

Introduction to ParaView

Scientific Data Analysis and Visualization for Petascale Computing

July 28, 2008

Kenneth Moreland Sandia National Laboratories SciDAC Institute for Ultrascale Visualization

Sandia is a multiprogram laboratory operated by Sandia Corporation, a Lockheed Martin Company, for the United States Department of Energy's National Nuclear Security Administration under contract DE-AC04-94AL85000.

More Information

•Online Help

The ParaView Guide

•The ParaView web page

-www.paraview.org

ParaView mailing list

-paraview@paraview.org

Golevka Asteroid vs. 10 Megaton Explosion

•CTH shock physics, over 1 billion cells

Polar Vortex Breakdown

•SEAM Climate Modeling, 1 billion cells (500 million cells visualized).

Objects-in-Crosswind Fire

•Coupled SIERRA/Fuego/Syrinx/Calore, 10 million unstructured hexahedra

Scripting, Client Side

Python 2.3.4 (#1, Feb 6 2006, [GCC 3.4.5 20051201 (Red Hat 3				
	(.4.5-2)] on linux2			
>>>				
>>> import sys				
>>> sys.path.append('/home/vgw	eirs/projects/paraview/PV_analys	sis')		
>>> import proto_script				
Number of elements = 13824000				
applying operation				
Domain Volume = 7.99904203415				
applying operation				
Sum of Lengths = 115358.40625				
Characteristic Length = 0.0083	4479211878			
applying operation				
L1 Density Error = 0.0				
applying operation				

Run Script Clear		Close		
		$\mathbf{C1}^{1}$	→	n
		Client		Serve
		enem		
		Python		
		Interpreter		
		interpreter		
		-		
UltraVis				
WILLAVIS				
Institute for Ultrascale Visualization				

Scripting, Server Side

SciDAC Institute for Ultrascale Visualization

Scripting Scalability

Sandia National Laboratories

Large Scale AMR

Large Data Fragmentation Analysis

SciDAC Institute for Ultrascale Visualization

QuickTime™ and a decompressor are needed to see this picture.

Large Data Fragmentation Analysis

ParaView

ParaView Architecture

- •Three tier
 - -Data Server
 - -Render Server
 - -Client

Standalone

Client-Server

Client-Render Server-Data Server

Requirements for Installing ParaView Server

- •C++
- CMake (<u>www.cmake.org</u>)
- •MPI
- •OpenGL (or Mesa3D <u>www.mesa3d.org</u>)
- •Qt 4.2.3 Qt 4.3.X (optional)
- Python (optional)
- <u>http://www.paraview.org/Wiki/Setting_up_a_ParaView_Server#Compiling</u>

Connecting to a ParaView Server

🕼 Choose Server		? 🛛
Choose a server: Manual angren (reverse connecti blackrose (reverse connecti koopa (reverse connectio liberty (reverse connectio rogue (reverse connection spirit (reverse connection thunderbird (reverse con	ction) on) n) n) n)	
Add Server	Edit Server	Delete Server
Save Servers	Load Servers	
		Connect Close

http://www.paraview.org/Wiki/Setting_up_a_ParaView_Server#Running_the_Server

The Parallel Visualization Pipeline

The Parallel Visualization Pipeline

|||

• Duplicate pipelines run independently on different partitions of data.

• Duplicate pipelines run independently on different partitions of data.

• Some operations will work regardless. –Example: Clipping.

• Some operations will work regardless. –Example: Clipping.

Some operations will work regardless.
–Example: Clipping.

- Some operations will have problems.
 - -Example: External Faces

- Some operations will have problems.
 - -Example: External Faces

•Ghost cells can solve most of these problems.

•Ghost cells can solve most of these problems.

Data Partitioning

•Partitions should be load balanced and spatially coherent.

Data Partitioning

•Partitions should be load balanced and spatially coherent.

Data Partitioning

•Partitions should be load balanced and spatially coherent.

Load Balancing/Ghost Cells

- •Automatic for Structured Meshes.
- Partitioning/ghost cells for unstructured is "manual."
- •Use the D3 filter for unstructured
 - (Filters \rightarrow Alphabetical \rightarrow D3)

The Parallel Visualization Pipeline

|||

Parallel Rendering

Parallel Rendering

Tiled Displays

Rendering Modes

- Still Render
 - -Full detail render.
- Interactive Render
 - -Sacrifices detail for speed.
 - -Provides quick rendering rate.
 - –Used when interacting with 3D view.

Level of Detail (LOD)

- •Geometric decimation.
- Used only with Interactive Render

Original Data

Divisions: 50x50x50

Divisions: 10x10x10

Image Size LOD

- ParaView's parallel rendering overhead proportional to image size.
- To speed up interactive rendering, ParaView can render smaller sized images and inflate them.

Original Data

Subsample Rate: 2 pixels

Subsample Rate: 4 pixels

Subsample Rate: 8 pixels

Color Depth LOD

- Squirt is used to transfer images from server to client.
- Squirt is a run length encoder optimized for images.
- Run lengths improved by masking out some color bits.

24-bit mask

19-bit mask

10-bit mask

Parameters for Large Data

- •Use Immediate Mode Rendering on.
- •Use Triangle Strips off.
- •Try LOD Threshold off.
 - –Also try LOD Resolution 10x10x10.
- •Always have remote rendering on.
- •Turn on subsampling.

-Try larger subsampling rates.

•Squirt Compression on.

Further Reading

- •Amy Henderson Squillacote. *The ParaView Guide*. Kitware, Inc., 2006.
- <u>http://www.paraview.org/Wiki/ParaView</u>
- <u>http://www.paraview.org/Wiki/Setting_up_a_ParaView_Server</u>

Further Reading

- •Will Schroeder, Ken Martin, and Bill Lorensen. *The Visualization Toolkit*. Kitware, Inc., fourth edition, 2006.
- •Kitware Inc. *The VTK User's Guide*. Kitware, Inc., 2006.
- •Jasmin Blanchette and Mark Summerfield. C++ GUI Programming with Qt 4. Prentice Hall, 2006.

Further Reading Parallel VTK Topics

- James Ahrens, Kristi Brislawn, Ken Martin, Berk Geveci, C. Charles Law, and Michael Papka. "Large-Scale Data Visualization Using Parallel Data Streaming." *IEEE Computer Graphics and Applications*, 21(4): 34–41, July/August 2001.
- Andy Cedilnik, Berk Geveci, Kenneth Moreland, James Ahrens, and Jean Farve. "Remote Large Data Visualization in the ParaView Framework." *Eurographics Parallel Graphics and Visualization* 2006, pg. 163–170, May 2006.

araView

Further Reading

- James P. Ahrens, Nehal Desai, Patrick S. McCormic, Ken Martin, and Jonathan Woodring. "A Modular, Extensible Visualization System Architecture for Culled, Prioritized Data Streaming." *Visualization and Data Analysis 2007, Proceedings of SPIE-IS&T Electronic Imaging*, pg 64950I-1–12, January 2007.
- John Biddiscombe, Berk Geveci, Ken Martin, Kenneth Moreland, and David Thompson. "Time Dependent Processing in a Parallel Pipeline Architecture." *IEEE Visualization 2007*. October 2007.

Further Reading Parallel Rendering

- Kenneth Moreland, Brian Wylie, and Constantine Pavlakos. "Sort-Last Parallel Rendering for Viewing Extremely Large Data Sets on Tile Displays." *Proceedings of IEEE 2001 Symposium on Parallel and Large-Data Visualization and Graphics*, pg. 85– 92, October 2001.
- Kenneth Moreland and David Thompson. "From Cluster to Wall with VTK." *Proceddings of IEEE 2003 Symposium on Parallel and Large-Data Visualization and Graphics*, pg. 25–31, October 2003.
- Kenneth Moreland, Lisa Avila, and Lee Ann Fisk. "Parallel Unstructured Volume Rendering in ParaView." Visualization and Data Analysis 2007, Proceedings of SPIE-IS&T Electronic Imaging, pg. 64950F-1–12, January 2007.

