
Scott Biersdorff, Chee Wai Lee, Allen D. Malony, Sameer Shende, Wyatt Spear
{scottb,cheelee,malony,shende,wspear}@cs.uoregon.edu

Dept. Computer and Information Science
Performance Research Laboratory

University of Oregon

TAU Potpourri
and Working with Open Components,

Interfaces, and Environments

Potpourri: a mixture of dried petals and
spices placed in a bowl, origin 17th century,

from French, literally ‘rotten pot’

TAU Potpourri CScADS 2010

Petal and Spices

 Binary instrumentation: DyninstAPI and tau_run
 Hybrid performance measurement: TAUebs
 Library wrapping/interposition: tau_wrap, tau_exec,

PARMCI
 Heterogeneous performance measurement: TAUcuda
 HPC program development and tools: Eclipse and TAU
 Monitoring running applications: TAUmon
 Potpourri smell test

2

TAU Potpourri CScADS 2010

The Pot

3

TAU Potpourri CScADS 2010

Binary Instrumentation: DyninstAPI and tau_run

 TAU and DyninstAPI are mature technologies for
performance instrumentation, measurement and analysis

 TAU has been a long-time user of DyninstAPI
 Using DyninstAPI’s recent binary re-writing capabilities,

created a binary re-writer tool for TAU (tau_run)
 Supports TAU's performance instrumentation
 Works with TAU instrumentation selection

  files and routines based on exclude/include lists
 TAU’s measurement library (DSO) is loaded by tau_run

 Runtime (pre-execution) and binary re-writing are both supported
 Simplifies code instrumenation and tool usage greatly!
 Included on POINT LiveDVD (tau.uoregon.edu/point.iso)

4

TAU Potpourri CScADS 2010

 tau_run with NAS PBS

5

TAU Potpourri CScADS 2010

Going Forward

 Currently, tau_run only supports dynamic executables
(v6.1)

 Would like support for static binary rewriting
 Would like support for rewriting shared objects
 Validation for compilers other than gcc

 XLC, PathScale, Cray CCE, Intel, PGI,…
 Availability for more platforms

 Apple Mac OS X, Windows, IBM BG/P, AIX, …
 Instrumentation at the loop level
 Interaction with generic binary instrumentation

6

TAU Potpourri CScADS 2010

Hybrid Performance Measurement: TAUebs

7

 Integrate sampling-based and probe-based measurement
 TAUebs combines TAU, PerfSuite, and HPCToolkit

 TAU for probe-based instrumentation and measurement
 PerfSuite technology for timer-based sampling
 HPCToolkit for call stack unwinding on fully-optimized codes

 problems with StackWalkerAPI at the time ... will retry
 Foundation is TAU with linked SBM capabilities

 "Context" linking between event stack and call stack
 Augment PBM with SBM performance views

 TAUebs measurement
 Capture a trace of EBS samples, each containing:

 Timestamp, TAUkey, PCkey, hardware counters, delta time

TAU Potpourri CScADS 2010

TAUebs Data Analysis (Profile)

 Process EBS trace in two ways: profile, trace
 Merged profile analysis with ParaProf

 Augments TAU profile with PC call stack information
 Merge stacks for each sample and update TAU profile
 For all samples that match on TAUkey:

 distribute TAU inclusive time across PC locations
  Intermediate routine parent nodes will be inserted in profile

 only compute inclusive time
 Can aggregate callsites or show explicitly

 Instrumentation spectrum
 Top-level on (main) then get profile entirely from EBS
 All routines then get PC locations merged in profile

8

TAU Potpourri CScADS 2010

TAUebs Data Analysis (Trace)

 EBS to OTF trace converter
 Analyze EBS trace with powerful trace analysis tools
 For each sample

 Place timestamp in trace record
 Merge TAU event stack and PC call stack into merged call path
 Create event ID for merged call path and put in trace record
 Put collected PAPI metrics in trace record
 Can store PC locations in trace record

9

TAU Potpourri CScADS 2010

Real World Examples

 MADNESS (quantum chemistry application)
 Heavy use of C++ templates and new features
 Assembly regions/files and lots of code in header files
 Makes source instrumentation a challenge

 TAU source instrumenter could handle a fair amount
  Instrumentation overhead kicks TAU's butt

 GNU compiler instrumentation saw 2901% overhead
 many small routines (getter/setter)

 TAU source instrumentation with selection (<6%)
 introduces potential blind spots

 GPAW
 FLASH

10

TAU Potpourri CScADS 2010

TAUebs Profile for MADNESS

 11 minute run on 8 threads produces 67 MB per thread
 Significant time in .TKLOOP16 which is an assembly file
 Profile for each thread

11

uninstrumented
routines between
sample and event

TAU Potpourri CScADS 2010

TAUebs Trace for MADNESS

 Vampir call stack color-coded by file name
 Flops rate

12

TAU Potpourri CScADS 2010

GPAW (Grid-Based Projector-Augmented Wave)

 Mixed Python, C, MPI run on 128 processes
 Python performance interface and LD_PRELOAD

13

Python routines

LAPACK

TAU Potpourri CScADS 2010

Library interposition/wrapping: tau_exec, tau_wrap

 Performance evaluation tools such as TAU provide a wealth
of options to measure the performance of an application

 Need to simplify TAU usage to easily evaluate performance
properties, including I/O, memory, and communication

 Designed a new tool (tau_exec) that leverages runtime
instrumentation by pre-loading measurement libraries

 Works on dynamic executables (default under Linux)
 Substitutes I/O, MPI, and memory allocation/deallocation

routines with instrumented calls
  Interval events (e.g., time spent in write())
 Atomic events (e.g., how much memory was allocated)

 Measure I/O and memory usage
14

TAU Potpourri CScADS 2010

TAU Execution Command (tau_exec)

 Uninstrumented execution
 % mpirun –np 256 ./a.out

 Track MPI performance
 % mpirun –np 256 tau_exec ./a.out

 Track I/O and MPI performance (MPI enabled by default)
 % mpirun –np 256 tau_exec –io ./a.out

 Track memory operations
 % setenv TAU_TRACK_MEMORY_LEAKS 1
 % mpirun –np 256 tau_exec –memory ./a.out

 Track I/O performance and memory operations
 % mpirun –np 256 tau_exec –io –memory ./a.out

15

TAU Potpourri CScADS 2010

POSIX I/O Calls Supported

 Unbuffered I/O
 open, open64, close, read, write, readv, writev, creat, creat64

 Buffered I/O
  fopen, fopen64, fdopen, freopen, fclose
  fprintf, fscanf, fwrite, fread

 Communication
 socket, pipe, socketpair, bind, accept, connect
 recv, send, sendto, recvfrom, pclose

 Control
  fcntl, rewind, lseek, lseek64, fseek, dup, dup2, mkstep, tmpfile

 Asynchronous I/O
 aio_{read,write,suspend,cancel,return}, lio_listio

16

TAU Potpourri CScADS 2010

HELIOS Rotorcraft Simulation

 HPC Institute for Advanced Rotorcraft
Modeling and Simulation (HIARMS)
 Andy Wissink, US Army, Aeroflight

Dynamics Directorate, Ames Research
 Multi-language framework

 Python (SIF)
 C/C++
 Fortran

17

TAU Potpourri CScADS 2010

HELIOS OBE Test

 I/O and memory measurements with Python wrapper

18

TAU Potpourri CScADS 2010

Helios OBE Profile

19

TAU Potpourri CScADS 2010

Volume of I/O by File and Memory

20

TAU Potpourri CScADS 2010

Memory Leaks in MPI

21

TAU Potpourri CScADS 2010

Library wrapping: tau_wrap

 How to instrument an external library without source?
 Source may not be available
 Library may be too cumbersome to build (with instrumentation)

 Build a library wrapper tools
 Used PDT to parse header files
 Generate new header files with instrumention files

 Application is instrumented
 Add the -I<wrapper> directory to the command line
 C pre-processor will substitute our headers

 Redirects references at routine callsite to a wrapper call
 Wrapper internally calls the original
 Wrapper has TAU measurement code

22

TAU Potpourri CScADS 2010

HDF5 Library Wrapping

23

[sameer@zorak]$ tau_wrap hdf5.h.pdb hdf5.h -o hdf5.inst.c -f select.tau -g hdf5!

Usage : tau_wrap <pdbfile> <sourcefile> [-o <outputfile>] [-r runtimelibname] [-
g groupname] [-i headerfile] [-c|-c++|-fortran] [-f <instr_req_file>]!
•  instrumented wrapper library source (hdf5.inst.c)!
•  instrumentation specification file (select.tau)!
•  group (hdf5)!
•  creates the wrapper/ directory!

NODE 0;CONTEXT 0;THREAD 0:!
---!
%Time Exclusive Inclusive #Call #Subrs Inclusive Name!
 msec total msec usec/call!
---!
100.0 0.057 1 1 13 1236 int main(void) C!
 70.8 0.875 0.875 1 0 875 hid_t H5Fcreate()!
 9.7 0.12 0.12 1 0 120 herr_t H5Fclose()!
 6.0 0.074 0.074 1 0 74 hid_t H5Dcreate()!
 3.1 0.038 0.038 1 0 38 herr_t H5Dwrite()!
 2.6 0.032 0.032 1 0 32 herr_t H5Dclose()!
 2.1 0.026 0.026 1 0 26 herr_t H5check_version()!
 0.6 0.008 0.008 1 0 8 hid_t H5Screate_simple()!
 0.2 0.002 0.002 1 0 2 herr_t H5Tset_order()!
 0.2 0.002 0.002 1 0 2 hid_t H5Tcopy()!
 0.1 0.001 0.001 1 0 1 herr_t H5Sclose()!
 0.1 0.001 0.001 2 0 0 herr_t H5open()!
 0.0 0 0 1 0 0 herr_t H5Tclose()!

TAU Potpourri CScADS 2010

NWChem and One-sided Communication

 NWChem relies on Global Arrays (GA)
 GA is a PGAS programming model
 provides a global view of a physically distributed array
 one-sided access to arbitrary patches of data
 developed as a library
  fully interoperable with MPI

 Aggregate Remote Memory Copy Interface (ARMCI) is the
 GA communication substrate forone-sided communication
 portable high-performance one-sided communication library
  rich set of remote memory access primitives

 Difficult to test representative workloads for NWChem
 Lack of use cases for one-side programming models

24

TAU Potpourri CScADS 2010

NWChem Characterization

 Strong-scaling of modest problems helps to understand the
behavior of larger scientifically significant problems
  represent behavior of real calculations on future systems

 Understand interplay between data-server and compute
processes as a function of scaling
 Large numerical computation per node at small scale can obscure

the cost of maintaining passive-target progress
 Larger scale decreases numerical work per node and increases

the fragmentation of data, increasing messages
 Vary #nodes, cores-per-node, and memory buffer pinning

 Understand trade-off of core allocation
 all to computation versus some to communication

25

TAU Potpourri CScADS 2010

NWChem Instrumentation

 Source-base instrumentation of NWChem application
routines

 Developed an ARMCI interposition library (PARMCI)
 defines weak symbols and name-shifted PARMCI interface
 similar to PMPI for MPI

 Developed a TAU PARMCI library
  intervals events around interface routines
 atomic events to capture communication size and destination

 Wrapped external libraries
 BLAS (DGEMM)

 Need portable instrumentation to conduct cross-platform
experiments

26

TAU Potpourri CScADS 2010

FUSION Tests with Varying Cores

 Scaling on 24, 32, 48, 64, 96 and 128 nodes
 Test on 8 and 7 cores with pinning disabled

 Dedicated data server with 7 cores
 Relative ARMI communication overhead increases with

greater number of nodes (cores)

27

TAU Potpourri CScADS 2010

Intrepid Tests

 Scaling on 64, 128, 256 and 512 nodes
 Tests with interrupt or communication helper thread (CHT)

 CHT requires a core to be allocated
 ARMCI calls are barely noticeable
 DAXPY calculation shows up more
 CHT performs better in both SMP and DUAL modes

28

TAU Potpourri CScADS 2010

Heterogeneous Systems Measurement: TAUcuda

 Want to create performance views that capture
heterogeneous concurrency and execution behavior
 Reflect interactions between heterogeneous parts
 Capture performance semantics relative to computation model
 Assimilate performance for all execution paths for shared view

 What perspective do we have of the parts?
 Determines the semantics of the measurement data
 Determines assumptions about behavior and interactions
 Performance views may have to work with reduced data

 Need to work with heterogeneous system components
 Developed TAUcuda for CUDA performance measurement

 TAUcuda v1 discussed at CScADS 2009
29

TAU Potpourri CScADS 2010

TAUcuda Performance Measurement (Version 2)

 Overcome TAUcuda (v1) deficiencies
 Required source code instrumentation
 Event interface only perspectives

 could not see memory transfer or CUDA system execution
 CUDA system architecture

  Implemented by CUDA libraries
 driver and device (cuXXX) libraries
  runtime (cudaYYY) library

 Tools support (Parallel Nsight (Nexus), CUDA Profiler)
 not intended to integrate with other HPC performance tools

 TAUcuda (v2) built on experimental Linux CUDA driver
 Linux CUDA driver R190.86 supports a callback interface!!!

30

TAU Potpourri CScADS 2010

TAUcuda Architecture

TAU
events

TAUcuda
events

31

TAU Potpourri CScADS 2010

CUDA Linpack Profile (4 processes, 4 GPUs)

 Measure performance of heterogeneous parallel applications
 GPU-accelerated Linpack benchmark (M. Fatica, NVIDIA)

32

TAU Potpourri CScADS 2010

CUDA Linpack Trace

33
MPI communication (yellow) CUDA memory transfer (white)

TAU Potpourri CScADS 2010

SHOC Stencil2D (512 iterations, 4 CPUxGPU)

 Scalable HeterOgenerous Computing benchmark suite
 CUDA / OpenCL kernels and microbenchmarks (ORNL)

34

CUDA memory transfer (white)

TAU Potpourri CScADS 2010

TAU and Eclipse

 How to make performance measurement, analysis, and
tuning a part of the software development cycle?

 Multi-year work with Eclipse IDE (www.eclipse.org)
 Benefits: portable, project transition: familiar interface, supports

multiple languages (Java, C/C++, Fortran, …)
 Features: syntax highlighting, refactoring, code management
 Modular plug-in based architecture allows for easy extension
 Environments: JDT, CDT, PTP (www.eclipse.org/{jdt,cdt,ptp})

 High-performance software development environments
  IDE features for parallel programming + parallel tools
 Eclipse PTP: integrate features and interface with parallel tools

35

TAU Potpourri CScADS 2010

TAU and Eclipse

 Provide an interface for configuring TAU’s automatic
instrumentation within Eclipse’s build system

 Manage runtime configuration settings and environment
variables for execution of TAU instrumented programs

36

TAU Potpourri CScADS 2010

Integration Features

 Chose different TAU configurations
 Select options for control of

instrumentation and compilation
 Integrated interface for generating and

choosing selective instrumentation
 PAPI counter selection
 Profile data generated in Eclipse

is stored in a PerfDMF database
 Performance databases can be

browsed from within Eclipse
 Trials loaded in the ParaProf

 Source callback allows quick navigation
37

TAU Potpourri CScADS 2010

Dynamic Tool Definitions

 Developed External Tools Framework (ETFw)
  Initially to extend and generalize the TAU plug-ins
 Considered for general tool integration in Eclipse

 TAU plug-ins’ functionality was generalized to XML for:
 Portability and ease of modification
 Simpler alternative to Eclipse plug-in for tool integration
 Use additionally for workflow creation

 Tools selected /configured in a launch configuration
window

 ETFx adds Eclipse support for analysis tools including:
 Valgrind, PerfSuite, Scalasca, VampirTrace

 Other tool developers are leveraging the ETFw
38

TAU Potpourri CScADS 2010

Monitoring running Applications: TAUmon

 Scalable access to a running application’s performance
information is valuable

 Access can happen after an application completes (but
before parallel teardown) or while an application is still
running

 Two-way access needed for support of advanced operations
 TAUmon

 Design as a transport-neutral application monitoring framework
 Base on prior /existing work with various transport systems:

 Supermon, MRNet, MPI
 Recent work by Chee Wai Lee

39

TAU Potpourri CScADS 2010

Overall design principles

40

 Modular and transparent access to parallel transport systems
 Support for minimal user intervention with different system-

specific launch mechanisms
 Modular support for scalable monitoring operations

 Based on aggregation algorithms and techniques
 Simple overall statistics: mean, min, max, standard deviation
 Histograms
 Clustering results (various types)

 Modular support for data delivery to output locations
 Local or remote visualization/analysis tools
 Local or remote storage

TAU Potpourri CScADS 2010

Current implementation and API

 TAU_ONLINE_DUMP() collective operations in
application
 Called by all thread / processes
 Works with parallel profiles

 Appropriate version of TAU selected for transport system
 User instruments application with TAU support for desired

monitoring transport system
 User submits instrumented application to parallel job system
 Other launch systems must be submitted along with the

application to the job scheduler as needed
 Currently supported through different machine-specific job-

submission scripts
41

TAU Potpourri CScADS 2010

TAUmon and MRNet

 Overview
 Scripts set up runtime

infrastructure
 TAU frontend coordinates

gathering operations when
requested

 Application backends
collectively initiate operations
in a push-based approach

 MRNet tree nodes facilitate
scalable gather operations

42

TAU Potpourri CScADS 2010

MRNet Network Configuration

 Scripts used to set up MRNet network configuration
 Given P = number of cores for the application, the user can

choose an appropriate N = number of tree nodes and K =
fanout for deciding how to allocate sufficient computing
resources for both application and MRNet

 Number of network leaves can be computed as (N/K)*(K-1)
 Probe processes discover and partition computing resources

between the application and MRNet
 mrnet_topgen utility will write a topology file given K and N

and a list of processor hosts available exclusively for MRNet
 TAU frontend reads topology file to create the MRNet tree and

then write a new file to inform application how it can connect
to the leaves of the tree

43

TAU Potpourri CScADS 2010

Monitoring Operation with MRNet

 Application collectively invokes
TAU_ONLINE_DUMP() to start
monitoring operations using
current performance information

 TAU data is accessed and sent
through MRNet’s
communication API via streams
and filters

 Filters perform appropriate
aggregation operations on data

 TAU frontend is responsible for
collecting the data, storing it, and
eventual delivery to a consumer

44

TAU Potpourri CScADS 2010

Experiences with MRNet - 1

 Parallel system-specific (e.g. Cray XT5 and BG/P) launch
mechanisms required

 Key technical challenges:
 Efficient data offload from application to MRNet tree
 Support for user control of MRNet tree for performance

 Other challenges:
 Current compiler-related incompatibility on the Cray
 Providing uniform launch scripts across different parallel

machines

45

TAU Potpourri CScADS 2010

Experiences with MRNet - 2

 Extra computing resources must be dedicated to MRNet tree
 This can be viewed as an advantage or limitation

 Resources required are system-dependent:
 On Cray systems, MRNet front-end resides on login node,

intermediate tree nodes reside on dedicated (set aside by user)
compute nodes, application processes (backends) reside on the
remaining compute nodes

 On BG/P systems, MRNet front-end (and possibly some tree
nodes) reside on login node, intermediate tree nodes reside on IO
nodes (not known a-priori until after compute nodes are
launched), backends reside on compute nodes

46

TAU Potpourri CScADS 2010

TAUmon and MPI

 Also developing TAUmon to use MPI-based transport
 No separate launch mechanisms required
 Parallel gather operations implemented as a binomial heap with

staged MPI point-to-point calls (Rank 0 serves as root)
 Limitations:

 Application shares the same parallel infrastructure with
monitoring transport

 Monitoring operations may cause performance intrusion
 Currently, no flexibility for user control of transport network

configuration

47

TAU Potpourri CScADS 2010

TAUMon: Early results with PFLOTRAN (Cray)

 MRNet as transport
 Only exclusive time is being monitored

48

XT5 Nodes
(Total)

Cores
(Total)

Cores
(Application Only)

Mean Aggregation
Time
(per iteration)

Histogram
Generation Time
(per iteration)

374 4,488 4,104 0.2204s 0.07313s

559 6,708 6,144 0.3308s 0.1411s

746 8,952 8,196 0.4586s 0.1864s

1,118 13,416 12,288 0.6439s 0.2839s

TAU Potpourri CScADS 2010

TAUMon: Early results with PFLOTRAN (Cray)

 MPI as transport
 Only exclusive time is being monitored

49

XT5 Nodes Cores Unification Time
(per iteration)

Mean
Aggregation
Time
(per iteration)

Histogram
Generation
Time
(per iteration)

Total Operation
Time
(per iteration)

342 4,104 0.02514s 0.01677s 2.339s 2.384s

512 6,144 0.02244s 0.02215s 2.06s 2.115s

683 8,196 0.04067s 0.03347s 3.651s 4.278s

1,024 12,288 0.07241s 0.02621s 0.8643s 0.9676s

1,366 16,392 0.03382s 0.01431s 1.861s 3.053s

2,048 24,576 0.02976s 0.03569s 0.6238s 0.6921s

TAU Potpourri CScADS 2010

TAUMon: Early results with PFLOTRAN (Cray)

 MRNet as transport
 4104 cores running with 374 extra cores for MRNet transport

 Each line bar shows the mean profile of an iteration

50

TAU Potpourri CScADS 2010

TAUmon: Early visualization with ParaProf

 A quick side-by-side look
at data monitored using
MPI (left column) and
MRNet (right column)

 MPI_Allreduce (blue
triangle) appears to grow
inordinately over time
when PFLOTRAN is
executed on 8,196 cores

51

TAU Potpourri CScADS 2010

Support Acknowledgements

 Department of Energy (DOE)
  Office of Science
  ASC/NNSA

 Department of Defense (DoD)
  HPC Modernization Office (HPCMO)

 NSF Software Development for Cyberinfrastructure (SDCI)
 Research Centre Juelich
 Argonne National Laboratory
 Technical University Dresden
  ParaTools, Inc.
 NVIDIA

52

