Semi-Automatic Models of Communication Volume and Frequency for SPMD Applications

Gabriel Marin
Oak Ridge National Laboratory

CScADS Workshop 2009
Why Performance Modeling

• Understand application behavior on current systems
• Understand how applications will perform at different scales or on future systems
• Gain insight into performance bottlenecks
• Identify barriers to scalability
Performance Modeling Challenges

• Performance depends on:
 — architecture specific factors
 — application characteristics
 – memory access patterns
 – instruction mix and schedule dependencies
 – communication frequency and bandwidth
 — input data parameters

• Analyzing performance at scale is expensive
Approach

Separate contribution of application characteristics

• Measure the application-specific factors
 — static analysis
 — dynamic analysis

• Construct scalable models

• Explore interactions with hardware
Single Node Performance Modeling

Object Code
- Binary Analyzer
 - Control flow graph
 - Loop nesting
 - Instruction dependences
 - BB instruction mix

Static Analysis
- IR code
- Modulo Scheduler
- Performance Prediction for Target Architecture

Dynamic Analysis
- Instrumented Code
 - BB & Edge Counts
 - Memory Reuse Distance

Scalable Models
- Modeling Program
 - Architecture neutral model
 - Evaluate

Cross Architecture Models
- Architecture Description
- Scalable Models
How to Extend to Parallel Programs?

• Performance scales with
 —input size
 —processor count

• MPI traces not suited for scalable modeling
 —number and type of MPI events in the trace vary with input size and processor count

• Prior work looked at
 —identifying patterns in traces
 —apply regression on the time spent in communication and computation
A Statistical Approach

• Think of program execution as a series of computation intervals

• Computation intervals bounded by two consecutive communication events

• Collect and aggregate data at interval level

• Model the frequency and cost of intervals as a function of
 — input size
 — processor count
An Early Preliminary Prototype

• Implemented on top of mpiP
• Modified mpiP to collect data at interval level
 — intervals uniquely defined by the stack unwinds of the two delimiting MPI primitives
• For each interval collect
 — information about computation cost
 — message size and communication cost for the MPI primitive closing the interval
• Aggregate information into histograms
 — histograms provide more insight than any single value statistic (e.g. median, mean+stdev)
Preliminary Results

- Collected data for Sweep3D on a Cray XT4 machine

- Solves a 3D cartesian geometry neutron transport problem

- IQ loop
 - MPI communication
 - Node computation
 - MPI communication
Flow Chart of Computation Intervals

• Nodes correspond to distinct MPI calls
• Edges represent different computation intervals
 – labels correspond to execution frequency
Data Collection

• For each interval collect
 — distribution of message sizes
 — distribution of communication times
 — distribution of computation times
 — several other scalar values

• Collect data for multiple input sizes and multiple processor counts

• Goal: model the structure and scaling of data histograms as a function of problem size and processor count
3D Histogram Representation

Normalized frequency

Message size

50% 30% 20%

2 13 40

Normalized frequency

Problem size

Message size
Distribution of Message Sizes

• Interval Recv_0x418c9a - Send_0x418c35
Distribution of Communication Times

- Interval Recv_0x418c9a - Send_0x418c35
Results for SMG2000

• Parallel semicoarsening multigrid solver
• Modified solver to execute a fixed number of iterations
• Collected data at interval level for different grid sizes and different processor counts
Distribution of Message Sizes

- As a function of grid size
Distribution of Communication Times

- As a function of grid size
Distribution of Message Sizes

- As a function of processor count
Distribution of Communication Times

- As a function of processor count
Summary

• This is a work in progress
 — no end-to-end predictions
 — preliminary results do not contradict the approach
 — Sweep3D results show that understanding topology is important

• Not a replacement for tracing and network simulators

• Wants
 — StackWalkerAPI and SymtabAPI