
8/9/2007

1

Questions for Discussion (1)
• What do users want from libraries that they don’t have now?

– Functionality
• Operations
• Types/precisions/data layouts/
• New algorithms / helping users with algorithm choice

– Automatic choice vs consulting vs education
E f– Ease of use

• Portability
• Interoperability

– Mixing MPI / Shared memory
• Reproducibility
• Maintainability

– Spend 50% time helping users. Automation will not help.
• Installability
• Languages (native vs wrappers)
• Fault tolerance
• Memory models (Distributed, shared, PGAS)

– Scalability
• Target platforms (petascale, multicore, clusters, …)
• Fraction of peak
• Memory hierarchies / Out-of-core
• Hierarchical machines -> hierarchical algs & SW

– Standards to simplify…
• Interfaces
• Mixed shared / distributed memory

Questions for Discussion (2)

• Role of Automatic code generation and
tuning?tuning?
– When is it worth starting over to write a library

generator rather than a library?
• Dealing with hiearchical machines

– Maintainability
• Invest now for longer term reduction in costs/effortInvest now for longer term reduction in costs/effort

– Adapting to new architectures
– How much are users willing to accommodate

runtime tuning in their applications?

8/9/2007

2

Questions for Discussion (3)

• Role of vendors / SW companies
What do they build what do we build?– What do they build, what do we build?

– What do they support us to build?
– Multicore as opportunity to fund building some kernels
– Open source and/or proprietary

• Licensing (LGPL vs mBSD)

• Tools for futureTools for future
– Scalability testbed (eg RAMP)
– Reproducibility

Maintainability
• Hong:

– 50% time helping users.
– Automation will not help.
– 3 people continuous for PETSc.
– Mike H: 3 people for Trilinos.
– Documentation alone does not eliminate.
– One-to-one is very important.
– Users are testers. Provide ideas for new

development.

8/9/2007

3

Maintainability, 2
• Marc:

– Tutorial for users starting from the class of problem
they want to solve.they want to solve.

– Database of what is available to solve my problem.
• Jack: Coordination of the libraries: DOE,

Vendors.
– How the libraries install, work together.
– Common look & feel, common accessibility.

Maintainability,3
• List of libraries minimally needed on a CSE

systemsystem.
– Include public libraries and vendor libraries.
– Guidance on the choice and use.

• Coordination of communication:
– Release announcements.
– Netlib forum for announcements.
– Single meta-site for users of CSE libraries.

• BLOG, Wiki, interactive environment, RSS feed for
announcements.

• Archive of discussions.

8/9/2007

4

Maintenance, 4

• Model of support is broken.
Mat re sed b t not acti el de eloped– Mature, used but not actively developed,
software is not well supported.

– DOE has large collection of very valuable
software.

– Stewardship: little is done.
– Should be an incentive to continueShould be an incentive to continue

development of successful SW.
– Currently penalized, since new development

is given priority.

Coordination
• Coordination of communication:

– Is already good, and improving, can do more.
– Release announcements– Release announcements.
– Netlib forum for announcements.
– Single meta-site for users of CSE libraries.

• BLOG, Wiki, interactive environment, RSS feed for announcements.
• Archive of discussions.

• Workshops, events.
– ACTS Toolkit workshop:

• but more accessible• but more accessible.
• Bigger event.

– Coordinated slide show at SCXY.
• Ron:

– Coordinated distribution of CSE libraries:
• Single distribution. Reduce incompatibility problems.
• E.g, Linux distribution approach.

8/9/2007

5

Jack’s 4 challenges

• Manycore: no contention.
A t t i t ti• Autotuning: no contention.
– Addressing several axes of performance:

• Speed, memory use, accuracy, etc.
• Saving power, reduce clock speed dynamically.

• Fault-tolerance (at algorithm level).
• Use of mixed precision:

– For performance & accuracy.
– For memory use & and power consumption.

System Interrogation

• Information:
– Memory available.
– CPU features: FP units, L/S overlap
– $ info: size, hierarchy, r/w policies.
– DGEMM peak.
– MoreMore.

• PAPI-like approach for uniformity.

8/9/2007

6

What Apps need

• Serguei:
– Standard CSE software environment:

• Autotools, BLAS, LAPACK, etc.
• Fortran compiler.
• Minimal set: RedHat package set.
• Would enable binary distribution.

– Installability
• Windows install tool.
• Binary distribution.

Matlab-like APIs

• Needed for Petascale?
H i l h ld thi k b t M tl b• How seriously should we think about Matlab
(Star-P, Python, Octave) as the API? YES!

• Productivity issue.
• Used natively or to generate code, or both?

8/9/2007

7

Apps needs
• Tools:

– Are our internal tools (autotuning, utilities)
useful to you?y

• Debugging, optimized (speed, memory)
version of code.

• Reproducibility of results option:
– Debug mode.
– MPI_AllReduce differences.

Apps needs
• Rich:

– Global sparse triangular solve is present bottleneck.
– Can we develop an alternative at any level:

• Better implementation.
B d l ith i h• Brand new algorithmic approach.

• Marc: Standard benchmark targets for some critical
functionalities:
– Global sparse triangular solve.
– SpMV for several app areas.
– Bakeoffs?

• Improved feedback loop from users:p p
– Usage, problems.
– Formal observation events of usage.

• Julien:
– Good software engineering practices need to be transmitted to

apps developers.
– From library developers to apps developers: good design, best

practices, etc.

8/9/2007

8

Transition to Manycore

• Libraries migrate first.
– Need a standard mechanism to go from flat

MPI to MPI+shared, dynamically.
– App will be running MPI-only.

• Translation tools for app:
– Help migration.Help migration.
– Can it be transparent to the app?

Manycore concerns
• HW model is still vague:

– Shared memory, local memory, cache coherent?
• SW model not clear.SW model not clear.
• Parallel changes ubiquitous:

– Transition from serial to MPI: MPI forced app
framework changes, but left vast majority of complex
physics code unchanged.

– Vectorization: Happened automatically.
– Manycore parallel will not be automatic (?)Manycore parallel will not be automatic (?).
– Transition from MPI-only to MPI+manycore: Changes

will be more disruptive, pervasive.

8/9/2007

9

Manycore concerns
• Large-scale regeneration of libraries is easy to justify:

– impacts thousands of users
– only so many libs.

Small relative total cost– Small relative total cost.
• Similar rewrite of apps less broad impact:

– may impact fewer users,
– 100s or 1000s of apps.
– Large total cost.
– Need tools to reduce this cost.

• Typical programmer in MPI code does not need expert yp p g p
knowledge of MPI.

• Can we abstract the parallelism of manycore so the
average programmer does not need to think in parallel?

Autotuning

• Need both static and dynamic tuning.
– Need mechanism for informing tuning: e.g.,

number of iterations. See Zoltan.
• Language support (e.g., C++) helpful for:
• Polymorphism.
• Code generation (esp for fine grain)• Code generation (esp for fine-grain).

8/9/2007

10

MPI needs

• Better support for overlapping comm &
dand comp.

• Becomes more important for manycore
because of bandwidth issues.

• Asynch doesn’t work all the time.
Even parallel language extensions (CAF• Even parallel language extensions (CAF,
UPC) don’t give user control over process
for most efficient execution.

Memory Requirements
• Memory size is scalability limiting factor.

– Max/node is the issue– Max/node is the issue.
– Doubling the number of nodes for a fixed size

problem should halve the node memory use (ideally).
• Out of core is an acceptable solution?

– Is it possible on a petascale system?
– Presumes a collection of local disks.

• New algorithms should have optimal memory
usage (scalable use).

• Can data compression be used?
– Provided easily to users? MPI tools?
– Both lossy and non-lossy. User tunable.

8/9/2007

11

Complete app rewrite?
E.g. In Chapel/Fortress

• Ron:
– Small codes:

• Common in some areas:Common in some areas:
– Dynamics (chem), 100s-1000s LOC.

• Possible. Weeks to months to rewrite.
– Large codes:

• Gaussian comps.
• O(100K-1M) LOC. (GAUSSIAN - O(2M) LOC)
• NWCHEM - O(1M) LOC. Requires 50 man-years to rewrite.

Ri h• Rich:
– Too large, too costly to verify correctness.

• Serguei:
– Just a few small codes.
– Most important codes too expensive.

Debugging/profiling parallel
codes

• Still really hard.
• Especially large-PE-count-only failures.

– Runs on 10s or 100s of Pes, not on 1000s or
more.

• Profiling:
– Performance– Performance.
– Memory use: Sampling capabilities.

• Esp. non-virtual memory machines.

