
1 Managed by UT-Battelle
 for the U.S. Department of Energy

Computing Recipes for
Performance Tuning

1

Gabriel Marin

2 Managed by UT-Battelle
 for the U.S. Department of Energy

•  There is a need for deeper performance analysis
– Gaining insight into performance bottlenecks

•  MIAMI: performance modeling based on static and
dynamic analysis of optimized x86-64 binaries
– Language independence, code coverage, capture

optimization effects
•  Application centric, single node performance models

–  Identify performance limiters at loop level
•  Insufficient ILP, uneven resource utilization, contention on

machine resources, memory latency or bandwidth
•  Insight into what code transformations are needed

– Estimate potential for performance improvement
– Understand when not to fix an apparent problem

2

3 Managed by UT-Battelle
 for the U.S. Department of Energy

3

x86 object code

CFGs, edge
counts

PIN MIAMI code IR
instr /µop / registers

XED

Machine model (MDL) Loop nesting structure
Dependence graph at loop level

Dependence graph customized for machine
instruction latencies, idiom replacement

Memory reuse
distance analysis

PIN

Set assoc. cache miss predictions
data reuse insight

Performance predictions, performance limiters,
potential for performance improvement

map metrics to source code and data structures

modulo scheduler
binutils

XML performance database hpcviewer

4 Managed by UT-Battelle
 for the U.S. Department of Energy

•  Light weight tool on top of PIN
– Discover CFGs incrementally at run-time
– Selectively insert counters on edges

•  Understand routine entry points, function calls that do not
return or return multiple times

– Save CFGs and selected edge counts
– 2x – 3x slowdown with PIN

•  There are other alternatives
– Sampling on the branch target buffer

•  Trade overhead for complexity and accuracy

– Somewhat independent of the rest of the analysis, can
be a replacement

4

5 Managed by UT-Battelle
 for the U.S. Department of Energy

•  Input:
– CFGs with partial edge counts

•  Methodology:
– Recover execution counts for all blocks and edges
– Understand routine entry points, function calls that do

not return or return multiple times
– Compute loop nesting structures
–  Infer executed paths and their execution frequencies
– Compute instruction schedule for executed paths

5

6 Managed by UT-Battelle
 for the U.S. Department of Energy

•  Rebuild CFGs and recover
execution counts for all blocks
and edges

6

7 Managed by UT-Battelle
 for the U.S. Department of Energy

•  Rebuild CFGs and recover
execution counts for all blocks
and edges

•  Compute loop nesting structures

7

8 Managed by UT-Battelle
 for the U.S. Department of Energy

•  Rebuild CFGs and recover
execution counts for all blocks
and edges

•  Compute loop nesting structures
•  Infer executed paths and their

execution frequencies
-  at loop level from the inside out
-  each block is considered at most at

one loop level

8

9 Managed by UT-Battelle
 for the U.S. Department of Energy

•  Compute instruction schedule one path at a time
– Emulates ideal branch predictor

•  Decode native instructions into generic instructions
– Generic instructions resemble RISC instructions or x86

micro-ops
•  Build dependence graph for path
•  Machine description language → architecture

model
– Tailor dependence graph for machine
–  Instantiate scheduler with architecture description

•  Compute modulo instruction scheduling
– Emulates out-of-order execution

9

10 Managed by UT-Battelle
 for the U.S. Department of Energy

•  Built on top of XED
•  Map instructions onto a 5-D space

–  Instruction type (~ 45 bins)
– Exec unit style: vector, scalar
– Operands type: fp, int
– Bit width: 16, 32, 64, 80, …
– Vector width: 64, 128, 256, …

•  Together with the CFG defines the
MIAMI IR of the application

10

IB_load
IB_store
IB_load_store
IB_mem_fence
IB_privl_op
IB_branch
IB_br_CC
IB_jump
IB_cvt
IB_cvt_prec
IB_move
IB_move_cc
IB_shuffle
IB_cmp
IB_add
IB_lea
IB_add_cc
IB_sub
IB_mult
IB_div
IB_sqrt
IB_madd
IB_xor
IB_logical
IB_shift
IB_nop
IB_prefetch

vector scalar

11 Managed by UT-Battelle
 for the U.S. Department of Energy

•  Only Load, Store and Loadstore micro-ops operate on
memory

•  For an x86 instruction, each memory operand results into a
new Load or Store micro-op, in addition to the micro-op for
the main operation
–  Exception: moves that simply copy a value to or from memory

•  they are decoded to a single Store or Load

•  Stack push/pop (implicit) operations result in multiple
micro-ops (stack pointer increment + mem uop)

•  REP instructions have a branch uop appended
•  Care must be taken into assigning original x86 operands to

the new micro-ops
–  Instruction dependencies and dataflow analysis are computed on IR

11

12 Managed by UT-Battelle
 for the U.S. Department of Energy

•  One x86 (CISC) instruction can translate to a
sequence of generic instructions

12

iclass LEAVE category MISC ISA-extension BASE ISA-set I186
instruction-length 1 operand-width 64 effective-operand-width 64
effective-address-width 64
Operands
TYPE DETAILS VIS RW OC2 BITS BYTES NELEM
==== ======= === == === ==== ===== =====
0 MEM0 (see below) SUPPRESSED R V 64 8 1
1 BASE0 BASE0=RBP SUPPRESSED R ASZ 64 8 1
2 REG1 REG1=RBP SUPPRESSED RW V 64 8 1
3 REG2 REG2=RSP SUPPRESSED RW V 64 8 1

0) IB: Move!
 Width: 64!
 Veclen: 1!
 ExUnit: SCALAR!
 ExType: int!
 Primary: yes!
 SrcOps: 1 (REGISTER/2)!
 DstOps: 1 (REGISTER/3)!
 ImmValues: 0!
1) IB: Load!
 Width: 64!
 Veclen: 1!
 ExUnit: SCALAR!
 ExType: int!
 Primary: no!
 SrcOps: 1 (MEMORY/0)!
 DstOps: 1 (REGISTER/2)!
 ImmValues: 0!
2) IB: Add!
 Width: 64!
 Veclen: 1!
 ExUnit: SCALAR!
 ExType: int!
 Primary: no!
 SrcOps: 2 (REGISTER/3) (IMMED/0)!
 DstOps: 1 (REGISTER/3)!
 ImmValues: 1 (s/8/8)!

13 Managed by UT-Battelle
 for the U.S. Department of Energy

13

register int i, j, k, r;!
for (r=0 ; r<reps ; ++r) {!
 for (i = 0; i < n; i++) {!
 for (j = 0; j < n; j++) {!
 for (k = 0; k < n; k++) {!
 c[i][j] += a[i][k]*b[k][j];!
 }!
 }!
 }!
}!

 movaps xmm1,XMMWORD PTR [rcx+r9*8+0x609120]!
 movaps xmm2,XMMWORD PTR [rcx+r9*8+0x609130]!
 movaps xmm3,XMMWORD PTR [rcx+r9*8+0x609140]!
 movaps xmm4,XMMWORD PTR [rcx+r9*8+0x609150]!
 movaps xmm5,XMMWORD PTR [rcx+r9*8+0x609160]!
 movaps xmm6,XMMWORD PTR [rcx+r9*8+0x609170]!
 movaps xmm7,XMMWORD PTR [rcx+r9*8+0x609180]!
 movaps xmm8,XMMWORD PTR [rcx+r9*8+0x609190]!
 mulpd xmm1,xmm0!
 mulpd xmm2,xmm0!
 mulpd xmm3,xmm0!
 mulpd xmm4,xmm0!
 mulpd xmm5,xmm0!
 mulpd xmm6,xmm0!
 mulpd xmm7,xmm0!
 mulpd xmm8,xmm0!
 addpd xmm1,XMMWORD PTR [rsi+r9*8+0x60d920]!
 addpd xmm2,XMMWORD PTR [rsi+r9*8+0x60d930]!
 addpd xmm3,XMMWORD PTR [rsi+r9*8+0x60d940]!
 addpd xmm4,XMMWORD PTR [rsi+r9*8+0x60d950]!
 addpd xmm5,XMMWORD PTR [rsi+r9*8+0x60d960]!
 addpd xmm6,XMMWORD PTR [rsi+r9*8+0x60d970]!
 addpd xmm7,XMMWORD PTR [rsi+r9*8+0x60d980]!
 addpd xmm8,XMMWORD PTR [rsi+r9*8+0x60d990]!
 movaps XMMWORD PTR [rsi+r9*8+0x60d920],xmm1!
 movaps XMMWORD PTR [rsi+r9*8+0x60d930],xmm2!
 movaps XMMWORD PTR [rsi+r9*8+0x60d940],xmm3!
 movaps XMMWORD PTR [rsi+r9*8+0x60d950],xmm4!
 movaps XMMWORD PTR [rsi+r9*8+0x60d960],xmm5!
 movaps XMMWORD PTR [rsi+r9*8+0x60d970],xmm6!
 movaps XMMWORD PTR [rsi+r9*8+0x60d980],xmm7!
 movaps XMMWORD PTR [rsi+r9*8+0x60d990],xmm8!
 add r9,0x10!
 cmp r9,0x30!
 jb 0x400aa0 <main+528>!

Assembly code for inner most loop:
  compiler unrolled the loop 16 times

14 Managed by UT-Battelle
 for the U.S. Department of Energy

14

•  For the innermost loop

15 Managed by UT-Battelle
 for the U.S. Department of Energy

•  Construct a model of the target architecture
– Enumerate machine resources
– Describe instruction execution templates &

resource usage
– Scheduling constraints between resources
– Idiom replacement

•  Account for differences in ISAs, micro-architecture
features

– Memory hierarchy characteristics
– Various machine features

15

16 Managed by UT-Battelle
 for the U.S. Department of Energy

16

CpuUnits = U_ALU * 3, U_AGU * 3, U_Mul, U_ABM, !
 U_IDiv, U_LS * 2,!
 U_FpAdd, U_FpMul, U_FpStore, !
 O_Port * 3;!

17 Managed by UT-Battelle
 for the U.S. Department of Energy

17

/* f2iConvert32 */!
Instruction Convert{32}:int template = U_FpAdd+U_FpStore+U_ALU, NOTHING*7;!
Instruction Convert{32}:int,vec{128} template = U_FpStore, NOTHING*3;!

/* f2iConvert64 */!
Instruction Convert{64}:int template = U_FpAdd+U_FpStore+U_ALU, NOTHING*7;!

/* i2fConvert32 */!
Instruction Convert{32}:fp template = U_FpAdd+U_FpStore, NOTHING*8 |!
 U_FpMul+U_FpStore, NOTHING*8;!
Instruction Convert{32}:fp,vec{128} template = U_FpStore, NOTHING*3;!

/* i2fConvert64 */!
Instruction Convert{64}:fp template = U_FpAdd+U_FpStore, NOTHING*8 |!
 U_FpMul+U_FpStore, NOTHING*8;!
Instruction Convert{64}:fp,vec{128} template = U_FpStore, NOTHING*3;!

/* i2fConvert80 - old x87 instruction, only scalar */!
Instruction Convert{80}:fp template = U_FpStore, NOTHING*3;!

/* Prefetch does not create a dependence, so latency is irrelevant. Just takes
issue bandwidth to execute it. */!
Instruction Prefetch template = U_AGU + U_LS;!
Instruction Prefetch:vec{512} template = U_AGU + U_LS;!

18 Managed by UT-Battelle
 for the U.S. Department of Energy

“The L1 data cache can support two 128-bit loads or two 64-bit store writes per cycle or a mix
of those. The LSU consists of two queues—LS1 and LS2. LS1 can issue two L1 cache
operations (loads or store tag checks) per cycle. It can issue load operations out-of-order,
subject to certain dependency restrictions. LS2 effectively holds requests that missed in the
L1 cache after they probe out of LS1. Store writes are done exclusively from LS2. 128-bit
stores are specially handled in that they take two LS2 entries, and the store writes are
performed as two 64-bit writes.”

18

/* AMD 10h has only 64 bit stores. 128bit stores are split into !
 * two 64bit stores. */!
 Replace Store:int,vec{128} $rX -> [$rA] with!
 Store:int,vec{64} $rX -> [$rA] + !
 Store:int,vec{64} $rX -> [$rA] {"Store 64b int"};!

 Replace Store:fp,vec{128} $rX -> [$rA] with!
 Store:fp,vec{64} $rX -> [$rA] + !
 Store:fp,vec{64} $rX -> [$rA] {"Store 64b fp"};!

19 Managed by UT-Battelle
 for the U.S. Department of Energy

•  Tailored for the AMD 10h architecture

19

20 Managed by UT-Battelle
 for the U.S. Department of Energy

20

HPCToolkit measurements 48*48*8*3 = 55KB

Scheduler predictions

Main performance limiting
factor is the issue bandwidth
on the Load/Store units

21 Managed by UT-Battelle
 for the U.S. Department of Energy

21

•  128-bit Mult * 8, 128-bit Add * 8
–  16 cycles => 50% efficiency with no memory delays

•  128-bit Load * 16, 64-bit Store * 16
–  Issue bandwidth limited, needs blocking for register reuse

22 Managed by UT-Battelle
 for the U.S. Department of Energy

22

MaxGainExtraIP – improvement potential from increased ILP

routine rtotal accounts for 36%
of improvement potential;
- loop computing dtotal accounts
for 22% of improv. potential

false recurrence on dtotal;
- icomp/jcomp indices take
distinct values but are loaded
from another array

23 Managed by UT-Battelle
 for the U.S. Department of Energy

•  Understand losses due to insufficient ILP
•  Utilization of various machine resources

– If vector units are available and not used
•  Failed vectorization
•  Lack of ILP or another machine specific reason

•  Contention on machine resources
– Few options from an application perspective,

must change instruction mix
– Contention on load/store unit -> improve

register reuse

23

24 Managed by UT-Battelle
 for the U.S. Department of Energy

•  Do not focus on predicting memory penalty
–  It is too hard, latency is hidden by overlap with code or

with other memory accesses

•  Instead, provide better insight to the user on how to
improve data reuse
– Data reuse is not a local phenomenon

• Understand not only where cache misses occur
–  Identify where data has been previously accessed
–  Identify which algorithmic loop is driving the reuse

•  Important for understanding how to shorten the reuse

24

25 Managed by UT-Battelle
 for the U.S. Department of Energy

25

•  Carrier scope of a data reuse
– algorithmic loop causing data to be reused

DO I = 1, N !
 DO J = 1, M !
 A(I,J) = A(I,J) + B(I,J) !
 ENDDO !
ENDDO !

– carrier scope may be also far removed from the
location where data is accessed, e.g. time step loop
of an iterative algorithm

–  the farther removed the carrier scope, the more
difficult to shorten the reuse

26 Managed by UT-Battelle
 for the U.S. Department of Energy

S: source scope, D: destination scope, C: carrying scope of a reuse pattern

•  Reuse carried within the same iteration of the carrier
scope (also same invocation of a routine body)
– S and D must be the same scope as C (reuse between

different statements), or in disjoint loop nests or routines

• If S, D and C are in the same routine
• fuse S and D

• S and/or D are in routines called from C, e.g. reuse
between different sub-steps of a computation

• strip-mine S and D with the same stripe; promote
the loops over stripes outside of C and fuse them
• the further removed the carrying scope from S and
D, the harder it is to shorten the reuse

26

27 Managed by UT-Battelle
 for the U.S. Department of Energy

S: source scope, D: destination scope, C: carrying scope of a reuse pattern

•  Reuse carried across iterations of C
– S = D, or in the same loop nest

• C iterates over the array’s inner dimension or array
indexing independent of C

• apply loop interchange, or
• apply dimension interchange on the array(s), or
• apply blocking on a loop inside of C and move the
loop over blocks outside of C

– S and D in disjoint loop nests or routines
–  combination of the previous two cases; apply loop

fusion + blocking/loop interchange
– usually, it is harder to optimize

– Large number of irregular misses and S = D
–  apply data or computation reordering 27

28 Managed by UT-Battelle
 for the U.S. Department of Energy

28

About 98% of cache misses and
49% of TLB misses are due to long
reuse within the 3rd level loop

Loop at level 1 carries most of these misses.
Moreover, these misses occur on array ‘b’.
-  move the i-loop in an inner position, or
-  block the j-loop and move the loop over
blocks outside of the i-loop.

29 Managed by UT-Battelle
 for the U.S. Department of Energy

•  Miss counts at loop level estimated from reuse
distance models

•  Minimum bandwidth requirements at loop level
– miss_count * block_size / loop_schedule_time
– Assumes ideal prefetching and no memory latency delays
– Ultimate “loop balance” metric

•  One school of thought holds that only bandwidth
matters, latency can be hidden
– Peak machine bandwidth obtained from the machine

description file
–  If required loop bandwidth > peak bandwidth

•  do not focus on ILP, vectorization, or register reuse; they increase
bandwidth demand 29

30 Managed by UT-Battelle
 for the U.S. Department of Energy

Putting everything back together

•  Analyze full application binaries and create
optimization recipes at loop level
– Compute instruction schedule

•  Understand performance inefficiencies due to lack of ILP,
failed vectorization, resource contention

– Perform memory reuse simulation
– Compute “loop balance”, compare with peak bdwth

•  Understand if instruction schedule inefficiencies are on the
critical path

– Analyze data reuse patterns to look for improvement
opportunities, suggest code transformations

– Possibly interface with an auto-tuning tool
30

