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•  There is a need for deeper performance analysis 
– Gaining insight into performance bottlenecks 

•  MIAMI: performance modeling based on static and 
dynamic analysis of optimized x86-64 binaries 
– Language independence, code coverage, capture 

optimization effects 
•  Application centric, single node performance models 

–  Identify performance limiters at loop level 
•  Insufficient ILP, uneven resource utilization, contention on 

machine resources, memory latency or bandwidth 
•  Insight into what code transformations are needed 

– Estimate potential for performance improvement 
– Understand when not to fix an apparent problem 
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x86 object code 

CFGs, edge 
counts 

PIN MIAMI code IR 
instr /µop / registers 

XED 

Machine model (MDL) Loop nesting structure 
Dependence graph at loop level 

Dependence graph customized for machine 
instruction latencies, idiom replacement 

Memory reuse 
distance analysis 

PIN 

Set assoc. cache miss predictions 
data reuse insight 

Performance predictions, performance limiters, 
potential for performance improvement 

map metrics to source code and data structures 

modulo scheduler 
binutils 

XML performance database hpcviewer 
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•  Light weight tool on top of PIN 
– Discover CFGs incrementally at run-time 
– Selectively insert counters on edges 

•  Understand routine entry points, function calls that do not 
return or return multiple times 

– Save CFGs and selected edge counts 
– 2x – 3x slowdown with PIN 

•  There are other alternatives 
– Sampling on the branch target buffer 

•  Trade overhead for complexity and accuracy 

– Somewhat independent of the rest of the analysis, can 
be a replacement 
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•  Input: 
– CFGs with partial edge counts 

•  Methodology: 
– Recover execution counts for all blocks and edges 
– Understand routine entry points, function calls that do 

not return or return multiple times 
– Compute loop nesting structures 
–  Infer executed paths and their execution frequencies 
– Compute instruction schedule for executed paths 
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•  Rebuild CFGs and recover 
execution counts for all blocks 
and edges 
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•  Rebuild CFGs and recover 
execution counts for all blocks 
and edges 

•  Compute loop nesting structures 
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•  Rebuild CFGs and recover 
execution counts for all blocks 
and edges 

•  Compute loop nesting structures 
•  Infer executed paths and their 

execution frequencies 
-  at loop level from the inside out 
-  each block is considered at most at 

one loop level 
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•  Compute instruction schedule one path at a time 
– Emulates ideal branch predictor 

•  Decode native instructions into generic instructions 
– Generic instructions resemble RISC instructions or x86 

micro-ops 
•  Build dependence graph for path 
•  Machine description language → architecture 

model 
– Tailor dependence graph for machine 
–  Instantiate scheduler with architecture description 

•  Compute modulo instruction scheduling 
– Emulates out-of-order execution 
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•  Built on top of XED 
•  Map instructions onto a 5-D space 

–  Instruction type (~ 45 bins) 
– Exec unit style: vector, scalar 
– Operands type: fp, int 
– Bit width: 16, 32, 64, 80, … 
– Vector width: 64, 128, 256, … 

•  Together with the CFG defines the 
MIAMI IR of the application 
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IB_load  
IB_store 
IB_load_store 
IB_mem_fence 
IB_privl_op 
IB_branch 
IB_br_CC 
IB_jump  
IB_cvt 
IB_cvt_prec 
IB_move    
IB_move_cc 
IB_shuffle 
IB_cmp    
IB_add    
IB_lea    
IB_add_cc 
IB_sub  
IB_mult 
IB_div  
IB_sqrt 
IB_madd 
IB_xor 
IB_logical 
IB_shift 
IB_nop 
IB_prefetch 

vector      scalar 
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•  Only Load, Store and Loadstore micro-ops operate on 
memory 

•  For an x86 instruction, each memory operand results into a 
new Load or Store micro-op, in addition to the micro-op for 
the main operation 
–  Exception: moves that simply copy a value to or from memory 

•  they are decoded to a single Store or Load 

•  Stack push/pop (implicit) operations result in multiple 
micro-ops (stack pointer increment + mem uop) 

•  REP instructions have a branch uop appended 
•  Care must be taken into assigning original x86 operands to 

the new micro-ops 
–  Instruction dependencies and dataflow analysis are computed on IR 

11 



12  Managed by UT-Battelle 
 for the U.S. Department of Energy 

•  One x86 (CISC) instruction can translate to a 
sequence of generic instructions 
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iclass LEAVE    category MISC   ISA-extension BASE      ISA-set I186 
instruction-length 1   operand-width 64   effective-operand-width 64   
effective-address-width 64 
Operands 
#   TYPE            DETAILS        VIS  RW       OC2 BITS BYTES NELEM 
#   ====           =======        ===  ==       === ==== ===== ===== 
0   MEM0           (see below) SUPPRESSED   R         V   64     8     1      
1  BASE0             BASE0=RBP SUPPRESSED   R       ASZ   64     8     1 
2   REG1              REG1=RBP SUPPRESSED  RW         V   64     8     1 
3   REG2              REG2=RSP SUPPRESSED  RW         V   64     8     1 

0) IB:      Move!
   Width:   64!
   Veclen:  1!
   ExUnit:  SCALAR!
   ExType:  int!
   Primary: yes!
   SrcOps: 1  (REGISTER/2)!
   DstOps: 1  (REGISTER/3)!
   ImmValues: 0!
1) IB:      Load!
   Width:   64!
   Veclen:  1!
   ExUnit:  SCALAR!
   ExType:  int!
   Primary: no!
   SrcOps: 1  (MEMORY/0)!
   DstOps: 1  (REGISTER/2)!
   ImmValues: 0!
2) IB:      Add!
   Width:   64!
   Veclen:  1!
   ExUnit:  SCALAR!
   ExType:  int!
   Primary: no!
   SrcOps: 2  (REGISTER/3) (IMMED/0)!
   DstOps: 1  (REGISTER/3)!
   ImmValues: 1  (s/8/8)!
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register int i, j, k, r;!
for (r=0 ; r<reps ; ++r) {!
  for (i = 0; i < n; i++) {!
    for (j = 0; j < n; j++) {!
      for (k = 0; k < n; k++) {!
        c[i][j] += a[i][k]*b[k][j];!
      }!
    }!
  }!
}!

 movaps xmm1,XMMWORD PTR [rcx+r9*8+0x609120]!
 movaps xmm2,XMMWORD PTR [rcx+r9*8+0x609130]!
 movaps xmm3,XMMWORD PTR [rcx+r9*8+0x609140]!
 movaps xmm4,XMMWORD PTR [rcx+r9*8+0x609150]!
 movaps xmm5,XMMWORD PTR [rcx+r9*8+0x609160]!
 movaps xmm6,XMMWORD PTR [rcx+r9*8+0x609170]!
 movaps xmm7,XMMWORD PTR [rcx+r9*8+0x609180]!
 movaps xmm8,XMMWORD PTR [rcx+r9*8+0x609190]!
 mulpd  xmm1,xmm0!
 mulpd  xmm2,xmm0!
 mulpd  xmm3,xmm0!
 mulpd  xmm4,xmm0!
 mulpd  xmm5,xmm0!
 mulpd  xmm6,xmm0!
 mulpd  xmm7,xmm0!
 mulpd  xmm8,xmm0!
 addpd  xmm1,XMMWORD PTR [rsi+r9*8+0x60d920]!
 addpd  xmm2,XMMWORD PTR [rsi+r9*8+0x60d930]!
 addpd  xmm3,XMMWORD PTR [rsi+r9*8+0x60d940]!
 addpd  xmm4,XMMWORD PTR [rsi+r9*8+0x60d950]!
 addpd  xmm5,XMMWORD PTR [rsi+r9*8+0x60d960]!
 addpd  xmm6,XMMWORD PTR [rsi+r9*8+0x60d970]!
 addpd  xmm7,XMMWORD PTR [rsi+r9*8+0x60d980]!
 addpd  xmm8,XMMWORD PTR [rsi+r9*8+0x60d990]!
 movaps XMMWORD PTR [rsi+r9*8+0x60d920],xmm1!
 movaps XMMWORD PTR [rsi+r9*8+0x60d930],xmm2!
 movaps XMMWORD PTR [rsi+r9*8+0x60d940],xmm3!
 movaps XMMWORD PTR [rsi+r9*8+0x60d950],xmm4!
 movaps XMMWORD PTR [rsi+r9*8+0x60d960],xmm5!
 movaps XMMWORD PTR [rsi+r9*8+0x60d970],xmm6!
 movaps XMMWORD PTR [rsi+r9*8+0x60d980],xmm7!
 movaps XMMWORD PTR [rsi+r9*8+0x60d990],xmm8!
 add    r9,0x10!
 cmp    r9,0x30!
 jb     0x400aa0 <main+528>!

Assembly code for inner most loop: 
  compiler unrolled the loop 16 times 
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•  For the innermost loop 
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•  Construct a model of the target architecture 
– Enumerate machine resources 
– Describe instruction execution templates & 

resource usage 
– Scheduling constraints between resources 
– Idiom replacement 

•  Account for differences in ISAs, micro-architecture 
features 

– Memory hierarchy characteristics 
– Various machine features 
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CpuUnits = U_ALU * 3, U_AGU * 3, U_Mul, U_ABM, !
           U_IDiv, U_LS * 2,!
           U_FpAdd, U_FpMul, U_FpStore,   !
           O_Port * 3;!
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/* f2iConvert32 */!
Instruction Convert{32}:int template = U_FpAdd+U_FpStore+U_ALU, NOTHING*7;!
Instruction Convert{32}:int,vec{128} template = U_FpStore, NOTHING*3;!

/* f2iConvert64 */!
Instruction Convert{64}:int template = U_FpAdd+U_FpStore+U_ALU, NOTHING*7;!

/* i2fConvert32 */!
Instruction Convert{32}:fp template = U_FpAdd+U_FpStore, NOTHING*8 |!
                                      U_FpMul+U_FpStore, NOTHING*8;!
Instruction Convert{32}:fp,vec{128} template = U_FpStore, NOTHING*3;!

/* i2fConvert64 */!
Instruction Convert{64}:fp template = U_FpAdd+U_FpStore, NOTHING*8 |!
                                      U_FpMul+U_FpStore, NOTHING*8;!
Instruction Convert{64}:fp,vec{128} template = U_FpStore, NOTHING*3;!

/* i2fConvert80 - old x87 instruction, only scalar */!
Instruction Convert{80}:fp template = U_FpStore, NOTHING*3;!

/* Prefetch does not create a dependence, so latency is irrelevant. Just takes 
issue bandwidth to execute it. */!
Instruction Prefetch template = U_AGU + U_LS;!
Instruction Prefetch:vec{512} template = U_AGU + U_LS;!
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“The L1 data cache can support two 128-bit loads or two 64-bit store writes per cycle or a mix 
of those. The LSU consists of two queues—LS1 and LS2. LS1 can issue two L1 cache 
operations (loads or store tag checks) per cycle. It can issue load operations out-of-order, 
subject to certain dependency restrictions. LS2 effectively holds requests that missed in the 
L1 cache after they probe out of LS1. Store writes are done exclusively from LS2. 128-bit 
stores are specially handled in that they take two LS2 entries, and the store writes are 
performed as two 64-bit writes.” 
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/* AMD 10h has only 64 bit stores. 128bit stores are split into !
 * two 64bit stores. */!
 Replace Store:int,vec{128} $rX -> [$rA] with!
       Store:int,vec{64} $rX -> [$rA] + !
       Store:int,vec{64} $rX -> [$rA] {"Store 64b int"};!

 Replace Store:fp,vec{128} $rX -> [$rA] with!
       Store:fp,vec{64} $rX -> [$rA] + !
       Store:fp,vec{64} $rX -> [$rA]  {"Store 64b fp"};!
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•  Tailored for the AMD 10h architecture 
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HPCToolkit measurements 48*48*8*3 = 55KB 

Scheduler predictions 

Main performance limiting 
factor is the issue bandwidth 
on the Load/Store units 
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•  128-bit Mult * 8, 128-bit Add * 8 
–  16 cycles => 50% efficiency with no memory delays 

•  128-bit Load * 16, 64-bit Store * 16 
–  Issue bandwidth limited, needs blocking for register reuse 
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MaxGainExtraIP – improvement potential from increased ILP 

routine rtotal accounts for 36% 
of improvement potential;  
- loop computing dtotal accounts 
for 22% of improv. potential 

false recurrence on dtotal; 
- icomp/jcomp indices take 
distinct values but are loaded 
from another array 
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•  Understand losses due to insufficient ILP 
•  Utilization of various machine resources 

– If vector units are available and not used 
•  Failed vectorization 
•  Lack of ILP or another machine specific reason 

•  Contention on machine resources 
– Few options from an application perspective, 

must change instruction mix 
– Contention on load/store unit -> improve 

register reuse 
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•  Do not focus on predicting memory penalty 
–  It is too hard, latency is hidden by overlap with code or 

with other memory accesses 

•  Instead, provide better insight to the user on how to 
improve data reuse 
– Data reuse is not a local phenomenon 

• Understand not only where cache misses occur  
–  Identify where data has been previously accessed 
–  Identify which algorithmic loop is driving the reuse 

•  Important for understanding how to shorten the reuse 
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•  Carrier scope of a data reuse 
– algorithmic loop causing data to be reused 

DO I = 1, N !
  DO J = 1, M !
    A(I,J) = A(I,J) + B(I,J) !
  ENDDO !
ENDDO !

– carrier scope may be also far removed from the 
location where data is accessed, e.g. time step loop 
of an iterative algorithm 

–  the farther removed the carrier scope, the more 
difficult to shorten the reuse 
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S: source scope, D: destination scope, C: carrying scope of a reuse pattern 

•  Reuse carried within the same iteration of the carrier 
scope (also same invocation of a routine body) 
– S and D must be the same scope as C (reuse between 

different statements), or in disjoint loop nests or routines 

• If S, D and C are in the same routine 
• fuse S and D 

• S and/or D are in routines called from C, e.g. reuse 
between different sub-steps of a computation 

• strip-mine S and D with the same stripe; promote 
the loops over stripes outside of C and fuse them 
• the further removed the carrying scope from S and 
D, the harder it is to shorten the reuse 
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S: source scope, D: destination scope, C: carrying scope of a reuse pattern 

•  Reuse carried across iterations of C 
– S = D, or in the same loop nest 

• C iterates over the array’s inner dimension or array 
indexing independent of C 

• apply loop interchange, or 
• apply dimension interchange on the array(s), or 
• apply blocking on a loop inside of C and move the 
loop over blocks outside of C  

– S and D in disjoint loop nests or routines 
–  combination of the previous two cases; apply loop 

fusion + blocking/loop interchange 
– usually, it is harder to optimize 

– Large number of irregular misses and S = D 
–  apply data or computation reordering 27 
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About 98% of cache misses and 
49% of TLB misses are due to long 
reuse within the 3rd level loop 

Loop at level 1 carries most of these misses. 
Moreover, these misses occur on array ‘b’.  
-  move the i-loop in an inner position, or 
-  block the j-loop and move the loop over 
blocks outside of the i-loop. 
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•  Miss counts at loop level estimated from reuse 
distance models 

•  Minimum bandwidth requirements at loop level 
– miss_count * block_size / loop_schedule_time 
– Assumes ideal prefetching and no memory latency delays 
– Ultimate “loop balance” metric 

•  One school of thought holds that only bandwidth 
matters, latency can be hidden 
– Peak machine bandwidth obtained from the machine 

description file 
–  If required loop bandwidth > peak bandwidth 

•  do not focus on ILP, vectorization, or register reuse; they increase 
bandwidth demand 29 
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Putting everything back together 

•  Analyze full application binaries and create 
optimization recipes at loop level 
– Compute instruction schedule 

•  Understand performance inefficiencies due to lack of ILP, 
failed vectorization, resource contention 

– Perform memory reuse simulation 
– Compute “loop balance”, compare with peak bdwth 

•  Understand if instruction schedule inefficiencies are on the 
critical path 

– Analyze data reuse patterns to look for improvement 
opportunities, suggest code transformations 

– Possibly interface with an auto-tuning tool 
30 


