
Semi-Automatic Models of
Communication Volume and

Frequency for SPMD Applications

Gabriel Marin
Oak Ridge National Laboratory

CScADS Workshop 2009

2

Why Performance Modeling
•  Understand application behavior on current

systems

•  Understand how applications will perform at
different scales or on future systems

•  Gain insight into performance bottlenecks

•  Identify barriers to scalability

3

Performance Modeling Challenges

•  Performance depends on:
— architecture specific factors
— application characteristics
–  memory access patterns
–  instruction mix and schedule dependencies
–  communication frequency and bandwidth

— input data parameters

•  Analyzing performance at scale is expensive

4

Approach
Separate contribution of application characteristics

• Measure the application-specific factors
— static analysis
— dynamic analysis

• Construct scalable models

•  Explore interactions with hardware

5

Single Node Performance Modeling
Object
Code

Binary
Analyzer

• Control flow graph
• Loop nesting
• Instruction
dependences
• BB instruction mix

Static Analysis

Binary
Instrumenter

Instrumented
Code

Execute

• BB & Edge Counts
• Memory Reuse Distance

Dynamic
Analysis

Architecture
neutral model

Scalable Models

Modeling
Program

Evaluate

IR code

Architecture
Description

Performance
Prediction
for Target

Architecture

Cross Architecture Models

Modulo
Scheduler

6

How to Extend to Parallel Programs?

•  Performance scales with
— input size
— processor count

• MPI traces not suited for scalable modeling
— number and type of MPI events in the trace

vary with input size and processor count
•  Prior work looked at
— identifying patterns in traces
— apply regression on the time spent in

communication and computation

7

A Statistical Approach

•  Think of program execution as a series of
computation intervals

• Computation intervals bounded by two
consecutive communication events

• Collect and aggregate data at interval level
• Model the frequency and cost of intervals as

a function of
— input size
— processor count

8

An Early Preliminary Prototype
•  Implemented on top of mpiP
• Modified mpiP to collect data at interval level
— intervals uniquely defined by the stack

unwinds of the two delimiting MPI primitives
•  For each interval collect
— information about computation cost
— message size and communication cost for the

MPI primitive closing the interval
• Aggregate information into histograms
— histograms provide more insight than any

single value statistic (e.g. median, mean+stdev)

9

Preliminary Results

node computation

iq loop
MPI communication

MPI communication

•  Solves a 3D cartesian geometry
neutron transport problem

•  Collected data for Sweep3D on a Cray XT4 machine

10

Flow Chart of Computation Intervals
•  Nodes correspond to distinct MPI calls
•  Edges represent different computation intervals
-  labels correspond to execution frequency

11

Data Collection
•  For each interval collect
— distribution of message sizes
— distribution of communication times
— distribution of computation times
— several other scalar values

• Collect data for multiple input sizes and
multiple processor counts

• Goal: model the structure and scaling of data
histograms as a function of problem size and
processor count

12

3D Histogram Representation

 2 13 40

50%

30%
20%

Message size

N
or

m
al

iz
ed

fr

eq
ue

nc
y

13

Distribution of Message Sizes
•  Interval Recv_0x418c9a - Send_0x418c35

14

Distribution of Communication Times
•  Interval Recv_0x418c9a - Send_0x418c35

15

Results for SMG2000
•  Parallel semicoarsening multigrid solver
• Modified solver to execute a fixed number of

iterations
• Collected data at interval level for different grid

sizes and different processor counts

16

Distribution of Message Sizes
•  As a function of grid size

17

Distribution of Communication Times
•  As a function of grid size

18

Distribution of Message Sizes
•  As a function of processor count

19

Distribution of Communication Times
•  As a function of processor count

20

Summary
•  This is a work in progress
— no end-to-end predictions
— preliminary results do not contradict the

approach
— Sweep3D results show that understanding

topology is important
• Not a replacement for tracing and network

simulators
• Wants
— StackWalkerAPI and SymtabAPI

