored analogously to x
... ignore boundaries q = 1 and q = p;
for q = 1 to p

read rows sq through eq + B of A from slow memory
... note: rows eq + 1 through eq + B are redundant copies of “boundary rows”
read rows sq through eq of x from slow memory
... this costs one slow memory access
read needed rows of x from N, NE, E, SE, S, SW, W and NW regions
... this costs 9 slow memory accesses
compute locally dependent components of Ajx as shown in Figure 5

32

0 10 20 30
0

5

10

15

20

25

30

1
2 3

4
5

6

7
8

910
11

12 13

0 10 20 30
0

5

10

15

20

25

30

1 2 3

4

567

8 9

Figure 12: Ordering the unknowns in a 2D Mesh for contiguity

33

write rows sq through eq of [Ax, ..., Akx] to slow memory
endfor

The costs for Alg SA2 are 12p slow memory accesses, (6 + k)n2 + 24knp1/2 + 12pk2 words read
from or written to slow memory, and 9kn2 + 18k2np1/2 + 6k3p flops, p times as many as PA1.

A similar counting exercise leads to the other entries in the Summary Table in the next section.

3.3 Summary of Sequential Complexity of Computing [Ax, ..., Akx] on Meshes

In the Summary Table for Sequential Algorithms, “Acc” is the number of accesses of slow memory
(reads or writes), “MWords” is the total number of matrix entries accessed, “VWords” is the total
number of vector entries accessed, “Flops” is the number of floating point operations, “MMem” is
the fast memory required for matrix entries, and “VMem” is the fast memory required for vector
entries.

Lower order terms are sometimes omitted for clarity.
We consider the special case of stencil matrices, where in addition to the graph being a stencil,

each row of the matrix has the same nonzero entries (modulo boundaries). In this case no matrix
entries need to be fetched from slow memory (MWords=0) and at most MMem ≤ (2b + 1)d words
are needed to store the matrix entries for a d-dimensional mesh, not (2b + 1)d nd

p . Otherwise the
table entries do not change.

34

Table 2: Summary Table for Sequential Algorithms (some lower order terms omitted)
Problem Costs Conventional Sequential Sequential

Approach Approach 1 Approach 2
Acc kp p p

1D mesh MWords 3kn 3n 3n
b = 1 VWords 0 0 (k + 1)n

Flops 5kn 5kn 5kn
MMem 3 n

p
3(n

p
+ k) 3(n

p
+ k)

VMem (k + 1)n (k + 1)n (k + 1)(n
p

+ k)

Acc kp p p
1D mesh MWords (2b + 1)kn (2b + 1)n (2b + 1)n

b ≥ 1 VWords 0 0 (k + 1)n
Flops (4b + 1)kn (4b + 1)kn (4b + 1)kn
MMem (2b + 1) n

p
(2b + 1)(n

p
+ bk) (2b + 1)(n

p
+ bk)

VMem (k + 1)n (k + 1)n (k + 1)(n
p

+ bk)

Acc kp p 12p

2D mesh MWords 5kn2 5n2 + 20knp1/2 + 10pk2 5n2 + 20knp1/2 + 10pk2

5 pt VWords 0 0 (k + 1)n2 + 4knp1/2 + 2pk2

stencil Flops 9kn2 9kn2 9kn2 + 18k2np1/2 + 6k3p

MMem 5 n2
p

5 n2
p

+ 20k n

p1/2 + 10k2 5 n2
p

+ 20k n

p1/2 + 10k2

VMem (k + 1)n2 (k + 1)n2 (k + 1) n2
p

+ 4k n

p1/2 + 2k2

Acc kp p 12p

2D mesh MWords 9kn2 9n2 + 36knp1/2 + 36pk2 9n2 + 36knp1/2 + 36pk2

9 pt VWords 0 0 (k + 1)n2 + 4knp1/2 + 4pk2

stencil Flops 17kn2 17kn2 17kn2 + 34k2np1/2 + 68
3 k3p

MMem 9 n2
p

9 n2
p

+ 36k n

p1/2 + 36k2 9 n2
p

+ 36k n

p1/2 + 36k2

VMem (k + 1)n2 (k + 1)n2 (k + 1) n2
p

+ 4k n

p1/2 + 4k2

Acc kp p 12p

2D mesh MWords (2b + 1)2kn2 (2b + 1)2(n2 + 4bknp1/2 + 4pb2k2) (2b + 1)2(n2 + 4bknp1/2 + 4pb2k2)

(2b + 1)2 VWords 0 0 (k + 1)n2 + 4bknp1/2 + 4pb2k2

pt Flops (8b2 + 8b + 1)kn2 (8b2 + 8b + 1)kn2 (8b2 + 8b + 1)·
stencil (kn2 + 2bk2np1/2 + 4

3 b2k3p)

MMem (2b + 1)2 n2
p

(2b + 1)2(n2
p

+ 4bk n

p1/2 + 4b2k2) (2b + 1)2(n2
p

+ 4bk n

p1/2 + 4b2k2)

VMem (k + 1)n2 (k + 1)n2 (k + 1) n2
p

+ 4bk n

p1/2 + 4b2k2

Acc kp p O(p)

3D mesh MWords 7kn3 7n3 + 42kn2p1/3 + O(k2np2/3) 7n3 + 42kn2p1/3 + O(k2np2/3)

7 pt VWords 0 0 (k + 1)n3 + 6kn2p1/3 + O(k2np2/3)

stencil Flops 13kn3 13kn3 13kn3 + 39k2n2p1/3 + O(k3np2/3)

MMem 7 n3
p

7 n3
p

+ 42k n2

p2/3 + O(k2 n

p1/3) 7 n3
p

+ 42k n2

p2/3 + O(k2 n

p1/3)

VMem (k + 1)n3 (k + 1)n3 (k + 1) n3
p

+ 6k n2

p2/3 + O(k2 n

p1/3)

Acc kp p O(p)

3D mesh MWords 27kn3 27n3 + 162kn2p1/3 + O(k2np2/3) 27n3 + 162kn2p1/3 + O(k2np2/3)

27 pt VWords 0 0 (k + 1)n3 + 6kn2p1/3 + O(k2np2/3)

stencil Flops 53kn3 53kn3 53kn3 + 159k2n2p1/3 + O(k3np2/3)

MMem 27 n3
p

27 n3
p

+ 162k n2

p2/3 + O(k2 n

p1/3) 27 n3
p

+ 162k n2

p2/3 + O(k2 n

p1/3)

VMem (k + 1)n3 (k + 1)n3 (k + 1) n3
p

+ 6k n2

p2/3 + O(k2 n

p1/3)

Acc kp p O(p)

3D mesh MWords (2b + 1)3kn3 (2b + 1)3· (2b + 1)3·
(2b + 1)3 (n3 + 6bkn2p1/3 + O(b2k2np2/3)) (n3 + 6bkn2p1/3 + O(b2k2np2/3))

pt VWords 0 0 (k + 1)n3 + 6bkn2p1/3 + O(b2k2np2/3)

stencil Flops (2(2b + 1)3 − 1)kn3 (2(2b + 1)3 − 1)kn3 (2(2b + 1)3 − 1)·
(kn3 + 3bk2n2p1/3 + O(b2k3np2/3))

MMem (2b + 1)3 n3
p

(2b + 1)3· (2b + 1)3·

(n3
p

+ 6bk n2

p2/3 + O(b2k2 n

p1/3)) (n3
p

+ 6bk n2

p2/3 + O(b2k2 n

p1/3))

VMem (k + 1)n3 (k + 1)n3 (k + 1) n3
p

+ 6bk n2

p2/3 + O(b2k2 n

p1/3)

35

3.4 General Graphs

We use notation defined in section 2.4. In the pseudocode below “read” means from slow to fast
memory, and “write” means from fast to slow.

SA0 - Conventional sequential algorithm for a general graph
... assume the vectors fit in fast memory but the matrix does not
for i = 1 to k

for q = 1 to p

read all rows j of A such that some x
(i)
j ∈ G

(i)
q

compute all x
(i)
j in G

(i)
q

end for
end for

SA1 for a general graph
... emulate PA1, assuming the vectors fit in fast memory but the matrix does not
... no redundant arithmetic required
S = φ ... S is set of x

(i)
j computed so far

for q = 1 to p

S′ = {x(i)
j : R(0)(x(i)

j) ⊂ G
(0)
q ∪ S(0)} − S

... S′ = set of x
(i)
j that depend only on current and previous x

(0)
m

read all rows j of A such that some x
(i)
j ∈ S′

... may store some rows of A redundantly to reduce # reads to 1
compute all x

(i)
j in S′ (in order of increasing i)

S = S ∪ S′

endfor

SA2 for a general graph
... emulate PA1, assuming neither vectors nor matrix fit in fast memory
... will be redundant arithmetic as in PA1
S = φ ... S is set of x

(i)
j computed so far

for q = 1 to p

read G
(0)
q

read all rows j of A such that some x
(i)
j ∈ R(Gq)

... may store some rows of A redundantly to reduce # reads to 1
compute all x

(j)
i in Lq

for all r 6= q, read R
(0)
r (Gq)

... possible to optimize order in which x
(0)
j stored to minimize # slow memory accesses

... see next section for details
compute remaining x

(i)
j in R(Gq)− Lq

write G
(1:k)
q

end for

36

3.5 Optimizing the Order of Unknowns in SA2

As illustrated in Figure 12, the order in which vector components are stored within each block
influences the number of slow memory accesses needed to read the data needed from neighboring
blocks, namely the data R

(0)
r (Gq) that block q needs from block r, for all r 6= q. The left part

of Figure 12 shows the best order for a 2D mesh with a 5 point stencil. (The components within
each block can be numbered in any order, but all the components in block i must be numbered
before those in block i + 1, and so on.) In this case, where each block has 8 neighboring blocks, 8
(simultaneous) accesses is clearly a lower bound. If we insist on reading only the needed data, then
the best we can do is 9 accesses, as discussed in section 3.2.

Alternatively, when regions 1, 2, 10, 11 and 12 are needed, all regions 1 through 12 could be
fetched and regions 3 through 9 discarded. But in this section we consider solutions that fetch only
the required data, and so always minimize the bandwidth costs.

Furthermore, the order in which we access blocks is important. For example, for the 2D mesh,
if we access blocks from left to right in each processor row, then the needed data from the previous
block is still in fast memory and does not need to be accessed. So we also need to choose the order
in which to access blocks. We call this block ordering, as opposed to the component ordering within
an individual block, as discussed in the first paragraph.

In this section we ask how to determine the optimal block ordering and component ordering
for SA2 for a general graph, by reducing the question to an instance of the Travelling Salesman
Problem (TSP).

For the rest of this subsection, we let n denote the dimension of the matrix A. We will start
by assuming a block ordering is given, so that the blocks of the vector x are B1, . . . , Bp, where
each Bi is a disjoint subset of {1, ..., n}, and show how to choose the optimal component ordering
within each block. Later we will show how to choose the optimal block ordering. Let |Bi| denote
the number of elements in block Bi. Let Ni,j denote the set of elements of block Bi needed when
computing block Bj . Let Ei,j denote the set of elements of block Bi needed to be fetched from slow
memory when computing for block Bj . The set Ei,j is fixed by the ordering of the blocks–if block
Bj comes immediately after block Bl, then Ei,j = Ni,j −Ni,l, i.e., we only fetch elements which are
not already in fast memory. So, there will always be an implicit ordering of the blocks when we
talk about Ei,j . We call block Bi a neighbor of block Bj if Ei,j 6= ∅.

3.5.1 Component ordering

Let A(Ei,j) denote the number of accesses required to fetch the set of elements Ei,j from slow
memory, assuming blocks are processed in increasing order from B1 to Bp. Therefore, total number
of slow memory accesses required is A =

∑p
j=1(

∑p
i=1 A(Ei,j)) =

∑p
i=1(

∑p
j=1 A(Ei,j)). Since the

ordering of elements inside block Bi only affects the sum Ai =
∑p

j=1 A(Ei,j), we simply need to
optimize Ai independently for block Bi. Given this observation, we now formalize the block level
ordering problem for an individual block.

Let Bi be the block under consideration. Without loss of generality, let 1, 2, . . . ,m be the
elements of block Bi. Also, assume that none of Ei,j (j 6= i) are empty (if there is an empty Ei,j ,
then we simply remove it from consideration resulting in a smaller p). Similarly, assume that all the
elements of Bi are in some Ei,j (if not, such element(s) can be placed in a contiguous segment at the
end without affecting the optimality of an ordering; for example these would be the components in

37

region 13 on the left of Figure 12). Let Ii,j be the indicator function for whether a ∈ Ei,j (Ii,j(a) = 1
iff a ∈ Ei,j). We now have the following lemma:

Lemma 1 Let 1, 2, . . . ,m be the elements of block Bi. Add a dummy element m+1 to the block. Let
m+1 6∈ Ei,j (1 ≤ j ≤ p). Given an ordering ρ of these m+1 elements such that ρ(m+1) = m+1,
we have A(Ei,j) =

∑m
k=1 Ii,j(ρ(k)) · (1− Ii,j(ρ(k + 1))).

Proof: A(Ei,j) is the same as the number of contiguous segments of the set Ei,j under the ordering
ρ. One way of counting this is to look at the elements of Bi in the order specified by ρ and add
1 to the count whenever we encounter a boundary, i.e., when ρ(k) ∈ Ei,j and ρ(k + 1) 6∈ Ei,j .
Equivalently, for the k-th element in the ordering, we add Ii,j(ρ(k)) · (1 − Ii,j(ρ(k + 1))) to the
count. The reason we added a dummy element is to account for the case when the last contiguous
segment ends at element m. So, we get A(Ei,j) =

∑m
k=1 Ii,j(ρ(k)) · (1− Ii,j(ρ(k + 1))). 2

Using Lemma 1, we get

Ai =
p∑

j=1

m∑
k=1

Ii,j(ρ(k)) · (1− Ii,j(ρ(k + 1)))

=
m∑

k=1

 p∑
j=1

Ii,j(ρ(k)) · (1− Ii,j(ρ(k + 1)))

 .

Now, consider the weighted directed complete graph Gi = (Vi, Ei), Vi = {v1, . . . , vm+1} (one node
for each element of block Bi, vm+1 for the dummy element in Lemma 1). Let wt(va, vb) (weight of
edge from node va to node vb) be

∑p
j=1 Ii,j(a) ·(1−Ii,j(b))–the contribution to the total count of the

number of disk accesses if element b is placed immediately after element a. Consider an ordering ρi

of the elements of block Bi (such that ρi(m+1) = m+1). The total number of disk accesses due to
this ordering is Ai =

∑m
k=1

(∑p
j=1 Ii,j(ρi(k)) · (1− Ii,j(ρi(k + 1)))

)
. The total weight of the path

vρi(1), vρi(2), . . . , vρi(m+1) is also Ai. Equivalently, we can say that the Hamiltonian path ending at
node vm+1 has the same weight as the number of disk accesses for the corresponding ordering. Thus,
an optimal ordering (with the constraint of m+1 being the last element) corresponds to the lowest
weight Hamiltonian path (with the constraint of vm+1 being the last node). By setting wt(vm+1, va)
(1 ≤ a ≤ m) large enough, vm+1 will be the last node in any lowest weight Hamiltonian path. In
fact, wt(vm+1, va) = 1 + maxm

k=1

∑p
j=1 Ii,j(a) does the trick. Since wt(vm+1, va) is independent of a

(for 1 ≤ a ≤ m), the lowest weight Hamiltonian path corresponds to the lowest weight Travelling
Salesman tour by using the edge between vm+1 (since it lies at the end in any optimal Hamiltonian
path) and the first node in the Hamiltonian path. So, the problem can also be formulated as a
Travelling Salesman problem.

In summary, to find the optimal ordering of the components of the block Bi, construct the
graph Gi (discussed in the previous paragraph) and find the lowest weight Hamiltonian path. The
ordering defined by the Hamiltonian path is the optimal ordering for the components of the block.

3.5.2 Reducing the problem size for component ordering

It appears that the size of the component ordering problem is O(m2), where m is the number of
components of each block needed by other blocks. In general m will grow with problem dimension
n and be quite large. Here we show how to reduce the TSP problem size for each block to at

38

most its number of neighboring blocks, which is usually quite small, for example 3d − 1 in the
case of a d-dimensional mesh, independent of the number of mesh points. The intuition, again
from Figure 12, is that the components can be put into equivalence classes (numbered there on
the left from 1 through 12) each of which is needed by the same set of neighboring blocks, and
then the equivalence classes ordered. So here we will formally construct the equivalence relation
on components, and show that in any optimal ordering, equivalent components are numbered
consecutively.

For the above graph Gi, we say that node va is related to node vb (vaRivb) iff wt(va, vb) =
wt(vb, va) = 0. Clearly, the relation Ri is an equivalence relation. The next 3 lemmas make several
observations about the relation Ri.

Lemma 2 If vaRivb then, a ∈ Ei,j iff b ∈ Ei,j and vice versa. In other words, the equivalence
relation Ri is also defined as being contained in the same set of sets Ei,j.

Proof: First of all, we note that vm+1 is not related to any other node, since wt(vm+1, va) 6= 0
for any 1 ≤ a ≤ m. Also, there is no 1 ≤ a ≤ m such that a ∈ Ei,j iff m + 1 ∈ Ei,j since each a
is in some Ei,j but m + 1 is not in any Ei,j . So, we only need to consider other elements/nodes.
wt(va, vb) =

∑p
j=1 Ii,j(a) · (1− Ii,j(b)) = 0 implies that for all 1 ≤ j ≤ p, Ii,j(a) · (1− Ii,j(b)) = 0 (all

these terms are non-negative). Similarly, wt(vb, va) =
∑p

j=1 Ii,j(b) · (1 − Ii,j(a)) = 0 implies that
for all 1 ≤ j ≤ p, Ii,j(b) · (1 − Ii,j(a)) = 0. This implies that, for all 1 ≤ j ≤ p, Ii,j(a) = Ii,j(b)
which means that a ∈ Ei,j iff b ∈ Ei,j . Similarly, if a ∈ Ei,j iff b ∈ Ei,j , then for all 1 ≤ j ≤ p,
Ii,j(a) = Ii,j(b) which implies that Ii,j(b) = Ii,j(b) · Ii,j(a) = Ii,j(a) for all 1 ≤ j ≤ p, which implies
that wt(va, vb) = wt(vb, va) = 0. This completes the proof. 2

From Lemma 2, we get the following–if vaRivb, then for any vc, wt(va, vc) = wt(vb, vc) and
wt(vc, va) = wt(vc, vb). Now, consider an optimal ordering ρi of the elements of Bi. Lemma 2
implies that there are optimal orderings in which all elements which are equivalent are placed
contiguously.

Lemma 3 For any 3 distinct nodes va, vb and vc, wt(va, vb) + wt(vb, vc) ≥ wt(va, vc).

Proof: We consider 4 possible cases:

1. a = m+1: wt(vm+1, vb)+wt(vb, vc)−wt(vm+1, vc) = wt(vb, vc) ≥ 0 (wt(vm+1, vb) is the same
for all b 6= m + 1).

2. b = m+1: wt(va, vm+1)+wt(vm+1, vc)−wt(va, vc) ≥ wt(va, vm+1)−wt(va, vc). But, Ii,j(a)−
Ii,j(a) · (1 − Ii,j(c)) ≥ 0 for all a, c. Since wt(va, vm+1) =

∑p
j=1 Ii,j(a) and wt(va, vc) =∑p

j=1 Ii,j(a) · (1− Ii,j(b)), the inequality holds true.

3. c = m + 1: Consider

wt(va, vb) + wt(vb, vm+1)− wt(va, vm+1) =
p∑

j=1

(Ii,j(a) · (1− Ii,j(b)) + Ii,j(b)− Ii,j(a)) .

Since Ii,j(a) · (1− Ii,j(b)) + Ii,j(b)− Ii,j(a) ≥ 0 for all a, b, the inequality holds true here too.

39

4. a, b, c 6= m + 1: Consider

Ii,j(a)(1− Ii,j(b)) + Ii,j(b)(1− Ii,j(c))− Ii,j(a)(1− Ii,j(c)) =
Ii,j(b)(1− Ii,j(a)− Ii,j(c)) + Ii,j(a)Ii,j(c) ≥

1− Ii,j(a)− Ii,j(c) + Ii,j(a)Ii,j(c) ≥ 0.

Since

wt(va, vb)+wt(vb, vc)−wt(va, vc) =
p∑

j=1

Ii,j(a)(1−Ii,j(b))+Ii,j(b)(1−Ii,j(c))−Ii,j(a)(1−Ii,j(c)),

the inequality holds.

2

Lemma 4 There exists an optimal Hamiltonian path such that if vaRivb, and va comes before vb

in the path, then there is no vc between va and vb in the path such that ¬vaRivc.

Proof: Consider an optimal Hamiltonian path such that the condition in the lemma does not hold
true. By our choice of weights, vm+1 would be the last node in the path. Let va and vb be nodes
such that the following holds: va comes before vb in the path, vaRivb and ¬vaRivc for any vc which
lies between va and vb in the path. This must be possible simply because we assumed the condition
in the lemma to be false. Let vdbe the node immediately after va, ve be the node immediately after
vb and vf be the node immediately before vb. If we move node vb to between va and vd, then the
change in the weight of the path is

wt(va, vb) + wt(vb, vd) + wt(vf , ve)− wt(va, vd)− wt(vf , vb)− wt(vb, ve) =
0 + wt(va, vd) + wt(vf , ve)− wt(va, vd)− wt(vf , vb)− wt(vb, ve) = (Lemma 2)

wt(vf , ve)− wt(vf , vb)− wt(vb, ve) ≤ 0 (Lemma 3)

Since the original path was optimal, the cost must not decrease, hence the change must be 0.
Applying this procedure of putting together related nodes eventually terminates in a Hamiltonian
path such that the condition in the lemma is true. Furthermore, after each application of this
procedure the cost did not change, which implies that the final path is also optimal. 2

Lemma 4 tells us that we can indeed reduce the problem size to ordering only equivalence classes
of components, where two components are equivalent if and only if they are needed to compute the
same set of blocks.

3.5.3 Block ordering

We now construct a weighted directed graph where there is one vertex per block Bi and one edge
from every vertex to every other vertex. The weight of the edge e pointing from Bi to Bj will be the
memory cost of processing Bj immediately after Bi. Clearly, given this graph, the goal is to find
the lowest weight Hamiltonian path. As before, we can add a “dummy node” and appropriately
weighted edges to convert to an instance of TSP.

Now we discuss the edge weights. If e points from Bi to Bj , so that Bj is processed immediately
after Bi, the discussion in previous subsections tells us how to compute the minimum number of

40

slow memory accesses needed to process Bj . This could be used as a weight by itself, if latency were
dominant. But we can easily take the full cost into account, including bandwidth and latency, by
setting the edge weight to the sum of α· (# slow memory accesses) and β· (# words fetched from
slow memory), where α is latency and β is reciprocal bandwidth. The number of words fetched
from slow memory does not depend on the ordering, and is a by-product of the graph traversals
needed to compute all the regions R

(0)
r (Gq) needed by SA2.

3.5.4 Other problem formulations

In the previous section, we only considered exact solutions, i.e., we fetch only those elements which
are required. However, if we sometimes fetch more elements than needed when working on a block,
we might be able to further lower the latency cost, at the price of higher bandwidth cost. For
example, suppose we merged Ei,j and Ei,j+1 (Ei,j 6= Ei,j+1), so that while computing block Bj we
fetched the components in Ei,j ∪ Ei,j+1, and similarly for block Bj+1. However, by merging the
sets, we have reduced the number of equivalence classes in the component ordering problem, which
might allow for fewer slow memory accesses.

If latency is the dominant cost we can go further and discuss solutions limited to a single slow
memory access per Eij , and choose the component ordering to minimize the bandwidth cost. In
this case, the cost of accessing Eij given a component ordering will be h − l + 1, where xh is
the highest numbered component in Eij and xl is the lowest numbered component (because all of
{xl, xl+1, ..., xh} will needed to be fetched).

The best formulation may depend on other details of the performance model. Here we have
been assuming a simple latency + bandwidth model, but depending on opportunities for overlap,
parallelism, prefetching, etc. a different model may be appropriate. There are also many options
for approximate solutions to the resulting combinatorial optimization problems, like TSP.

3.6 Stencils

Now we discuss how computing [x,Ax, ..., Akx] simplifies when A is truly a stencil operator, i.e.
not only is the sparsity pattern described by mesh as before, but the values of the matrix are the
same in every row (modulo mesh boundaries). As in the parallel case (section 2.5) this means that
we do not need to store any matrix entries, but it also means that we do not need to get them from
slow memory. This makes SA1 and the conventional approach identical, since they assume that all
the vectors fit in fast memory, so there is no slow memory traffic to try to reduce.

SA2 simplifies by only needing to move vectors between fast and slow memory, otherwise leaving
the algorithm unchanged. The entries for SA2 in Table 2 change by zeroing out both MWords (the
number of matrix entries read from slow memory) and MMem (the number of words of fast memory
needed to store matrix entries). The number of slow memory accesses will also decrease by p for
meshes of dimension 2 and higher. SA2 thus has the same optimality property as before: it moves
the vectors between fast and slow memory the minimal number of times (once). As in the parallel
case, further simplifications are possible if only the final vector Akx is desired, or if some nonzero
entries of the matrix are identical. See section 8 for related work.

41

4 Asymptotic Performance Models

We consider how to asymptotically minimize the time to compute [Ax, ..., Ak̄x] for matrices with
stencil graphs. In other words, the graph of the matrix is assumed to be a d-dimensional mesh
with a (2b + 1)d point stencil. We will treat all dimensions d simultaneously by using the notation
γ = n

p1/d . We can think of γ as a measure of problem size per processor, since it is the d-th root of
the number of components per vector per processor. We also note that 2d/γ is the surface-to-volume
ratio of a d-dimensional cube of side length γ.

We will compare the conventional parallel method (run k = k̄ times) with the new method,
where k̄/k groups of k matrix-vector-products are computed using O(k̄/k) messages. We will
choose k to minimize the time of the new algorithm. We also compare the new method with
the conventional method using overlap of communication and computation, and ask when this is
sufficient to hide communication costs.

We let α be the message latency, β be the reciprocal bandwidth (so it takes α + nβ seconds to
send a message of length n), and f be the time per flop. Sample values are f = 1ns, α = 190µs and
β = 10−4µs/byte (for 10 Gigabit Ethernet running 802.3ae), and α = 5700µs and β = .016µs/byte
(for a 15000 RPM Seagate ST373307 disk). In both cases α exceeds β by at least five orders of
magnitude, and f is much smaller again. Patterson [20] suggests that this gap between latency and
bandwidth will continue to increase exponentially for a variety of technologies (memory, network
and disk).

4.1 Parallel Algorithms

Combining this notation with the analysis leading to Table 1, we get that the running time for the
conventional algorithm to compute [Ax, ..., Akx] is

TPA0(k) = O(αk + βbkγd−1 + fbdkγd) (1)

and that the running time for either new algorithm is

TPA1,2(k) = O(α + βbk(γd−1 + δdbkγd−2) + fbdk(γd + bkγd−1)) (2)

where δd = 0 if d = 1 and δd = 1 if d > 1. We use this notation in order to analyze all values of d
at once.

The ultimate goal is to compute [Ax, ..., Ak̄x]. The conventional algorithm will take time
TPA0(k̄). We will use the new algorithm k̄

k times on chunks of size k, taking time k̄
kTPA1,2(k).

The optimization problem is to choose k to minimize this quantity:

k̄

k
TPA1,2(k) = O(α

k̄

k
+ βbk̄(γd−1 + δdbkγd−2) + fbdk̄(γd + bkγd−1)) (3)

When α is sufficiently large (suppose we are doing message passing by the post office), and so
latency dominates all the bandwidth and flop terms, it is clearly best to minimize the number of
messages in the new algorithm, i.e. to set k = k̄, leading to a speedup of O(k̄). In other words,
[Ax, ..., Ak̄x] can be computed in approximately the same time as Ax (or within a constant factor
of this time, since constants are hidden by our use of O()).

If α is not this large, then choosing the best k is more interesting. The dominant bandwidth and
flop terms in (3) (i.e. those proportional to β and f and with the highest powers of γ) are identical

42

to those in TPA0(k̄), and dependent only on k̄. The latency term in (3) decreases proportionally to
k, and the smaller bandwidth and flop terms increase proportionally to k. The minimizing value
of k is easily found to be

kmin = min(k, max(1,

(
f

α
bd+1γd−1 + δd

β

α
b2γd−2

)−1/2

)) (4)

Notice that kmin increases with increasing latency α, and decreases with increasing problem size
per processor γ. For kmin to exceed 1 requires both that α > fbd+1γd−1, roughly that α exceeds
the floating point work on the boundary, and that α > δdβb2γd−2, which is likely.

The minimum running time with the new algorithm (assuming 1 < kmin < k) is therefore

TPA1,2,min(k̄) ≡ k̄

kmin
TPA1,2(kmin)

= O(k̄[(α(fbd+1γd−1 + δdβb2γd−2))1/2 + fbdγd + βbγd−1]) (5)

When kmin = 1, the new algorithm and conventional algorithm are equivalent; when kmin = k, the
time is given by (2).

When α is very large, the speedup is close to k as expected. When α is not that large, The
best that we could hope for is for the new running time to be fast independent of the latency α.
More precisely, we ask whether TPA1,2,min(k̄) is within a constant factor of the time it would take
the conventional algorithm with α = 0. In fact, when α = 0 both TPA0(k̄) and TPA1,2,min(k̄) are
O(k̄(fbdγd + βbγd−1)), so we need to ask whether the first term in TPA1,2,min(k̄) is smaller than
this:

when is (α(fbd+1γd−1 + δdβb2γd−2))1/2 ≤ fbdγd + βbγd−1 ?

We consider the bandwidth and flop terms separately.
For bandwidth (which is only relevant when d > 1), the question is when (αβb2γd−2)1/2 ≤

βbγd−1, or when α ≤ βγd. This is easy to interpret: it holds when the time is takes to send the
entire local content of a processor γd = nd

p is dominated by the bandwidth β nd

p , not the latency.
Once problem sizes are reasonably large, this is sure to be the case.

For the flop time, the question is when (αfbd+1γd−1)1/2 ≤ fbdγd, or when α ≤ fbd−1γd+1 =

fbd−1
(

nd

p

)1+ 1
d . This is also easy to interpret: it holds when the time it takes to run an O(N1+ 1

d)

algorithm on the entire local content of a processor (i.e. N = nd

p) exceeds the latency of one
message. When d = 1, this means an O(N2) algorithm, and is very likely to hold for large problem
sizes.

In summary, the new algorithm can be used to make the cost of computing any number of
matrix-vector products run at a speed that is roughly independent of the communication latency,
provided α

<≈ min(βγd−1, fbd−1γd+1) when d > 1, or α
<≈ fγ2 when d = 1. The limiting factor in

achieving this will be the need for enough memory to store kmin vectors locally, since kmin grows
as latency increases.

It is worth asking when just overlapping communication and computation in the conventional
algorithm is good enough to hide all the latency, making our techniques unnecessary. This happens
roughly when α < fbdγd, which is more restrictive than our condition α < fbd−1γd+1.

43

4.2 Sequential Algorithms

The corresponding asymptotic performance models for sequential algorithms are

TSA0(k) = O(αkp + βbdknd + fbdknd)
TSA1(k) = O(αp + β(bdnd + bd+1knd−1p1/d) + fbdknd)
TSA2(k) = O(αp + β((bd + k)nd + bd+1knd−1p1/d) + f(bdknd + bd+1k2nd−1p1/d))

Since SA0 and SA1 use roughly the same amount of memory, we can compare their running times
directly, and see that SA1 sends k-times fewer messages, sends roughly k-times fewer words, and
does only slightly more floating point operations than SA0. So we expect SA1 to be uniformly
superior to SA0.

SA2 is designed to use much less memory than either SA0 or SA1, and so a fair comparison is
between SA2 and the conventional algorithm consisting of applying SA2(1) k times, where SA2(1)
just computes Ax. The running time for this algorithm is easily seen to be O(kαp + kβ(bdnd +
bd+1nd−1p1/d) + kf(bdnd + bd+1nd−1p1/d)), which has a k times larger latency term, up to k times
larger bandwidth term (when bd � k), and almost the same floating point term. Clearly overlapping
communication and computation will benefit SA2(k) at least as much as SA2(1).

Another natural question is to ask under what circumstances SA2 is about as fast as a conven-
tional algorithm with an infinite amount of fast memory available, but where the matrix and x(0)

initially reside in slow memory, and the result is eventually supposed to reside in slow memory, an
algorithm we call SA3:

TSA3(k) = O(α + β(bd + k)nd + fbdknd)

Comparing TSA2(k) to TSA3(k) we see that the bandwidth and floating point costs of SA2 are only
slightly larger than for SA3, so the only issue is latency, which is p-times lower for SA3. So a natural
question is when SA2’s latency cost is less than or equal to its bandwidth and floating point cost.
This will be true when the cost of filling up all of fast memory with one fast memory access, and
then performing the algorithm on the subset of matrix and vectors filling all of fast memory, is
dominated by bandwidth and floating point, which is very likely to be true.

We now turn to the question of optimal speedup for SA2. It can be seen that the optimal
speedup for SA2 for general sparse matrices (when β/tf = ∞) is upper bounded by 2+1.5(nnz/n)
(nnz/n denotes then number of nonzeros per row of the matrix A). The 1.5 term is due to the 1.5
words per entry of the A. A simple argument for this is that the speedup is roughly

Time to read/write vector and matrix k times
Time to read 1 vector / write k vectors and read matrix once

=
2k + 1.5(nnz/n)k

k + 1 + 1.5(nnz/n)
< 2+1.5(nnz/n)

A similar argument gives us the following upper bound for optimal speedup in the case when β/tf
is finite:

(2(nnz/n)− 1) k + (2k + 1.5(nnz/n)k) β
tf

(2(nnz/n)− 1) k + (k + 1 + 1.5(nnz/n)) β
tf

<
2(nnz/n)− 1 + (2 + 1.5(nnz/n)) β

tf

2(nnz/n)− 1 + β
tf

.

Note that 2(nnz/n) − 1 is the number of flops performed per entry of the vector x. These upper
bounds are tight for large memory size. However, they might not be close to the optimal speedup

44

for small memory size. To analyze this, we now state some bounds for the optimal speedup of SA2
for d-dimensional stencils with bandwidth b. The following are some scenarios for a d-dimensional
stencil with bandwidth b.

1. m = ∞, β
tf

= ∞: In this case, the optimal speedup is the same as the upper bound, i.e.,

2 + 1.5(2b + 1)d.

2. m = ∞, β
tf

finite: The optimal speedup again equals its upper bound

2(2b + 1)d − 1 +
(
2 + 1.5(2b + 1)d

)
β
tf

2(2b + 1)d − 1 + β
tf

3. m finite, β
tf

= ∞: In this case, the optimal speedup is lower bounded by

max

(2 + 1.5(2b + 1)d
)(

1 +
A

m
1

d+1

)−(1+ 1
d)

, 1

 ,

where A is a constant1 which depends on b and d. As can be seen, the lower bound approaches
the upper bound as m is increased. For this case, the optimal speedup is obtained by choosing
k such that 2bkd = n.

4. m finite, β
tf

finite: The optimal speedup is lower bounded by

max

2(2b + 1)d − 1 +

(
2 + 1.5(2b + 1)d

)
β
tf

(2(2b + 1)d − 1) B +
(

1 + A

m
1

d+1

)(1+ 1
d) β

tf

, 1

 ,

where A is the same constant as in the previous case and B is another constant2 dependent
on d. Figure 13 shows the optimal speedup (obtained from the analytical model) and the
lower bounds for the speedup as function of the memory size. Figures 13(a) and 13(b) show
the speedups if the β/tf ratio is 64 (the OOC machine model in Section 5.2). Figures 13(a)
and 13(b) show the speedups if the β/tf ratio is 3.2 (the Clovertown machine model in
Section 5.2). As can be seen in these figures, if the memory is not sufficiently large, the
optimal speedup drops as the bandwidth b is increased. However, for large enough memory,
we observe the speedup increase as the bandwidth b is increased. Another observation is that
the lower bound is within a factor of 2 of the optimal speedup for the β/tf ratios and the
memory sizes considered. Furthermore, for the optimal speedup, the k is such that 2bkd ≤ n
(the computational cost of SA2 always increases with k, so it can only decrease the optimal
k predicted by the previous case).

1A = 1.5(d+1)d(2b)d/(d+1)(1+(2b+1)d)

d
d2

d+1

.

2B = (d+1)d

dd − d
d+1

.

45

The above model makes some approximations which are good if the optimal k and n are large
enough. Given this, the optimal speedup predicted is still close to (but lower than) the speedup in
the more detailed performance model discussed in Section 5.2. Except for the Clovertown model
(β/tf = 3.2, mem = 106, has an optimal k = 3 which is small) in Section 5.2, the optimal speedups
in the analytical model (the plots in Figure 13) match the speedups in the detailed model very
well. As for the measured speedup in Section 6, the analytical performance model overestimates the
optimal speedup. The main reason for this is that the read and write bandwidths differ significantly,
which is not handled by the analytical model.

5 Detailed Performance Modeling

In this section we present detailed performance models of matrices with 2D and 2D stencil graphs for
PA2 and SA2 using realistic machine parameters, in order to identify situations where significant
speedups are likely. The two parallel machines for which we model PA2 are called Peta (which
is a model of a nominal 8100 processor petascale machine) and Grid (which is a model of 125
terascale machines connected over the internet). We consider both overlapping (non-blocking) and
non-overlapping (blocking) communication models; only the former can overlap communication and
computation. The two sequential machines for which we model SA2 are OOC (which models an out-
of-core implementation, where fast memory is DRAM and slow memory is disk) and Clovertown,
the Intel multicore processor (where fast memory is cache and slow memory is DRAM). This variety
of models of course suggests that our techniques can be applied more than once, if there are several
levels of memory hierarchy and possibly also parallelism.

Specifically, we consider matrices whose graphs are 2D (2b + 1)2 point and 3D (2b + 1)3 point
stencils. As before, we assume that quantities like p1/2 and n

p1/3 are integers.

5.1 Performance Modeling of PA2

We consider parallel machines with the following parameters:

pmax: The maximum number of processors available. The actual number of processors used is
p ≤ pmax. We may choose p < pmax if that is faster, or if p

1/2
max is not an integer, etc.

tf : The time per floating-point operation (in units of seconds), modeled as 10% of machine peak
value, a typical value attainable for SpMV.

mem: The memory available per processor (in units of 8-byte words).

α: The network processor latency (in units of seconds).

β: The inverse network bandwidth (in units of seconds/8-byte word).

Thus the time to send m words between any pair of processors is modeled as α + βm seconds.
We modeled machines with the following parameter values:

Peta: pmax = 8100, tf = 2 · 10−11 secs (1/tf = 50 GFlops/s), mem = 62.5 · 109 words, α = 10−5

secs, β = 2 · 10−9 secs (1/β = 500 MWords/s = 4 GByte/s)

46

(a) Optimal speedups and lower bounds for 2D stencil with β/tf

ratio same as for OOC
(b) Optimal speedups and lower bounds for 3D stencil with β/tf

ratio same as for OOC

(c) Optimal speedups and lower bounds for 2D stencil with β/tf

ratio same as for Clovertown
(d) Optimal speedups and lower bounds for 3D stencil with β/tf

ratio same as for Clovertown

Figure 13: Optimal speedup (analytical model). The vertical green lines indicate the memory size
for the architectures modeled in Section 5.2. Therefore, the speedups in Section 5.2 are expected
to be close to the speedups at the point where the green line intersects the optimal speedup curve.

47

Grid: pmax = 125, tf = 10−12 secs (1/tf = 1TF lop/s), mem = 1.2 · 1012 words, α = 10−1 secs,
β = 25 · 10−9 secs (1/β = 40 MWords/s = .32 GBytes/s) (estimated by dividing the Teragrid
backbone bandwidth of 40 GBytes/s by pmax)

Note that each processor in Peta and Grid is assumed to be a significant parallel computer
itself, but we are only modeling the parallelism between these processors, not within them. Again,
one could potentially apply our techniques for each level of parallelism, but we have not modeled
this here.

In section 2.4 we described the three computational phases of PA2: Phase I must be done before
any communication can be initiated, Phase II can be fully overlapped with communication, and
Phase III can only begin after communication is complete. This justifies the performance model
for the case of overlapping communication below.

Let NI , NII , and NIII respectively denote the flop counts for Phases I, II, and III of PA2. Let
Nw denote the total number of words sent by a processor. Let T overlap

n,k,p denote the time taken for
PA2 when overlapping communication is used; in this case we assume all messages can be in-flight
simultaneously while computation is occurring. Let Tnonoverlap

n,k,p denote the time taken for PA2 when
non-overlapping communication is used; in this case we assume only one message can be in flight
at a time and not overlapped with computation. Our latency-avoiding algorithm may have more
opportunity to demonstrate speedups in the non-overlapping case. In an actual machine the degree
of overlap may lie somewhere between these two extremes. Let Mn,k,p denote the memory required
per processor when p processors are used. We let Tn,k,p denote the time taken for the algorithm.
So, if non-overlapping communication is used, then Tn,k,p = Tnonoverlap

n,k,p , else Tn,k,p = T overlap
n,k,p .

We use the following formulas for these quantities (which are slightly more detailed than the
entries in Table 1):

NI = (8b2 + 8b + 1) ·
(

n

p1/2
− bk

)
· (bk2 − 2bk)

NII = (8b2 + 8b + 1) ·
(

3n2

p
− 9bkn

p1/2
+ 7b2k2 + 2b2

)
· k/3

NIII = (8b2 + 8b + 1) · bk ·
(

9nk

p1/2
+

6n

p1/2
− bk2 − 6bk − 8b

)
/3

Nw = 2bk ·
(

2n

p1/2
+ 3kb− 2b

)
T overlap

n,k,p = (NI + NIII) · tf + max (NII · tf , α + β ·Nw)

Tnonoverlap
n,k,p = (NI + NII + NIII) · tf + 8 · α + β ·Nw

Mn,k,p = (k + 1)
n2

p
+ 1.5(2b + 1)2

(
n

p1/2
+ bk

)2

+ 1.5Nw

Note that the coefficient for the α term is 8 in Tnonoverlap
n,k,p because each processor needs to commu-

nicate with 8 other processors. However, the coefficient for the α term is 1 in T overlap
n,k,p because all

8 sends to other processors can be overlapped.
Similarly, for the 3D stencils, we have the following formulas:

NI = (2(2b + 1)3 − 1) · (bk2 − 2bk) ·
(

6n2

p2/3
− 12bkn

p1/3
+ 7b2k2 − 2b2k

)
/4

48

NII = (2(2b + 1)3 − 1) · k ·
(

4n3

p
− 18bkn2

p2/3
+

(28b2k2 + 8b2)n
p1/3

+ O(b3k3)

)
/4

NIII = (2(2b + 1)3 − 1) · bk ·
(

n2

p2/3
(18k + 12)− nb

p1/3
(4k2 + 24k + 32) + O(b2k3)

)
/4

Nw = 2bk ·
(

3n2

p2/3
+

9bkn

p1/3
− 6bn

p1/3
+ O(b2k2)

)
T overlap

n,k,p = (NI + NIII) · tf + max (NII · tf , α + β ·Nw)

Tnonoverlap
n,k,p = (NI + NII + NIII) · tf + 26 · α + β ·Nw

Mn,k,p = (k + 1)
n3

p
+ 1.5(2b + 1)3

(
n

p1/3
+ bk

)3

+ 1.5Nw

For performance modeling, we also vary the parameter p within the range allowed to find the
optimal value of p for specific n, k, b values. This range is limited by two parameters–pmax and
mem. If p is made small, then the memory required per processor Mn,k,p might exceed the memory
available per processor mem. Furthermore, p can be at most pmax. Another limit we impose on p
is the number of entries per dimension of the stencil should be be at least 2bk since our operation
counts assume this condition. We may also round p down to the nearest perfect square or cube. The
optimal p is strongly problem dependent, e.g., for small problem sizes, p = 1 might be sufficient and
better since it avoids the overhead of communication. Therefore, a good measure of how well PA2
performs with respect to the conventional algorithm is the speedup with respect to the conventional
algorithm assuming optimal p values were used for each algorithm:

speedup =
min1≤p≤pmax Tn,1,p · k
min1≤p≤pmax Tn,k,p

Note that we used Tn,1,p · k for the time taken for the conventional algorithm as the conventional
algorithm turns out to be k invocations of PA2 with k = 1.

Another interesting metric for evaluating the algorithm is how well it can hide the commu-
nication cost. Specifically, we compare the time due to PA2 on a machine with the time if the
same machine had zero communication overhead. If both the times are close, then our algorithm is
latency and bandwidth insensitive, i.e., it can make the cost of communication disappear. So, we
also plot this ratio in our plots. In addition, we also look at the additional floating-point operations
performed by PA2 to hide latency.

We now discuss the performance modeling results for each combination of machine (Peta or
Grid), communication style (overlapping or non-overlapping) and stencil (2D or 3D). There are 8
plots shown for each of these 8 combinations:

The first 4 plots of each group of 8 assume a bandwidth of b = 1, and respectively show for
each combination of n and k (a) the best speedup attainable over all choices of p ≤ pmax, (b) the
corresponding optimal choice of p, (c) the corresponding fraction of time spent in computation,
and (d) the ratio of floating point operations done by the optimized algorithm to the number done
by the conventional algorithm. The conventional algorithm corresponds to k = 1, the bottom row
of each plot. Plots (c) and (d) show how successful our new algorithm is at reducing the fraction
of time spent communicating, and the price paid in extra computation.

Now we describe the next 4 plots of each group of 8. For each combination of n and k, and
for bandwidth b = 1, we show (a) the ratio of time taken by the new algorithm to the time that

49

would be taken on the same machine but with zero latency, and (b) the ratio of time taken by
the new algorithm to the time that would be taken on the same machine but with zero latency
and infinite bandwidth. We also show (c) for a fixed value of n, and each combination of k and
bandwidth b, the best speedup attainable over all choices of p ≤ pmax, and (d) the corresponding
optimal choice of p. In plot (a) (or (b)) the time that would be taken with zero latency (or zero
latency and infinite bandwidth, resp.) is measured for the same k but a possibly different optimal
value of p. Plots (a) and (b) provide another metric of how well our algorithm does at reducing
the cost of communication (the closer the ratios are to 1, the better).

5.1.1 2D Stencil on Peta Using Overlapping Communication

As can be seen in Figure 14(a), for smaller n and k (the bottom left corner), the speedup is close
to linear in k, which is the best possible speedup. This is explained by Figure 14(c) which shows
that almost all the time is spent in communication for these values of n and k.

The best speedup is 6.9x, which occurs when n = 211, k = 12, with an optimal p = 7225 = 852,
a bit less than pmax = 8100 = 902; for these values of n, k and p the fraction of time spent in
computation is 23% (versus 2% for the conventional k = 1 algorithm) and the number of floating
point computations is 1.74x larger than the conventional algorithm (Figure 14(d)).

Indeed, for any problem size n, we can choose k to make the fraction of time spent doing
arithmetic exceed 20% (up from under 1% for k = 1). And this never increases the number of
floating point operations by more than 1.74x.

On the other hand, the algorithm has no benefit for large values of n, because computation
totally dominates communication, as again shown by the bottom row of Figure 14(c); in this case
no optimization is necessary either. We also note that for smaller n the speedup decreases as k is
increased beyond a certain point, because the overhead of extra floating point operations exceeds
the gains from reducing latency. The optimal p also decreases as k increases for some values of n
because of the constraint n/

√
p ≥ 2bk we impose to guarantee that boundary regions only extend

into the nearest neighboring processor.
As can be seen in Figure 15(a), the latency has an enormous effect for small n and k, with the

conventional algorithm (k = 1) running up to 89.39x slower than the 0-latency machine. But the
algorithm can lower the latency to equal the floating point time even with small values of k (e.g.,
for n = 211, k = 1 we see that the conventional algorithm is 46.53x slower than the case if latency
were 0, but raising k to 12 makes PA2 only 6.78x slower than the 0 latency case). For large n
reducing latency to zero yields no speedups because computation dominates. Figure 15(b) tells a
similar story as Figure 15(a), except that additionally increasing bandwidth to infinity would speed
up the conventional code even more. In Figure 15(c) we see that for n = 212 the speedup due to
PA2 decreases as b increases: this is because computation scales as b2 which rapidly dominates
communication.

5.1.2 2D Stencil on Peta Using Non-Overlapping Communication

As can be seen in Figure 16(a), the algorithm is expected to obtain high speedups of up to 15.1x
for smaller matrices. In fact, we get good speedups even for n = 214 in contrast to the case when
overlapping communication was used. This is because non-overlapping communication has 8x
higher latency than overlapping communication, making our latency-avoiding algorithm even more
valuable. As in the overlapping case, for sufficiently large n computation dominates communication

50

(a) Speedup (b) Optimal p

(c) Fraction of time in computation (d) Ratio of additional flops

Figure 14: Plots for 2D stencil on Peta using overlapping communication.
Best speedup of 6.9x attained at p = 7225 = 852, k = 12, n = 211

For each n, the best k makes the fraction of time in computation ≥ 20%, up from < 1%
For each n, the best k increases the number of flops by ≤ 1.74x

51

(a) Ratio of time w.r.t. 0 latency machine (b) Ratio of time w.r.t. 0 latency, ∞ bandwidth machine

(c) Speedup as a function of matrix bandwidth (n = 212) (d) Optimal p for (c)

Figure 15: Plots for 2D stencil on Peta using overlapping communication.
For each n, the best k makes the runtime ratio w.r.t. 0 latency ≤ 13.16, down from 89.39.
For each n, the best k makes the runtime ratio w.r.t. 0 latency/∞ BW ≤ 33.82, down from 229.77.

52

and there is no benefit from our algorithm. Figure 16(c) shows lower values when compared
to Figure 14(c) because of the 8x larger latency. Figure 16(d) shows the same ratios of extra
arithmetic as for the overlapping communication case, because the same optimal values of p are
chosen (Figure 16(b)).

The comparisons to zero latency (Figure 17(a)) and zero latency/infinite bandwidth (Fig-
ure 17(b)) machines are even more extreme than in the overlapping case, because of the 8x higher
latency assumed here. This also causes our algorithm to yield at least some speedup (1.28x) all the
up to bandwidth b = 10 (Figure 17(c)).

5.1.3 2D Stencil on Grid Using Overlapping Communication

The white region in all the figures for n = 221 and n = 222 indicates that the problem needed too
much memory to be solved by the machine.

As can be seen in Figure 18(a), the algorithm is expected to obtain an impressive speedup of
up to 22.22x for large matrices (n = 217). Indeed, speedup is still increasing for the maximum
value of k shown (k = 30), and larger k might show further improvements. The algorithm does not
show any speedups for small values of n because the problem can be solved using only 1 processor
and latency is too high to benefit from using more processors for k ≤ 30. As before we can see
that for very large problem sizes (n ≥ 220), we also see no gains from our algorithm because
computation dominates communication. In Figure 18(b) the optimal p takes on two values–either
1 or pmax = 121. Figure 18(c) shows the fraction of time in computation increasing from 2% at
k = 1 to 53% at k = 30 for the value of n = 217 where speedup is best, but for smaller n and k = 30
the fraction of computation is still quite small; larger k might help. Figure 18(d) shows that in no
case does the algorithm do more than 1.02x as many flops as the conventional algorithm.

As can be seen in Figure 19(a), the ratio of time taken compared to the zero latency machine
doughly doubles for each value of log2 n from 10 to 16. The reason is that in this range, the optimal
p for the Grid is 1, so all time is spent in computation, and for the 0 latency machine the optimal p
is 121 and the largest part of the time is the bandwidth term. Thus doubling n quadruples the time
on the Grid, but only doubles the time on the 0 latency machine, causing the ratio of these times to
double. For larger n, computation begins to dominate both machines. It is at n = 216 and n = 217

that increasing k yields. the largest speedup. We note that many of the ratios in Figure 19(b)
equal 121, because they correspond to cases where the optimal p = 121 for the 0 latency / infinite
bandwidth machine, and p = 1 with nonzero latency and finite bandwidth.

Figure 19(c) shows that there is at least some speedup for n = 217 and all values of bandwidth
b up to 10, although speedup decreases as b increases.

5.1.4 2D Stencil on Grid Using Non-overlapping Communication

As can be seen in Figure 20(a), the algorithm is expected to obtain speedups of up to 15.63x for large
matrices, with speedup still increasing at the largest k shown. The speedups are sometimes larger
and sometimes smaller than the overlapping case, depending on dimension. The extra expense of
non-overlapping communication means that p = 1 is optimal for larger values of n than in the
overlapping case (Figure 20(b)). The number of extra floating point operations never reaches 1%
(Figure 20(d)).

In Figure 21(b), many of the runtime ratios equal 121, because they correspond to cases where
the optimal p was 1 for the actual Grid, whereas the optimal p = 121 for the 0 latency / infinite

53

(a) Speedup (b) Optimal p

(c) Fraction of time in computation (d) Ratio of additional flops

Figure 16: Plots for 2D stencil on Peta using non-overlapping communication.
Best speedup of 15.09x attained at p = 7921 = 892, k = 23, n = 212

For each n, the best k makes the fraction of time in computation ≥ 23%, up from < 1%
For each n, the best k increases the number of flops by ≤ 1.75x

54

(a) Ratio of time w.r.t. 0 latency machine (b) Ratio of time w.r.t. 0 latency, ∞ bandwidth machine

(c) Speedup as a function of matrix bandwidth (n = 212) (d) Optimal p for (c)

Figure 17: Plots for 2D stencil on Peta using non-overlapping communication.
For each n, the best k makes the runtime ratio w.r.t. 0 latency ≤ 37.71, down from 560.30.
For each n, the best k makes the runtime ratio w.r.t. 0 latency/∞ BW ≤ 122.65, down from
1829.84.

55

(a) Speedup (b) Optimal p

(c) Fraction of time in computation (d) Ratio of additional flops

Figure 18: Plots for 2D stencil on Grid using overlapping communication.
Best speedup of 22.22x attained at p = 121, k = 30, n = 217.
For each n, the best k makes the fraction of time in computation ≥ 1%
For each n, the best k increases the number of flops by ≤ 1.02x

56

(a) Ratio of time w.r.t. 0 latency machine (b) Ratio of time w.r.t. 0 latency, ∞ bandwidth machine

(c) Speedup as a function of matrix bandwidth (n = 217) (d) Optimal p for (c)

Figure 19: Plots for 2D stencil on Grid using overlapping communication.
For each n, the best k makes the runtime ratio w.r.t. 0 latency ≤ 23.4, down from 121.

57

bandwidth Grid.
Figure 21(c) shows that there is speedup for all values of bandwidth b, but it is not a monotonic

decreasing function of b, rather peaking (at least for n = 217) at 16.67x for b = 3 and k = 30.

5.1.5 3D Stencil on Peta Using Overlapping Communication

In contrast to the 2D case, in the 3D case no speedup is possible using our new algorithm (with
the exception of a 2% speedup for n = 29 and k = 2). The reason is that the conventional k = 1
algorithm is already completely dominated by computation (Figure 22(c)), and indeed running
nearly as fast as a zero latency machine (Figure 23(a)) or even a zero latency / infinite bandwidth
machine (Figure 23(b)). Increasing the bandwidth b (Figure 23(c)) only makes it more computation
dominated. We also note that the for larger b, the problem quickly becomes too large to be solved
by the machine–this is evident by the large “whitespaces” in Figures 23(c) and 23(d).

5.1.6 3D Stencil on Peta Using Non-overlapping Communication

In contrast to the last case with overlapping communication, PA2 achieves a speedup of up to 3.58x,
for n = 29 and k = 8, running only 3.04x slower than a zero latency machine (down from 10.89x)
and only 4.50x slower than a zero latency / infinite bandwidth machine (down from 16.10x).

5.1.7 3D Stencil on Grid Using Overlapping Communication

In this case we get speedups of up to 4.41x for n = 210 and k = 30, doing only 1.29x as much
arithmetic as the conventional algorithm, and running only 2.03x slower than a zero latency machine
(down from 8.94x). However, it is 28.35x slower than a zero latency / infinite bandwidth machine,
showing that bandwidth is the bottleneck. Some speedups are possible up to bandwidth b = 5.

5.1.8 3D Stencil on Grid Using Non-overlapping Communication

Not overlapping communication on the Grid yields a higher speedup of 7.79x for n = 212 and
k = 30, running only 1.76x slower than a 0 latency machine (down from 13.73x), and only 7.87x
slower than a 0 latency / infinite bandwidth machine (down from 61.26x). Speedups up to 7.04x
are possible for higher bandwidth b.

5.2 Performance Modeling of SA2

We consider uniprocessor machines with the following parameters:

pmax: The maximum number of number of blocks to be used. The actual number of blocks used is
p ≤ pmax. We may choose p < pmax if that is faster, or if p

1/2
max is not an integer, etc. In our

simulations we choose pmax extremely large, so that the optimal p is sure to satisfy p < pmax.

tf : The time per floating-point operation (in units of seconds), modeled either as 10% of machine
peak value (a typical value attainable for SpMV), or a median of measured values.

mem: The size of fast memory (in units of 8-byte words).

α: The slow memory latency (in units of seconds).

58

(a) Speedup (b) Optimal p

(c) Fraction of time in computation (d) Ratio of additional flops

Figure 20: Plots for 2D stencil on Grid using non-overlapping communication. Best speedup of
15.63x attained at p = 121, k = 30, n = 218.
For each n, the best k makes the fraction of time in computation ≥ 2%
For each n, the best k increases the number of flops by ≤ 1.01x

59

(a) Ratio of time w.r.t. 0 latency machine (b) Ratio of time w.r.t. 0 latency, ∞ bandwidth machine

(c) Speedup as a function of matrix bandwidth (n = 217) (d) Optimal p for (c)

Figure 21: Plots for 2D stencil on Grid using non-overlapping communication.
For each n, the best k makes the runtime ratio w.r.t. 0 latency ≤ 36.1, down from 81.0.

60

(a) Speedup (b) Optimal p

(c) Fraction of time in computation (d) Ratio of additional flops

Figure 22: Plots for 3D stencil on Peta using overlapping communication.
Best speedup of 1.02x attained at p = 8000, k = 2, n = 29.
For each n, k = 1 makes the fraction of time in computation ≥ 80%

61

(a) Ratio of time w.r.t. 0 latency machine (b) Ratio of time w.r.t. 0 latency, ∞ bandwidth machine

(c) Speedup as a function of matrix bandwidth (n = 210) (d) Optimal p for (c)

Figure 23: Plots for 3D stencil on Peta using overlapping communication.
For each n, k = 1 makes the runtime ratio w.r.t. 0 latency ≤ 1.26.
For each n, k = 1 makes the runtime ratio w.r.t. 0 latency/∞ BW ≤ 1.26.

62

(a) Speedup (b) Optimal p

(c) Fraction of time in computation (d) Ratio of additional flops

Figure 24: Plots for 3D stencil on Peta using non-overlapping communication.
Best speedup of 3.56 attained at p = 8000, k = 8, n = 29.
For each n, the best k makes the fraction of time in computation ≥ 40%, up from 6%.
For each n, the best k increases the number of flops by ≤ 1.79x

63

(a) Ratio of time w.r.t. 0 latency machine (b) Ratio of time w.r.t. 0 latency, ∞ bandwidth machine

(c) Speedup as a function of matrix bandwidth (n = 210) (d) Optimal p for (c)

Figure 25: Plots for 3D stencil on Peta using non-overlapping communication.
For each n, the best k makes the runtime ratio w.r.t. 0 latency ≤ 3.04, down from 10.89.
For each n, the best k makes the runtime ratio w.r.t. 0 latency/∞ BW ≤ 4.50, down from 16.10.

64

(a) Speedup (b) Optimal p

(c) Fraction of time in computation (d) Ratio of additional flops

Figure 26: Plots for 3D stencil on Grid using overlapping communication. Best speedup of 4.41x
attained at p = 125, k = 30, n = 210.
For each n, the best k makes the fraction of time in computation ≥ 1%
For each n, the best k increases the number of flops by ≤ 1.73x

65

(a) Ratio of time w.r.t. 0 latency machine (b) Ratio of time w.r.t. 0 latency, ∞ bandwidth machine

(c) Speedup as a function of matrix bandwidth (n = 211) (d) Optimal p for (c)

Figure 27: Plots for 3D stencil on Grid using overlapping communication.
For each n, the best k makes the runtime ratio w.r.t. 0 latency ≤ 4.08, down from 8.94.
For each n, the best k makes the runtime ratio w.r.t. 0 latency/∞ BW ≤ 115.23, down from 125.

66

(a) Speedup (b) Optimal p

(c) Fraction of time in computation (d) Ratio of additional flops

Figure 28: Plots for 3D stencil on Grid using non-overlapping communication.
Best speedup of 7.79x attained at p = 125, k = 30, n = 212.
For each n, the best k makes the fraction of time in computation ≥ 3%
For each n, the best k increases the number of flops by ≤ 1.13x

67

(a) Ratio of time w.r.t. 0 latency machine (b) Ratio of time w.r.t. 0 latency, ∞ bandwidth machine

(c) Speedup as a function of matrix bandwidth (n = 211) (d) Optimal p for (c)

Figure 29: Plots for 3D stencil on Grid using non-overlapping communication.
For each n, the best k makes the runtime ratio w.r.t. 0 latency ≤ 8.36, down from 15.74.

68

β: The inverse bandwidth available between slow and fast memory (in units of seconds/8-byte
word).

Specifically, we model two machines with the following parameters:

OOC: This out-of-core implementation models a 500 MFlop/s uniprocessor with DRAM as fast
memory and a 15000 RPM Seagate ST373307 disk as slow memory, with pmax = 107, tf =
2 · 10−9 secs (500 MFlops/s), mem = 5 · 108 words, α = 5.7 · 10−3 secs, β = 1.28 · 10−7 secs
(1/β = 7.8 MWords/s = 62.5 MB/s).

Clovertown: This multicore implementation models a quad-core Intel Clovertown chip with on-
chip cache as fast memory and DRAM as slow memory, with pmax = 107, tf = 5 · 10−10

secs (2 GFlops/s) (based on measurements in [34]), mem = 106 words, α = 2 · 10−7 secs,
β = 1.6 · 10−9 secs (1/β = 625 MWords/s = 5 GB/s).

In our performance models below, we assume the entire matrix and vector x are initially stored
in slow memory, and that [Ax,A2x, ..., Akx] is eventually stored in slow memory at the end of the
computation. Also, we only model non-overlapping communication and computation.

Let N denote the number of floating-point operations performed by SA2 (we sometimes write
Nb,n,k,p to indicate functional dependencies). Let Na denote the number of slow memory accesses.
Let Nw denote the number of words transferred between fast and slow memory. Let Tb,n,k,p,α,β

denote the time taken by SA2. Let Mb,n,k,p denote the main memory required. Formulas for these
are given below.

Given the machine and problem parameters for 2D stencil matrices, we state the following
formulas (which are slightly more detailed than the formulas in Table 2):

Nb,n,k,p = (8b2 + 8b + 1) · k
(
3n2 + 6b(k − 1)(p1/2 − 1)n + 2b2(2k − 1)(k − 1)(p1/2 − 1)2

)
/3

Na = 11p

Nw = (k + 1)n2 + 1.5(2b + 1)2
(
n + 2b(k − 1)(p1/2 − 1)

)2
+ 6bk(p1/2 − 1)(n + bk(p1/2 − 1))

Mb,n,k,p = 1.5

((
n

p1/2
+ 2bk

)2

− n2

p

)
+ (k + 1)

n2

p
+ 1.5(2b + 1)2

(
n

p1/2
+ 2b(k − 1)

)2

Tb,n,k,p,α,β = N · tf + Na · α + β ·Nw

Similarly, we state the following formulas for 3D stencil (which are also slightly more detailed
than in Table 2):

Nb,n,k,p = (2(2b + 1)3 − 1) · k
(
n3 + 3b(k − 1)(p1/3 − 1)n2 + O(b2k2np2/3)

)
Na = 44p

Nw = (k + 1)n3 + 1.5(2b + 1)3
(
n + 2b(k − 1)(p1/3 − 1)

)3
+ 1.5

((
n + 2bk(p1/3 − 1)

)3
− n3

)
Mb,n,k,p = 1.5

((
n

p1/3
+ 2bk

)3

− n3

p

)
+ (k + 1)

n3

p
+ 1.5(2b + 1)3

(
n

p1/3
+ 2b(k − 1)

)3

Tb,n,k,p,α,β = N · tf + Na · α + β ·Nw

69

Given b, n, k, α and β, we want to choose p to minimize the run time Tb,n,k,p,α,β, subject to the
memory constraint Mb,n,k,p < mem; write this optimal runtime as

TSA2,opt
b,n,k,α,β,mem = min

p:Mb,n,k,p<mem
Tb,n,k,p,α,β

with the p achieving the minimum written popt
b,n,k,α,β,mem, and the corresponding number of arith-

metic operations written NSA2,opt
b,n,k,α,β,mem = Nb,n,k,popt

b,n,k,α,β,mem
.

We present performance modeling data of SA2 for each combination of machine (OOC and
Clovertown) and matrix (2D and 3D). We present 6 plots for each of these 4 combinations. These
plots are slightly different from the ones shown for PA2, since we want to evaluate the savings in
both latency and bandwidth costs. The first 5 plots are all for stencil bandwidth b = 1, and the
last plot is for other bandwidths b > 1. Note that along vertical axis in each plot data may only
be shown for odd values of k.

1. The speedup k · TSA2,opt
1,n,1,α,β,mem/TSA2,opt

1,n,k,α,β,mem of the new algorithm versus the conventional
algorithm run k times (with b = 1). The conventional algorithm corresponds to k = 1, and
so reads the matrix and a vector from slow to fast memory (at least) k times, and writes a
vector from fast to slow memory (at least) k times.

2. The minimizing popt
1,n,k,α,β,mem for the new algorithm (with b = 1), in the denominator in the

fraction in the bullet (1).

3. The fraction of time spent by the new algorithm in arithmetic (with b = 1); when this ratio
is close to 1, it tells us that we are running close to the peak floating point speed.

4. The ratio of floating point operations done by the new algorithm to the number done by the

conventional algorithm (with b = 1):
NSA2,opt

1,n,k,α,β,mem

k·NSA2,opt
1,n,1,α,β,mem

. Note that the optimizing p is chosen

independently for new algorithm and the conventional algorithm; this is true in later formulas
as well. This ratio tells us how much redundant work is done by the new algorithm in order
to achieve the best possible speedup.

5. The ratio k · TSA2,opt
1,n,1,0,0,mem/TSA2,opt

1,n,k,α,β,mem of the time of the conventional algorithm run on a
machine with zero latency and infinite bandwidth (to “slow” memory) to the time of the new
algorithm. The time on a zero latency / infinite bandwidth machine is a lower bound on what
the new algorithm can achieve, so this ratio tells us well our new algorithm has succeeded in
avoiding most cost of accessing slow memory (the ratio is less than 1, and the closer it is to
1, the better). It can also be interpreted as the fraction of peak performance attained by the
new algorithm.

6. The speedup k · TSA2,opt
b,n,1,α,β,mem/TSA2,opt

b,n,k,α,β,mem of the new versus conventional algorithm for a
fixed n and varying k and stencil size b.

We now present the performance modeling results for SA2.

70

5.2.1 2D Stencil on OOC

Figure 30(a) shows that for every value of n modeled, a maximum speedup of 10.2 is attained
by choosing k = 59. Indeed, the speedup is still increasing slowly at k = 59, the largest value
of k modeled, and so further speedups may be possible. Figure 30(c) shows that for each n,
increasing k from 1 to 59 raised the fraction of time spent in computation from 2% to 18%. Since
Figure 30(d) shows that this is accomplished without ever increasing the number of flops by more
than 1.05x, we know further speedup would be limited to 1.05/.18 ≈ 5.8x. This same potential
further speedup (actually the reciprocal, .17) is also expressed in Figure 30(e), which shows the
time of the conventional algorithm running on a 0 latency / infinite bandwidth machine divided
by the new algorithm’s running time. Finally, Figure 30(f) shows that even higher speedups are
possible for larger matrix bandwidths b, up to 13.8x speedup for b = 3.

We note that our new sequential algorithm provides speedups that are more uniform across
values of n and b than our new parallel algorithm. The reason is that both the number of arithmetic
operations and the number of words transferred grow proportionally to b2n2, making it always
advantageous to avoid bandwidth costs.

5.2.2 3D Stencil on OOC

The 3D case is broadly similar to the 2D case. Figure 31(a) shows that for every value of n modeled,
a maximum speedup in the range [7.39, 9.51] is attainable, where the best k depends on n and varies
in the range [23,43]. Figure 31(c) shows that for each n, choosing the best k raised the fraction of
time spent in computation from 2% to at least 21%. Figure 31(d) shows that this is accomplished
without ever increasing the number of flops by more than 1.57x. This potential fraction of peak
is shown in Figure 31(e), which lies in the range [14%,18%], up from 2%. Figure 30(f) shows that
good speedups are possible for larger matrix bandwidths b, but not as high as in the 2D case.

5.2.3 2D Stencil on Clovertown

Figure 32(a) shows that for every value of n modeled, a maximum speedup in the range [2.45, 2.58]
is attainable. Figure 32(c) shows that for each n, choosing the best k raised the fraction of time
spent in computation from 25% up to at least 71%. Figure 32(d) shows that this is accomplished
without ever increasing the number of flops by more than 1.14x. The fraction of peak is expressed
in Figure 32(e), and is in the range [.62,.65] when choosing the best value of k. Finally, Figure 32(f)
shows that some speedups are possible for larger matrix bandwidths b.

5.2.4 3D Stencil on Clovertown

Figure 33(a) shows that for every value of n modeled, a maximum speedup of 1.34x to 1.36x is
attainable, by choosing k = 3, Figure 33(c) shows that for each n, choosing k = 3 raised the fraction
of time spent in computation from 28% to 48%. Figure 33(d) shows that this is accomplished by
increasing the number of flops by 1.27x. This potential fraction of peak is shown in Figure 33(e),
and is 38%, up from 28%. Figure 33(f) shows that speedups are not possible for larger matrix
bandwidths b. The speedups in this case are not as impressive as other cases because of the
fast memory being too small (this is also confirmed by the analytical model in Figure 13(d)).
Figure 13(d) also tells us that even doubling the fast memory size is not expected to give good
gains.

71

(a) Speedup (b) Optimal p

(c) Fraction of time in computation (d) Ratio of additional flops

(e) Slowdown vs Conventional Alg with α = β = 0
(fraction of peak)

(f) Speedup as a function of matrix bandwidth (n =
220)

Figure 30: Plots for 2D stencil on OOC. Only odd k shown.
For all n, choosing k = 59 yields a speedup of 10.2
For all n, choosing k = 59 yields a fraction of peak of 17%, up from 2%

72

(a) Speedup (b) Optimal p

(c) Fraction of time in computation (d) Ratio of additional flops

(e) Slowdown vs Conventional Alg with α = β = 0 (f) Speedup as a function of matrix bandwidth (n =
213)

Figure 31: Plots for 3D stencil on OOC. Only odd k shown.
For all n the best k yields a speedup in the range [7.39,9.51]
For all n the best k yields a fraction of peak in the range [14%,18%]

73

(a) Speedup (b) Optimal p

(c) Fraction of time in computation (d) Ratio of additional flops

(e) Slowdown vs Conventional Alg with α = β = 0 (f) Speedup as a function of matrix bandwidth (n =
216)

Figure 32: Plots for 2D stencil on Clovertown.
For all n the best k yields a speedup in the range [2.45,2.58]
For all n the best k yields a fraction of peak in the range [.62,.65]

74

(a) Speedup (b) Optimal p

(c) Fraction of time in computation (d) Ratio of additional flops

(e) Slowdown vs Conventional Alg with α = β = 0 (f) Speedup as a function of matrix bandwidth (n =
210)

Figure 33: Plots for 3D stencil on Clovertown.
For all n the best k yields a speedup in the range [1.34,1.36]
For all n the best k yields a fraction of peak of .38.

75

6 Measured Performance

We have a working implementation of PA1 and PA2 written in UPC [10] that works for arbitrary
sparse matrices. Here we report on our implementation of SA2, for which we also have performance
measurements.

For the implementation of SA2, we needed to solve the ordering problem described in Section 3.5.
Rather than use the TSP formulation described there, we used a simple random sampling strategy
to choose a best ordering from a sequence of random orderings. As mentioned in the description of
SA2, the computations in SA2 can be ordered in such a way so that they can be done through calls
to separate, tuned sparse matrix vector multiplication (SpMV) routines. In our implementation we
used the OSKI library [32].

We tested our implementation on the UC Berkeley CITRIS cluster–a cluster of Itanium 2 nodes
each with a theoretical peak performance of 5.2 GFlops/s. Each node has 2 Itanium processors
with 4 gigabytes of memory per processor.

For performance measurements and parameter estimation, the read and write routines were
timed to get the disk read and write bandwidth numbers. The SpMV routine was also timed to
obtain the actual floating-point rate for the SpMV routine.

Our test problem was a matrix with a 27 point stencil on a 3D mesh (stored as a general sparse
matrix) with n = 368 and p = 64. Thus the matrix had dimension 3683 = 49, 836, 032 with 27
nonzeros in most rows, broken into 43 = 64 blocks of (368

4)3 = 923 = 778, 688 rows each. The value
of p was chosen to optimize performance of the model.

To obtain the most accurate performance model, we used measured values for all important
machine parameters: time per floating point operation and disk bandwidth. The disk bandwidth
differs significantly for reads and writes, so we augmented our model to distinguish reads and writes.
Disk latency turned out to play a negligible role.

• tf = 3.12 ns (1/tf = 321 Mflops/s): This is the measured flop rate for SA2. This was taken
as the median of the flop rates observed for the computational phases in SA2.

• βr = 56 ns (1/βr = 143 MBytes/s): This is the measured read bandwidth.

• βw = 240 ns (1/βw = 33 MBytes/s): This is the measured write bandwidth.

Figures 34(a) and 34(b) show the results, both modeled and measured, which closely match.
Figure 34(a) breaks the total runtime down into computation and communication, and Figure 34(b)
shows the speedup, which reaches 3.2x at k = 15, and is at least 3x for k ≥ 8.

We may also compare our algorithm to one with infinite DRAM, so that the the entire compu-
tation can proceed in main memory. Such an algorithm obviously provides an upper bound on our
speed. We go from running 20x slower than this algorithm at k = 1 to just 6x slower at k = 15
(these are measured values).

7 Implementing the Preconditioned Kernel [Ax, MAx, ..., (MA)kx].

Accelerating the kernel [Ax,A2x,, Akx] is motivated by its potential use in Krylov subspace
methods for solving Ax = b or Ax = λx. Since preconditioned KSMs are widely used for these
problems, we now consider accelerating the analogous “preconditioned kernel”

[Ax,MAx,AMAx,MAMAx, ..., A(MA)k−1x, (MA)kx] .

76

(a) Measured vs. Modeled SA2 Performance.

(b) Measured vs. Modeled SA2 speedup.

Figure 34: Measured performance plots for SA2 on Itanium2 CITRIS cluster.

77

where M is the preconditioner, e.g. we are (implicitly) solving MAx = Mb with a KSM. The
intuition to see that this kernel is the right one for preconditioned KSMs comes from examining
preconditioned KSMs, which apply A and M to the starting vector in alternation; details will be
discussed in another paper. We note that this is the most general kernel, needed by left precon-
ditioned CG or Lanczos; when using either a right preconditioned KSM or a left preconditioned
KSM for nonsymmetric matrices (like GMRES), only powers like (AM)kx or (MA)kx are needed.
Our discussion below applies to these cases as well.

Under certain mathematical conditions on A and its preconditioner M , we will show how to
evaluate this kernel for O(1) latency cost, i.e. independent of k. These mathematical conditions are
satisfied by sparse matrices like the ones considered so far, and by a wide class of preconditioners
(but not all).

We note that the above kernel can be thought of as the pair of kernels

[Ax, (AM)Ax, (AM)2Ax, ..., (AM)k−1Ax] and [x, (MA)x, (MA)2x, ..., (MA)kx] .

This means that all the prior techniques in this paper can be applied to both the matrices AM and
MA in order to compute the preconditioned kernel. In particular, when A and M are both suitably
sparse (such as when M is (block) diagonal), then our prior techniques apply (see section 7.1).

However, many good preconditioners M are in fact dense, even if they are cheap to apply. Again
using tridiagonals as a motivating example, consider M as the inverse of a tridiagonal: it may be
applied in linear time, but is dense in general, making our techniques presented so far inapplicable.
But the inverse of a tridiagonal has another important property: any submatrix strictly above or
strictly below the diagonal has rank 1. This off-diagonal low-rank property is shared by many good
preconditioners, and we may exploit it to avoid communication too (see section 7.2).

7.1 Exploiting Sparsity of A and M

Our first approach to accelerating the preconditioned kernel will exploit sparsity in A and in MA.
This is likely to be the most effective approach for the simplest preconditioners: diagonal, or block
diagonal with small blocks.

As stated above, we could consider the two subbases [Ax, (AM)Ax, (AM)2Ax, ..., (AM)k−1Ax]
and [x, (MA)x, (MA)2x, ..., (MA)kx] separately, based on the sparsity patterns of AM and MA
respectively. Here is another way to look at it. Let B be a matrix whose sparsity pattern contains
the union of the sparsity patterns of A and MA. In other words Bij 6= 0 if Aij 6= 0 or (MA)ij 6= 0.
For example, let |A| and |M | be the matrices whose entries are the absolute values of A’s and M ’s
entries, resp., and let B = |A|+ |M | · |A|. Then B has the appropriate sparsity pattern (or at least
a superset, if cancellation makes M ·A sparser than |M | · |A|).

Now consider Parallel Approach 1 (PA1) applied to the kernel [Bx, B2x, ..., Bkx]. The remotely
stored components of x needed to compute the local components of this kernel are by construction
a superset of the ones needed to compute the preconditioned kernel. Thus PA1 extends naturally
to preconditioned kernel by using B to determine the communication needed.

In the special case of M diagonal, there is no change to the communication of PA1 at all. The
same comments apply to SA1 and SA2, which are based on PA1.

78

Figure 35: Spy plots of A and M , with Adiag in black and Aoff,i∗ in colors. The ranks of Aoff,i∗
are shown at the left, and the ranks of Aoff,∗j are shown at the bottom. M is displayed similarly.

7.2 Exploiting Low Rank Off-Diagonal Blocks of A and M

For our second approach to accelerating the preconditioned kernel [Ax,MAx,AMAx, ..., (MA)kx],
we will define a property of block matrix A (or M) that limits the rank of its off-diagonal blocks.
Suppose A is n-by-n, and let n = n1 + n2 + · · · + np be a partitioning, so that we can write A
as a matrix with block entries Aij of dimensions ni-by-nj . We will also write the i-th block row
of A as Ai∗ = [Ai1, ..., Aip] and the j-th block column as A∗j = [AT

1j , ..., A
T
pj]

T . We also write
A = Aoff + Adiag, where Aoff equals A but with all diagonal blocks Aoff,ii set to zero, and Adiag

contains just the diagonal blocks of A. We will also let x(i) refer to the i-th block of the vector x,
so we can write (Ax)(i) =

∑p
j=1 Aijx(j).

Given this notation, we are ready to state

Definition 7.1 Matrix A has Property S(r, n1, ..., np) (with respect to a partitioning n = n1 +
· · ·+ np) if each block row Aoff,i∗ and each block column Aoff,∗j of Aoff has rank at most r. If the
partition n1, ..., np is clear from context, we will write S(r). We call r the off-diagonal rank of A.

To illustrate this definition in the simplest possible case, consider a 40-by-40 tridiagonal matrix
A (with off-diagonal rank = 2) and a block diagonal preconditioner M (with off-diagonal rank =
0) both with partitioning 40 = 9+10+11+10, as shown in Figure 35. These spyplots show the
nonzero entries of A and M , those within the diagonal blocks are shown as black dots, and those
within block rows Aoff,1∗ through Aoff,4∗ shown in blue, green, red and cyan, resp. The ranks of
the block rows Aoff,i∗ are given at the left of each plot, and the ranks of the block columns Aoff,∗j
are given at the bottom of each plot.

Next Figure 36 displays the initial matrices in the preconditioned kernel in the same way: A,
MA, AMA,..., (MA)4. We see that the matrices quickly become dense, but their off-diagonal ranks
increase only linearly (this will be proven in Lemma 6 below). So even though (MA)4 and higher

79

powers are dense, the off diagonal parts are low rank, and this will let us store them, multiply by
them, and communicate the resulting products inexpensively.

Not just tridiagonals but all our model matrices based on meshes have Property S(r) for various
off-diagonal ranks r as shown in the table below. For the 1D meshes the partitions ni all equal n

p ,

for the 2D meshes the ni all equal n2

p , and for the 3D meshes the ni all equal n3

p , with the matrix
ordered so that processors own contiguously numbered rows and and columns.

Table 3: Off-diagonal ranks
1D mesh b = 1 2
1D mesh b ≥ 1 2b

2D mesh, 5 pt stencil 4 n
p1/2

2D mesh, 9 pt stencil 4(n
p1/2 + 1)

2D mesh, (2b + 1)2 pt stencil 4b(n
p1/2 + b)

3D mesh, 9 pt stencil 6 n2

p2/3

3D mesh, 27 pt stencil 6 n2

p2/3 + 12 n
p1/3 + O(1)

3D mesh, (2b + 1)3 pt stencil 6b n2

p2/3 + 12b2 n
p1/3 + O(b3)

Note that the off-diagonal ranks in Table 3 are identical to the entries showing “Words commu-
nicated” (for k = 1) in the column of Table 1 for the Conventional Approach, and are also equal
to the number of nonzero columns in any Aoff,i∗, or nonzero rows in any Aoff,∗j . This is not a
coincidence; our next goal is to show that given any matrix A with Property S(r), we can compute
Ax in parallel with the number of words sent from any processor to any other processor bounded
by r. This will be true even if A is dense.

To accomplish this, we need a special data structure for A. The diagonal blocks Aii may
represented in any desired way, such as by triangular factors L and U with Aiix = U−1(L−1x)
being computed by triangular substitution, or with any block-box subroutine that multiplies Aii

times a vector x(i). Each off diagonal block Aij will be represented using a rank-r representation
Aij = UiSijV

T
j , where Ui is ni-by-r, Sij is r-by-r and Vj is nj-by-r (Ui, Sij and Vj will depend on

i and j as described below). Thus for processor i to compute (Ax)(i) it will compute

(Ax)(i) = Aiix(i) +
∑
j 6=i

Aijx(j) = Aiix(i) + Ui

∑
j 6=i

Sij(V T
j x(j))

As we will see, processor j will own Vj and x(j), and be responsible for computing V T
j x(j) (a vector

of length r) and broadcasting it to all other processors, which will evaluate the rest of the above
formula.

In other words, the storage of each offdiagonal block Aij = UiSijV
T
j is split between processor

i and processor j. In fact the amount of storage is small, as the following lemma shows.

Lemma 5 Suppose A has Property S(r). Then each Aij may be factored as Aij = UiSijV
T
j where

Ui is ni-by-r, Sij is r-by-r, and Vj is nj-by-r. Ui and Vj may be taken to be orthonormal.

Proof: By the definition of Property S(r), Aoff,∗j has rank at most r, so its SVD can be written
Aoff,∗j = U(j)Σ(j)V

T
(j), where we may assume w.l.o.g. that V(j) is nj-by-r and orthonormal. Simi-

larly Aoff,i∗ = U (i)Σ(i)(V (i))T where we may assume U (i) is ni-by-r and orthonormal. Thus each

80

Figure 36: Spy plots of A, MA, AMA, (MA)2, A(MA)2, (MA)3, A(MA)3, and (MA)4, displayed
analogously to Figure 35.

81

Aij has column space spanned by the columns of U (i) and row space spanned by the rows of V T
(j),

which means that we can write

Aij = U (i)[(U (i))T AijV(j)]V
T
(j) ≡ Ui[Sij]V T

j

as desired. 2

This implies that processor i needs to store Vi (ni · r words), Ui (ni · r words), and Sij for j 6= i
(up to (p−1)r2 words, if all Aoff,ij are nonzero), for a total of at most r(ni +nj)+(p−1)r2 words,
along with Aii (using whatever representation is most natural). This yields the following parallel
algorithm for multiplication by a single matrix A with Property S(r):

Alg P S(r): Parallel multiplication y = Ax where A has Property S(r)
... assume matrix A and vectors x and y are stored as described above

each processor j locally computes the r-vector w(j) = V T
j x(j),

each processor j broadcasts w(j) to all other processors i (with nonzero Aij)
each processor j locally computes y(j) = Ajjx(j) + Uj ·

∑
i6=j,Sji 6=0 Sjiw(i).

The flops performed by processor j are the flops for Ajjx(j) plus at most 2(nj +ni) · r +2r2(p−
1). (The factor p − 1 may be reduced to the number of nonzero Sji in the summation.) The
communication cost for processor j is a broadcast of a vector of length r to (at most) all p−1 other
processors. When A is sparse, then of course the vector of length r need only be sent to a subset
of the other processors (the “nearest neighbors” in the case of the matrices in Table 3). When A
is symmetric, then we may take Ui = Vi and so save half the corresponding storage.

We can now compute the kernel [Ax,MAx,AMAx, ..., (MA)kx] by straightforwardly using Alg
P S(r) 2k times, to multiply by A and by M in alternation, assuming A has Property S(rA) and
M has Property S(rM), both with respect to the same partition n = n1 + · · ·+ np:

Alg P Old Precond Kernel: Parallel computation of [Ax,MAx, ..., (MA)kx]
where A has Property S(rA) and M has Property S(rM)
... assume A and M stored as described above
... denote x(0) = x, x(m) = (MA)mx and y(m) = A(MA)mx

for m = 0 to k − 1
use Alg P S(rA) to compute y(m) = A · x(m)

use Alg P S(rM) to compute x(m+1) = M · y(m)

end for

The cost of Alg P Old Precond Kernel is k calls to Alg P S(rA) and k calls to Alg P S(rM),
for a total cost to processor j of k multiplications by Ajj , k multiplications by Mjj , 4knj(rA +
rM)+2k(p− 1)(r2

A + r2
M) additional flops, (again, the factor p− 1 can be reduced to the maximum

number of nonzero off-diagonal blocks in either A or M), k “all-to-all” communications in which each
processor broadcasts rA words to all other processors, and another k “all-to-all” communications
with rM words per processor, for a total of k(rA + rM) words broadcast per processor.

We will build on Alg P S(r) to more efficiently implement the kernel [Ax,MAx, ..., (MA)kx]
by using the following observations: (1) The offdiagonal rank of a product is the sum of the off
diagonal ranks of the factors (so the offdiagonal rank of (MA)k grows linearly with k), and (2)
the spaces spanned by the block rows and columns of products are nested in a way that limits the
communication needed for all the products to just the communication for the longest product.

82

Lemma 6 If A has Property S(rA) and M has property S(rM) (both respect to the same partition
n = n1 + · · · + np) then MA has Property S(rA + rM) (all with respect to the same partition
n = n1 + · · · + np). Furthermore, let UM,i and VM,j be the matrices from Lemma 5 applied to
M , and let UA,i and VA,j be the matrices from Lemma 5 applied to A. Then the columns of the
corresponding (orthonormal) matrices UMA,i and VMA,j can be chosen to include the columns of
the (orthonormal) matrices UM,i and VA,j, respectively.

Furthermore, each diagonal block (MA)jj has the property that (MA)jj −Mjj ·Ajj has rank at
most rA + rM , with columns and rows also spanned by the columns of UM,j (or UMA,j) and rows
of VA,j (or VMA,j), respectively.

Informally, we say that the block row spaces of MA include the block row spaces of M , and
the block column spaces of MA include the block column spaces of A. This is just informal, since
cancellation for a particular choice of M and A could lead to the off diagonal rank of MA being
smaller than expected. The above and later lemmas work independent of such cancellation.
Proof: Let M ′ equal M except for zeroing out the j-th block row: M ′

j∗ = 0. Similarly, let A′ equal
A except for zeroing out the i-th block column, A′

∗i = 0,
Then the j-th block column of (MA)off can be written

(MA)off,∗j = M ′ ·A∗j = M ′ ·Aoff,∗j + M ′
off,∗j ·Ajj = M ′ · (XV T

A,j) + (Y V T
M,j) ·Ajj

where X is an n-by-rA matrix and Y is an n-by-rM matrix. Thus, the space spanned by the rows
of (MA)off,∗j is also spanned by the rA rows of V T

A,j and rM rows of V T
M,jAjj , so (MA)off,∗j is of

rank at most rA + rM as desired. Furthermore, the matrix V T
MA,j whose rows span the row space

of (MA)off,∗j can be chosen to also span the row space of Aoff,∗j , and in fact the (orthonormal)
rows of V T

MA,j can be chosen to include the (orthonormal) rows of V T
A,j .

Similarly, we can write the i-th block row of (MA)off as

(MA)off,i∗ = Mi∗ ·A′ = Moff,i∗ ·A′ + Mii ·A′
off,i∗ = (UM,iW

T) ·A′ + Mii · (UA,iZ
T)

where W is an n-by-rM matrix and Z is an n-by-rA matrix. Thus, the space spanned by the
columns of (MA)off,i∗ is also spanned by the rM columns of UM,i and the rA columns of MiiUA,i,
so (MA)off,i∗ is of rank at most rA +rM as desired. Furthermore, the matrix UMA,i whose columns
span the columns space of (MA)off,i∗ can be chosen to also span the column space of Moff,i∗, and
in fact the (orthonormal) columns of UMA,i can be chosen to include the (orthonormal) columns of
UM,i.

Now consider the the j-th diagonal block of MA, which can be written

(MA)jj = Mj∗ ·A∗j = Moff,j∗ ·Aoff,∗j + Mjj ·Ajj

so that (MA)jj − Mjj · Ajj has columns spanned by the columns of UM,j or UMA,j , and rows
spanned by the rows of V T

A,j or V T
MA,j . 2

Lemma 7 Suppose A has Property S(r). Then Ak has Property S(kr), and furthermore the matri-
ces UAk,i and VAk,j whose columns span the block column and block row spaces of Ak, respectively,
can be chosen to be n-by-rk, and so their columns span all the spaces spanned by the columns of
UAm,i and VAm,j, respectively, for m = 1 to k. Furthermore, the j-th diagonal block (Ak)jj has the
property that (Ak)jj − (Ajj)k has rank as most kr, with its column space spanned by the columns
of UAk,j and row space spanned by the columns of VAk,j.

83

Informally, we say that the row (column) spaces of Ak include all the row (column) spaces of
lower powers A, A2, ..., Ak−1.
Proof: To show the desired properties of (Ak)off , we use induction. The base case is k = 2, which
follows directly from Lemma 6. For the induction step, assume the result is true for k ≥ 2, and
apply Lemma 6 to Ak+1 = A · Ak, to conclude that the block column spaces of Ak+1 include the
block column spaces of Ak, which by induction include the block column spaces of A through Ak−1.
Applying Lemma 6 again to the product Ak+1 = Ak · A shows that the block row space of Ak+1

includes the block row spaces of Ak, which by induction include the block row spaces of A through
Ak−1.

Now consider the j-th diagonal block (Ak)jj . The result again follows by Lemma 6 and induc-
tion. 2

Theorem 1 Suppose A has property S(rA) and M has property S(rM), both with respect to the
partition n = n1 + · · ·+ np. Then

1. The i-th block column spaces of MA, (MA)2, ... , (MA)k are all spanned by the columns of
a single ni-by-[k(rA + rM)] (orthonormal) matrix U(MA)k,i.

2. The j-th block row spaces of MA, (MA)2 , ... , (MA)k are all spanned by the columns of a
single nj-by-[k(rA + rM)] (orthonormal) matrix V(MA)k,j.

3. There exist square matrices Tij,m of dimension k(rA + rM) such that for i 6= j and m = 1 to
m = k

((MA)m)ij = U(MA)k,i · Tij,m · V T
(MA)k,j .

4. There exist square matrices Tii,m of dimension k(rA + rM) such that for m = 1 to m = k the
i-th diagonal block of (MA)m satisfies

((MA)m)ii = (MiiAii)m + U(MA)k,i · Tii,m · V T
(MA)k,i .

5. The i-th block column spaces of A, A(MA), A(MA)2 , ... , A(MA)k−1 are all spanned by
the columns of a single ni-by-[krA + (k − 1)rM] (orthonormal) matrix UA(MA)k−1,i.

6. The j-th block row spaces of A, A(MA), A(MA)2 , ... , A(MA)k−1 are all spanned by the
columns of a single nj-by-[krA + (k − 1)rM] (orthonormal) matrix VA(MA)k−1,j.

7. There exist square matrices Sij,m of dimension krA +(k−1)rM such that for i 6= j and m = 0
to m = k − 1

(A(MA)m)ij = UA(MA)k−1,i · Sij,m · V T
A(MA)k−1,j .

8. There exist square matrices Sii,m of dimension krA + (k − 1)rM such that for m = 0 to
m = k − 1 the i-th diagonal block of A(MA)m satisfies

(A(MA)m)ii = Aii(MiiAii)m + UA(MA)k−1,i · Sii,m · V T
A(MA)k−1,i .

84

Proof: Claims 1 and 2 follow directly from Lemma 7. Claim 3 follows from the proof of Lemma 5.
Claim 4 follows from Lemma 7 and Lemma 5. Claims 5 and 6 follow from Claims 1 and 2, Lemma 7
and Lemma 6. Claim 7 again follows from the proof of Lemma 5, and Claim 8 from from Lemma 7
and Lemma 5. 2

Theorem 1 justifies the correctness of the following parallel algorithm for computing the kernel
[Ax,MAx,AMAx,MAMAx, ..., A(MA)k−1x, (MA)kx].

Alg P New Precond Kernel: Parallel computation of [Ax,MAx,AMAx, ..., (MA)kx]
with one round of communication
... assume A and M have offdiagonal ranks rA and rM , resp.
... assume same notation as Theorem 1
... additionally we denote x(m) = (MA)mx and y(m) = A(MA)mx

each processor j locally computes the k(rA + rM)-vector w(j) = V T
(MA)k,j

x(j)

each processor j locally computes the (krA + (k − 1)rM)-vector z(j) = V T
A(MA)k−1,j

x(j)

each processor j broadcasts [w(j), z(j)] to all other processors i

each processor j locally computes the following:
q = Ajj · x(j)

for m = 1 to k − 1
q = Mjj · q
x

(m)
(j) = q + U(MA)k,j · (

∑p
i=1,Tji,m 6=0 Tji,m · w(i))

q = Ajj · q
y

(m)
(j) = q + UA(MA)k−1,j · (

∑p
i=1,Sji,m 6=0 Sji,m · z(i))

end for
q = Mjj · q
x

(k)
(j) = q + U(MA)k,j · (

∑p
i=1,Tji,k 6=0 Tji,k · w(i))

The cost of this algorithm for processor j is k local matrix-vector multiplications by Mjj , k
local matrix-vector multiplications by Ajj , another

2pk3(rA + rM)2 + 2njk
2(rA + rM) + 2p(k − 1)(krA + (k − 1)rM)2

+ 2nj(k − 1)(krA + (k − 1)rM) + 2njk(k + 1)(rA + rM)
≤ 4pk3(rA + rM)2 + 4njk

2(rA + rM) + 2njk(k + 1)(rA + rM)
≤ 6k(k + 1)nj(rA + rM) + 4pk3(rA + rM)2

flops, and one “all-to-all” communication of 2krA + (2k − 1)rM words per processor.
Table 4 compares the costs of the straightforward parallel algorithm

Alg P Old Precond Kernel and our new algorithm Alg P New Precond Kernel. The memory costs
excludes the memory needed for Ajj and Mjj , but includes the memory for all the vectors and
locally stored S, T , U and V matrices. The cost of (pre)computing these matrices is not included,
since it is a one-time cost amortized over all the iterations.

85

Table 4: Summary Table of Costs of Parallel Preconditioned Kernel
P Old Precond Kernel P New Precond Kernel

Mults by Ajj k times k times
Mults by Mjj k times k times
Other Flops 4knj(rA + rM) 6k(k + 1)nj(rA + rM)

(besides Ajj , Mjj) +2(p− 1)k(r2
A + r2

M) +4pk3(rA + rM)2

All-to-all bcasts 2k 1
Words bcast krA + krM 2krA + (2k − 1)rM

Memory (2k + 1)nj + 2 max(rA, rM) (2k + 1)nj + 2(2krA + (2k − 1)rM)
(besides Ajj , Mjj) +2nj(rA + rM) +2nj(2krA + (2k − 1)rM)

+(p− 1)(r2
A + r2

M) +p(krA + krM)2 + p(krA + (k − 1)rM)2

The costs in Table 4 are worst case, and do not include a variety of optimizations such as noting
that the Sij,m and Tij,m matrices themselves have low rank for small m, and that A(MA)m−1 and
(MA)m may be sparse for small m (see Figure 36), thereby reducing the factor p in the flops and
memory counts. Still, we may use it to make the following observations.

Like the kernel [Ax,A2x, ..., Akx], Table 4 shows that the number of messages is independent of
k, as desired. Unlike [Ax,A2x, ..., Akx], the bandwidth term (number of words broadcast) roughly
doubles, rather than growing only by lower order “boundary” terms.

Most significantly, the number of extra flops can be large. The “diagonal work” (multiplications
by Ajj and Mjj is identical, but in the two terms contributing to “Other Flops”, the first one (the
one proportional to nj) increases by a factor of 1.5(k +1), and the second one increases by a factor
of about 2k2.

To make a concrete comparison let us consider a 3D n-by-n-by-n mesh with a (2b+1)3 stencil and
block-Jacobi preconditioning, i.e. preconditioned by a block diagonal preconditioner M with Mjj =
A−1

jj , implemented by doing triangular substitution with the precomputed sparse LU factorization
of Ajj . Initially we will not count the cost of computing this triangular factorization, assuming it
is amortized over the subsequent multiple iterations. Our basic algorithm (that we will compare to
P New Precond Kernel) will ignore the low off-diagonal rank of A and M , and simply alternatingly
multiply by A (using standard parallel sparse matrix-vector multiplication) and multiply by M (by
local triangular substitution). To do a O() analysis, we will reduce the factor p in the flop count
to O(kd), where d is the dimension of the mesh, which better describes how the number of nonzero
offdiagonal blocks grows in this case. To simplify, we will only display the leading terms in the
number of flops, words communicated, and number of messages, assuming n3 � p � b, k.

For b = 1, the number of nonzeros in the triangular factors of Ajj is known to be O((dim(Ajj))4/3) =
O(n4

p4/3), so for the sake of approximate comparison we will take the number of nonzeros for general

b to be O(b3 n4

p4/3). The number of nonzeros is half the number of flops needed to multiply by Mjj .

86

Table 5: Comparison Table for n-by-n-by-n mesh with (2b + 1)3 stencil
Conventional Algorithm P New Precond Kernel

Flops from Mjj O(b3k n4

p4/3) O(b3k n4

p4/3)

Other Flops 16b3kn3

p 24bk2 n5

p5/3 + 144b2k3 n4

p1/3

All-to-all bcasts 0 1
Words bcast 0 12bk n2

p2/3

pt-to-pt msgs 26k 0
Words sent 6bk n2

p2/3 0

As can be seen from Table 5, the number of “other flops” in P New Precond Kernel is of higher
order than the number of flops in the Conventional Algorithm, namely

O(b3k
n4

p4/3
+ bk2 n5

p5/3
+ b2k3p

n4

p1/3
) = O(b3k

n4

p4/3
(1 +

k

b2

n

p1/3
+

pk2

b
)) versus O(b3k

n4

p4/3
) .

Thus when k and b are both O(1), the P New Precond Kernel will do O(n
p1/3 + p) times as many

flops as the Conventional Algorithm. Unless the latency is truly large, this is probably too high a
penalty to pay.

Fortunately, Table 4’s flop count bounds may be reduced. The factor p above is a worst case,
assuming k is so large that most powers (MA)m are dense. In fact when m is smaller than p,
(MA)m can be sparse, as Figure 36 shows. Since we expect k � p, the factor p can be significantly
reduced.

On the other hand, the factor n
p1/3 (which ultimately comes from the factor nj = n3

p in the
“Flops” row in Table 4) probably cannot be reduced. This is because multiplying by a matrix of
low rank r which is also dense has a cost proportional to its dimension, in contrast to multiplying
by a sparse matrix with r nonzeros (and so at most the same rank). As Figure 36 shows, the
off-diagonal blocks are indeed dense. Reducing the arithmetic complexity further will require
introducing further approximations of these updates.

This discussion has so far not counted the cost of computing the triangular factorization of
each Ajj , namely O(b3n6

p2), assuming it is amortized over the subsequent solves. If we include this
cost in the “flops from Mjj”, we see that the cost of computing and applying the preconditioner
dominates the flop costs of both the Conventional Algorithm and P New Precond Kernel, making
the reduced latency costs of P New Precond Kernel attractive.

In other words, if the flop cost of the block diagonal preconditioner is high enough, the extra
flops introduced by our scheme in order to lower latency costs will not be dominant.

Finally, we note that if M is block diagonal with smaller blocks, or indeed completely diagonal,
then the complexity decreases even further.

8 Related Work

The optimizations described in this paper belong to a collection of techniques for improving the
performance of applying a stencil repeatedly to a regular discrete domain, or multiplying a vector
repeatedly by a sparse matrix. They, in turn, are a subset of various methods known as tiling or
blocking. They all involve decompositions of the d-dimensional domain into d-dimensional subdo-
mains, and rearranging the order of arithmetic operations in order to exploit the parallelism and/or

87

temporal locality implicit in those subdomains. The different order of operations does not change
the result in exact arithmetic, although it may affect rounding error in important ways.

Tiling research falls into three general categories. The first encompasses performance-oriented
implementations and implementation suggestions, as well as practical performance models thereof.
See, for example, [22, 21, 14, 35, 23, 19, 27, 36, 9, 28, 8, 37, 33, 17, 16]. Many of these techniques
have been independently rediscovered several times. The second category consists of theoretical
algorithms and asymptotic performance analyses. These are based on sequential or parallel process-
ing models which account for the memory hierarchy and/or inter-processor communication costs.
Works that specifically discuss stencils or more general sparse matrices include [13], [18], and [29].
Works which may be more generally applicable include [1, 3, 4]. The third category contains sug-
gested applications that call for repeated application of a stencil (resp. sparse matrix) to a domain
(resp. vector). See, for example, [30, 24, 6, 7, 2, 28].

Tiling was possibly inspired by two existing techniques. The first, domain decompositions for
solving partial differential equations (PDEs), originated in an 1870 paper by H. A. Schwarz[25].
Typical domain decompositions work directly with the continuous PDE. They iterate between
invoking an arbitrary PDE solver on each of the subdomains, and correcting for the subdomain
boundary conditions. Unlike tiling, domain decompositions change the solution method (even in
exact arithmetic) as well as the order of computations. The second inspiration may be out-of-
core (OOC) stencil codes3, which date back to the early days of electronic computing [15, 22].
Small-capacity primary memories and the lack of a virtual memory system on early computers
necessitated operating only on small subsets of a domain at a time.

Tiling of stencil codes became popular for performance as a result of two developments in
computer hardware: increasingly deep memory hierarchies, and multiple independent processors
[14]. Existing techniques for reorganizing stencil codes on vector supercomputers divided up a d-
dimensional domain into d− 1-dimensional hyperplanes. The resulting long streams of data suited
the vector architectures of the time, which were typically cacheless and relied on a careful balance
between memory bandwidth and floating-point rate in order to achieve maximum performance.
In contrast, cache-based architectures usually lack the memory bandwidth necessary to occupy
their floating-point units. Achieving near-peak floating-point performance thus requires exploiting
locality. Furthermore, iterating over a domain by hyperplanes failed to take advantage of the
potential temporal locality of many stencil codes. Tiling decreases the number of connections
between subdomains, which reduces the number of cache misses, and decouples data dependencies
that hinder extraction of non-vector parallelism.

The idea of using redundant computation to avoid communication or slow memory accesses in
stencil codes may be as old as OOC stencil codes themselves. Leiserson et al. cite a reference from
1963 [18, 22], and Hong and Kung analyze a typical strategy on a 2-D grid [13]. (We codify this
strategy in our PA1 algorithm.) Nevertheless, many tilings do not involve redundant computation.
For example, Douglas et al. describe a parallel tiling algorithm that works on the interiors of the
tiles in parallel, and then finishes the boundaries sequentially [9]. Many sequential tilings do not
require redundant computations [16]; our SA1 algorithm does not.

However, at least in the parallel case, tilings with redundant computation have the advantage of
requiring only a single round of messages, if the stencil is applied several times. The latency penalty
is thus independent of the number of applications, though the bandwidth requirements increase.

3For some of these codes, “core” is an anachronism, since they predate the widespread use of core memory.

88

Furthermore, Strout et al. point out that the sequential fill-in of boundary regions suggested by
Douglas et al. suffers from poor locality [28]. Most importantly, redundant computation to save
messages is becoming more and more acceptable, given the divergence in hardware improvements
between latency, bandwidth, and floating-point rate.

Application of stencil tiling to more general sparse matrices seems natural, as many types
of sparse matrices express the same kind of local connections and domain topology as stencils.
However, typical tiling approaches for stencils rely on static code transformations, based on analysis
of loop bounds. Sparse matrix-vector multiplication usually requires indirect memory references
in order to express the structure of the matrix, and loop bounds are dependent on this structure.
Thus, implementations usually require runtime analysis of the sparse matrix structure, using a graph
partitioner to decompose the domain implied by the matrix. This was perhaps somewhat unnatural
to researchers pursuing a comiler-based approach to tuning stencil codes. Furthermore, graph
partitioning has a nontrivial runtime cost, and finding an optimal one is an NP-complete problem
which must be approximated in practice. Theoretical algorithms for the out-of-core sequential
case already existed (see e.g., [18]), but Douglas et al. were apparently the first to attempt an
implementation of parallel tiling of a general sparse matrix, in the context of repeated applications
of a multigrid smoother [9]. This was extended by Strout et al. into a sequential cache optimization
which is most like our SA1 algorithm.

Our work differs from existing approaches in many ways. First, we developed our methods
in tandem with an algorithmic justification: communication-avoiding (also called s-step) Krylov
subspace methods. Toledo had suggested an s-step variant of conjugate gradient iteration, based
on a generalization of PA1, but he did not supply an implementation for matrices more general
than tridiagonal matrices [29]. We have a full implementation of PA1 for general sparse matrices,
and have demonstrated significant performance increases on a wide variety of platforms. Douglas et
al. and Strout developed their matrix powers kernel for classical iterations like Gauss-Seidel [9, 28].
However, these iterations’ most common use in modern linear solvers are as multigrid smoothers.
The payoff of applying a smoother s times in a row decreases rapidly with s; this is, in fact, the
main inspiration for multigrid. Douglas et al. acknowledge that usually 1 ≤ s ≤ 5 [9]. In contrast,
communication-avoiding Krylov subspace methods are potentially much more scalable in s. Saad
also suggested applying something like a matrix powers kernel to polynomial preconditioning, but
here again, increasing the degree of the polynomial preconditioner tends to have a decreasing payoff,
in terms of the number of CG iterations required for convergence [24].

We have also expanded the space of possible algorithms by including PA2 and SA2. PA2
avoids some redundant computation, but offers less opportunity for overlapping communication
and computation. SA2 extends SA1 for the case in which the vectors (as well as the matrix) do
not fit entirely in fast memory. As far as we can tell, PA2 and SA2 are novel, including the TSP
formulation for optimizing SA2.

We also have variants of the matrix powers kernel which directly address numerical stability
concerns by generating a different basis than the usual “monomial basis” [x,Ax, A2x, . . .]. Previous
authors had expressed these concerns (see e.g., [6]) and suggested bases that use “shifts” based on
eigenvalue estimates, such as the Chebyshev or Newton bases [7, 2]. The shifts can be chosen and
improved using runtime information which is a practically free byproduct of the Krylov subspace
method that uses the kernel. However, these authors did not suggest an optimized matrix powers
kernel which could accommodate these bases.

In addition, we have developed a novel “preconditioned matrix powers kernel,” for use in precon-

89

ditioned Krylov subspace methods. Previous authors had only vaguely addressed preconditioning
in these algorithms. We are also the first, as far as we can tell, to identify a set of nontrivial precon-
ditioners – those which can be partitioned such that their off-diagonal blocks are low rank – as best
suited for the preconditioned matrix powers kernel. This lets us exploit a variety of preconditioners,
including H and H2 matrices (see e.g., [12, 11]), that are highly effective for solving a large class
of problems with hierarchical structure. Such preconditioners are especially useful for performance
tuning because they expose the tradeoff between preconditioner effectiveness and performance.

Furthermore, our performance models use latency, bandwidth, and floating-point rates from
actual or predicted machines. Where possible, these rates were measured rather than peak rates.
The models show that our techniques can be useful in a wide variety of situations. These include
single-processor out-of-core, distributed-memory parallel, and shared-memory parallel. The latter
case is especially relevant considering the advent of multi- and manycore shared-memory parallel
processors, and predictions that Moore’s Law performance increases will now be expressed in “num-
ber of processors per chip.” Finally, the models demonstrate that applying our algorithms may
often be just as good or better for performance than improving the communication hardware while
using the naive algorithm. This opens the door to parallel configurations previously thought im-
practical for Krylov methods due to high latency, such as internet-based grid computing or wireless
devices.

90

References

[1] Matthew Andrews, Tom Leighton, P. Takis Metaxas, and Lisa Zhang. Automatic methods for
hiding latency in high bandwidth networks (extended abstract). In STOC: ACM Symposium
on Theory of Computing (STOC), 1996.

[2] Z. Bai, D. Hu, and L. Reichtel. A Newton basis GMRES implementation. IMA Journal of
Numerical Analysis, 14:563–581, 1994.

[3] Gianfranco Bilardi and Franco P. Preparata. Processor–time tradeoffs under bounded-speed
message propagation: Part i, upper bounds. Theory of Computing Systems, 30(6), November
1997.

[4] Gianfranco Bilardi and Franco P. Preparata. Processor–time tradeoffs under bounded-speed
message propagation: Part ii, lower bounds. Theory of Computing Systems, 32(5), September
1999.

[5] S. Börm, L. Grasedyck, and W. Hackbusch. Hierarchical Matrices. Max Planck In-
stitute for Mathematics in the Sciences, 2006. www.mis.mpg.de/preprints/ln/lecturenote-
2103.abstr.html.

[6] A. T. Chronopoulos and C. W. Gear. s-step iterative methods for symmetric linear systems.
J. Comput. Appl. Math., 25(2):153–168, 1989.

[7] Eric de Sturler. A parallel variant of GMRES(m). In J. J. H. Miller and R. Vichnevetsky,
editors, Proceedings of the 13th IMACS World Congress on Computation and Applied Mathe-
matics, Dublin, Ireland, 1991. Criterion Press.

[8] C. Ding and Y. He. A ghost cell expansion method for reducing communications in solving
PDE problems. In Proceedings. of SC2001, November 2001.

[9] C. C. Douglas, J. Hu, M. Kowarschik, U. Rüde, and C. Weiss. Cache optimization for struc-
tured and unstructured grid multigrid. Electronic Transaction on Numerical Analysis, 10:21–
40, February 2000.

[10] T. El-Ghazawi, W. Carlson, T. Sterling, and K. Yelick. UPC: Distributed Shared-Memory
Programming. Wiley-Interscience, May 2005.

[11] Lars Grasedyck and Wolfgang Hackbusch. Construction and arithmetics of H-matrices. Com-
puting, 70:295–334, 2003.

[12] Wolfgang Hackbusch, Boris Khoromskij, and Stefan Sauter. On H2-matrices. In Lectures on
Applied Mathematics, pages 9–29. Springer, Berlin, Germany, 2002.

[13] Jai-Wei Hong and H. T. Kung. I/O complexity: The red-blue pebble game. In Proc. 13th
Ann. ACM Symp. on Theory of Computing (May 11-13, 1981), pages 326–333, 1981.

[14] F. Irigoin and R. Triolet. Supernode partitioning. In Proceedings of the 15th ACM SIGPLAN-
SIGACT Symposium on Principles of Programming Languages, pages 319–329. ACM Press,
1988.

91

[15] W. Kahan. Out-of-core stencil code in the 1950’s, 2007.

[16] S. Kamil, K. Datta, S. Williams, L. Oliker, J. Shalf, and K. Yelick. Implicit and explicit
optimizations for stencil computations. In Memory Systems Performance and Correctness,
San Jose, CA, October 2006.

[17] S. Kamil, P. Husbands, L. Oliker, J. Shalf, and K. Yelick. Impact of modern memory sub-
systems on cache optimizations for stencil computations. In 3rd Annual ACM SIGPLAN
Workshop on Memory Systems Performance, Chicago, IL, 2005.

[18] Charles E. Leiserson, Satish Rao, and Sivan Toledo. Efficient out-of-core algorithms for linear
relaxation using blocking covers (extended abstract). In IEEE Symposium on Foundations of
Computer Science, pages 704–713, 1993.

[19] J. McCalpin and D. Wonnacott. Time skewing: A value-based approach to optimizing for
memory locality. Technical Report DCS-TR-379, Department of Computer Science, Rutgers
University, 1999.

[20] D. Patterson. Latency lags bandwidth. CACM, 47(10):71–75, Oct 2004.

[21] J.-K. Peir. Program partitioning and synchronization on multiprocessor systems. PhD thesis,
Department of Computer Science, University of Illinois at Urbana-Champaign, March 1986.

[22] C. J. Pfeifer. Data flow and storage allocation for the PDQ-5 program on the Philco-2000.
Communications of the ACM, 6(7):365–366, 1963.

[23] E. J. Rosser. Fine-grained analysis of array computations. PhD thesis, Dept. of Computer
Science, University of Maryland, September 1998.

[24] Youcef Saad. Practical use of polynomial preconditionings for the conjugate gradient method.
SIAM J. Sci. Stat. Comput., 6(4), October 1985.

[25] H. A. Schwarz. Über einen grenzubergang durch alternierendes verfahren. Vierteljahrsschrift
der Naturforschenden Gesellschaft in Zürich, 15:272–286, 1870. Available in [?].

[26] M. Snir and S. Graham, editors. Getting up to speed: The Future of Supercomputing. National
Research Council, 2004. 227 pages.

[27] Y. Song and Z. Li. New tiling techniques to improve cache temporal locality. In Proc. ACM
SIGPLAN Conference on Programming Language Design and Implementation, Atlanta, GA,
1999.

[28] Michelle Mills Strout, Larry Carter, and Jeanne Ferrante. Rescheduling for locality in sparse
matrix computations. In V. N. Alexandrov and J. J. Dongarra, editors, Lecture Notes in
Computer Science. Springer, 2001.

[29] Sivan Toledo. Quantitative performance modeling of scientific computations and creating lo-
cality in numerical algorithms. PhD thesis, Massachusetts Institute of Technology, June 1995.

[30] J. van Rosendale. Minimizing inner product data dependence in conjugate gradient iteration.
In Proc. IEEE Internat. Confer. Parallel Processing, 1983.

92

[31] R. Vuduc. Automatic Performance Tuning of Sparse Matrix Kernels. PhD thesis, Computer
Science Division, University of California, Berkeley, 2003.

[32] R. Vuduc, J. Demmel, and K. Yelick. OSKI: A library of automatically tuned sparse matrix
kernels. In Proc. of SciDAC 2005, J. of Physics: Conference Series. Institute of Physics
Publishing, June 2005.

[33] Richard Vuduc. Automatic Performance Tuning of Sparse Matrix Kernels. PhD thesis, Uni-
versity of California Berkeley, December 2003.

[34] S. Williams, L. Oliker, R. Vuduc, J. Shalf, K. Yelick, and J. Demmel. Optimization of sparse
matrix-vector multiplication on emerging multicore platforms. In Supercomputing 07. IEEE,
2007. to appear.

[35] M. E. Wolf. Improving locality and parallelism in nested loops. PhD thesis, Stanford University,
1992.

[36] D. Wonnacott. Using time skewing to eliminate idle time due to memory bandwidth and
network limitations. In Proceedings of the Fourteenth International Parallel and Distributed
Processing Symposium (IPDPS), pages 171–180, 2000.

[37] P. R. Woodward and S. E. Anderson. Scaling the Teragrid by latency tolerant application
design. In Proc. of NSF / Department of Energy Scaling Workshop, Pittsburg, CA, May 2002.

93

