Semi-Automatic Models of Communication Volume and Frequency for SPMD Applications

Gabriel Marin

Oak Ridge National Laboratory

CScADS Workshop 2009

Why Performance Modeling

- Understand application behavior on current systems
- Understand how applications will perform at different scales or on future systems
- Gain insight into performance bottlenecks
- Identify barriers to scalability

Performance Modeling Challenges

- Performance depends on:
 - —architecture specific factors
 - —application characteristics
 - memory access patterns
 - instruction mix and schedule dependencies
 - communication frequency and bandwidth

—input data parameters

• Analyzing performance at scale is expensive

Approach

Separate contribution of application characteristics

- Measure the application-specific factors

 static analysis
 dynamic analysis
- Construct scalable models
- Explore interactions with hardware

Single Node Performance Modeling

How to Extend to Parallel Programs?

- Performance scales with
 - —input size

-processor count

- MPI traces not suited for scalable modeling

 number and type of MPI events in the trace
 vary with input size and processor count
- Prior work looked at

-identifying patterns in traces

—apply regression on the time spent in communication and computation

A Statistical Approach

- Think of program execution as a series of computation intervals
- Computation intervals bounded by two consecutive communication events
- Collect and aggregate data at interval level
- Model the frequency and cost of intervals as a function of

—input size

-processor count

An Early Preliminary Prototype

- Implemented on top of mpiP
- Modified mpiP to collect data at interval level

—intervals uniquely defined by the stack unwinds of the two delimiting MPI primitives

- For each interval collect

 - —message size and communication cost for the MPI primitive closing the interval
- Aggregate information into histograms

—histograms provide more insight than any single value statistic (e.g. median, mean+stdev)

Preliminary Results

- Collected data for Sweep3D on a Cray XT4 machine
- Solves a 3D cartesian geometry neutron transport problem

iq loop

MPI communication

node computation

MPI communication

Flow Chart of Computation Intervals

- Nodes correspond to distinct MPI calls
- Edges represent different computation intervals

- labels correspond to execution frequency

Data Collection

- For each interval collect
 - -distribution of message sizes
 - -distribution of communication times
 - -distribution of computation times

-several other scalar values

- Collect data for multiple input sizes and multiple processor counts
- Goal: model the structure and scaling of data histograms as a function of problem size and processor count

3D Histogram Representation

Distribution of Message Sizes

Interval Recv_0x418c9a - Send_0x418c35

Distribution of Communication Times

Interval Recv_0x418c9a - Send_0x418c35

Results for SMG2000

- Parallel semicoarsening multigrid solver
- Modified solver to execute a fixed number of iterations
- Collected data at interval level for different grid sizes and different processor counts

Distribution of Message Sizes

• As a function of grid size

Distribution of Communication Times

• As a function of grid size

Distribution of Message Sizes

As a function of processor count

Distribution of Communication Times

As a function of processor count

Summary

- This is a work in progress
 - -no end-to-end predictions
 - -preliminary results do not contradict the approach
 - -Sweep3D results show that understanding topology is important
- Not a replacement for tracing and network simulators
- Wants

-StackWalkerAPI and SymtabAPI