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ABSTRACT
This work proposes and evaluates improvements to previ-
ously known algorithms for redundancy elimination.

Enhanced Scalar Replacement combines two classic tech-
niques, scalar replacement and hash-based value numbering.
The former detects redundant array references within and
across loop iterations, while the latter detects a large class
of redundancies, but only within a single loop iteration. By
integrating the two techniques, ESR detects and eliminates
a wider range of expression redundancies across loop itera-
tions.

We also extend hash-based value numbering to perform re-
association. Classic redundancy elimination techniques op-
erate on an intermediate representation of the program in
which operand association and order is of fixed shape. This
rigidity in code shape may sometimes obscure redundancies.
Our optimizer attempts to shape the code by changing as-
sociativity, exposing more redundancies. Opportunities for
ESR, in particular, are increased with reassociation.

Categories and Subject Descriptors
D.3.4 [Programming Languages]: Processors—optimization,
compilers

General Terms
Algorithms, Experimentation, Performance

Keywords
expression optimization, loop optimization, redundancy elim-
ination, scalar replacement, reassociation

1. INTRODUCTION
A variety of successful techniques for redundancy elimina-

tion have been developed since the 1950’s. Hash-based value
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numbering is one such family of methods, which was orig-
inated by Ershov in the mid- to late 1950’s [12] and more
fully described (and extended) in the early 1970’s by Cocke
and Schwartz [10]. It is still a widely implemented and useful
technique.

The key idea behind value numbering is to assign to each
expression a value number, such that two expressions are
assigned the same number if they compute the same value.
Value numbering detects opportunities in any region of code,
but has limitations with respect to loops.

Another technique is Scalar replacement [9], which detects
re-use of subscripted variables within loops and replaces
such redundant accesses with references to scalar variables.
A high-quality register allocator will then allocate the new
scalar variables to registers. Scalar replacement utilizes data
dependence analysis to discover re-use not only within a loop
iteration, but also across loop iterations. From this point on,
this algorithm will be referred to as “classic scalar replace-
ment” or CSR.

1.1 Improving Redundancy Elimination
in Loops

Value numbering is an effective and powerful method for
eliminating redundant expressions. However, it is able to do
so only within a single iteration of a loop. There are situa-
tions where it is profitable to detect redundant expressions
from different iterations. Classic scalar replacement, on the
other hand, detects redundancies across loop iterations, but
only when the expression takes the form of an array refer-
ence. What is desired is to combine the two ideas into a
more powerful method.

As a first example illustrating the idea of inter-iteration
redundancy, consider the loop in Figure 1a from Los Alamos
National Lab’s Parallel Ocean Program (POP). Upon close
inspection, it can be seen that the italicized expressions are
redundant, having been computed one iteration earlier by
the corresponding unitalicized expressions. With care, one
can eliminate the redundancies by rewriting the code as
shown in Figure 1b. In this case, there is a substantial
reduction in memory references, floating-point operations,
and even expensive intrinsic calls. The original inner loop
contains 16 loads, 11 floating-point multiplies, 11 floating-
point additions, 8 cos intrinsic calls, and 8 sin intrinsic calls.
The transformed inner loop contains only 4 loads, 7 floating-
point multiplies, 8 floating-point additions, 4 cos intrinsic
calls, and 4 sin intrinsic calls.

Note that standard redundancy elimination techniques
will not detect many of the redundancies in the example.
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do n=1,nblocks_clinic
do j=2,ny_block
do i=2,nx_block

zsw=cos(ULAT(i-1,j-1,n))
xsw=cos(ULON(i-1,j-1,n))*zsw
ysw=sin(ULON(i-1,j-1,n))*zsw
zsw=sin(ULAT(i-1,j-1,n))
zs=cos(ULAT(i,j-1,n))
xs=cos(ULON(i,j-1,n))*zs
ys=sin(ULON(i,j-1,n))*zs
zs=sin(ULAT(i,j-1,n))
zw=cos(ULAT(i-1,j,n))
xw=cos(ULON(i-1,j,n))*zw
yw=sin(ULON(i-1,j,n))*zw
zw=sin(ULAT(i-1,j,n))
zc=cos(ULAT(i,j,n))
xc=cos(ULON(i,j,n))*zc
yc=sin(ULON(i,j,n))*zc
zc=sin(ULAT(i,j,n))

tx = p25*(xc+xs+xw+xsw)
ty = p25*(yc+ys+yw+ysw)
tz = p25*(zc+zs+zw+zsw)

...
end do
end do
end do

(a) Original

do n=1,nblocks_clinic
do j=2,ny_block

prevULAT_jm=ULAT(1,j-1,n)
zs=cos(prevULAT_jm)
prevULAT_j=ULAT(1,j,n)
zc=cos(prevULAT_j)
prevULON_jm=ULON(1,j-1,n)
prevULON_j=ULON(1,j,n)
prevYsum=(zs*sin(prevULON_jm))+

(zc*sin(prevULON_j))
prevZsum=sin(prevULAT_jm)+

sin(prevULAT_j)
prevXsum=(zs*cos(prevULON_jm))+

(zc*cos(prevULON_j))
do i=2,nx_block
ULAT_jm=ULAT(i,j-1,n)
zs=cos(ULAT_jm)
ULON_jm=ULON(i,j-1,n)
ULAT_j=ULAT(i,j,n)
zc=cos(ULAT_j)
ULON_j=ULON(i,j ,n)
xsum=(zs*cos(ULON_jm))+

(zc*cos(ULON_j))
ysum=(zs*sin(ULON_jm))+

(zc*sin(ULON_j))
zsum=sin(ULAT_jm)+sin(ULAT_j)
tx=p25*(xsum+prevXsum)
ty=p25*(ysum+prevYsum)
tz=p25*(zsum+prevZsum)

...
prevYsum=ysum; prevZsum=zsum;
prevXsum=xsum

end do
end do
end do

(b) Transformed

Figure 1: An example from the Parallel Ocean Pro-
gram code

Methods based on lexical identity will not detect common-
ality because the operand names are not lexically identi-
cal (e.g., ULAT(i-1,j-1,n) and ULAT(i,j-1,n) are not the
same) and because they cannot track writes to individual
array elements. Standard methods based on value identity
will do no better, since those same two references will be
assumed to have different values (their leftmost index ex-
pressions will have different value numbers).

Applying classic scalar replacement would eliminate the
same number of loads, but nothing else. Compared to CSR,
eliminating whole expressions will often require fewer tempo-
raries because entire expressions are stored rather than each
individual array reference that might make up the expres-
sion. This implies that more redundancies can be eliminated
before exhausting the supply of physical registers.

Examining the POP example, one might argue that the
programmer was naive for writing the loop in the original
form, considering that it does so much redundant compu-
tation. But there are good reasons to write such codes in
that “naive” form. The transformed version, while it may
run faster, is much less clear than the original. Initial values
are fed in from outside the loop, multiple values from dif-
ferent iterations are live simultaneously and shifted through
scalar copies, etc. The transformed version is also likely to
be more difficult and error-prone to write manually. The
programmer should be able to express the computation in
a natural, readable, and maintainable form, and leave it to
an optimizing compiler to produce a potentially less natu-
ral, but higher-performing version. A goal of this work is

to be able to automatically detect and transform codes like
the POP example. These kinds of loops are important and
occur in a number of other scientific codes as well as signal
and image processing.

1.2 Improving Redundancy Elimination
via Reassociation

It has been known since the early days of compiling that
opportunities for detecting redundancies or compile-time con-
stants may be obscured when the optimizer examines only
the default representation of the program provided by the
parser or other pass (e.g., [13, 6]). Reassociation is a method
whereby expressions are rearranged to expose more opportu-
nities for redundancy elimination. Through examination of
many application codes, we found that a number of opportu-
nities for inter-iteration redundancies are only detectable if
expressions are reassociated. This work extends value num-
bering with reassociation. While it is presented in the con-
text of ESR’s inter-iteration value numberer, it can also be
incorporated into the classic value numbering algorithms.

1.3 Overview
Section 2 reviews the basic techniques and analyses on

which this work is built. The technical contributions are
presented in sections 3 and 4. Section 5 presents an empirical
evaluation of the techniques. Section 6 surveys the literature
closely related to this work. Finally, section 8 wraps up and
gives some final perspectives on the work.

2. BACKGROUND
We assume the reader is familiar with standard data de-

pendence analysis (see chapter 2 of [2]).

2.1 Classic Scalar Replacement
Scalar replacement utilizes data dependence information

to discover re-use opportunities, and to determine how to
rewrite the code. It operates by using the input- and true-
dependences to pinpoint re-use of values in array elements.
The primary data structure created is a list of name parti-
tions. Each partition groups array references together that
refer to the same value. The generator of a group is the ref-
erence which produces the value that is reused by all other
members of the group. Intuitively, the generator is the “old-
est” load, or the “most recent” store of a group of references
to the same location. By assigning the generator’s result to
a scalar temporary, all other references in the same group
can be replaced by a reference to the scalar (multiple scalar
temporaries are needed to carry values across multiple it-
erations). A brief sketch of the classic scalar replacement
algorithm is given below (following chapter 8 of [2]):

1. Partition: Prune dependence graph, so that only edges
representing value re-use remain. Group together ref-
erences that are related by true or input dependences.

2. Select: Select a set of name partitions using register
pressure moderation.

3. Replace: For each selected partition, replace all refer-
ences (other than the generator) with scalar tempo-
raries.

Often scalar replacement is able to find more than enough
opportunities so that rewriting them all would quickly ex-
haust the supply of physical registers of the machine. The
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Select phase performs a register pressure moderation algo-
rithm which picks only a subset of the groups, subject to
available registers. It associates benefits and costs with
each group to determine the most replacement “bang for
the buck.”

2.2 Value Numbering
A typical value numberer operates on a linear interme-

diate form. Each operation is traversed in program order,
assigning value numbers to each operation so that redundant
expressions receive the same value number. Numbering in
program order ensures that all operands of an operation have
been assigned value numbers before the operation itself is
considered. Below is a brief sketch of a baseline hash-based
value numberer, as described in [8].

For each statement "x <-- y op z" in block B

expr <-- <NameToVN[y] op NameToVN[z]>

if expr is found in hash table with VN v

NameToVN[x] <-- v

if NameToVN[VNToName[v]] = v

Replace rhs of statement with VNToName[v]

else

v <-- next available value number

NameToVN[x] <-- v

Add expr to the hash table with VN v

VNToName[v] <-- x

Value numbering is quite flexible and can easily take into
account algebraic identities, exploit commutativity of oper-
ations, and perform constant propagation and folding. Fur-
thermore, the rewrite/replacement policies are flexible and
can be performed online (incrementally, as redundancies are
discovered) or offline (as a postpass, after all redundancies
are known).

3. ENHANCED SCALAR REPLACEMENT
This section describes an algorithm that combines the

benefits of both CSR and value numbering, with the goal
of eliminating the kinds of inter-iteration redundancies ex-
amined in section 1.1. Our general approach builds directly
on the well-developed and understood classic scalar replace-
ment algorithm, and directly incorporates value numbering
into the process. The idea is to leverage the data structures
and infrastructure (including register pressure moderation)
of CSR and to tightly integrate value numbering so that
phase ordering problems are not introduced and all redun-
dancy opportunities are considered together. Due to space
limitations, we explain the technique in prose as opposed to
low-level pseudocode.

3.1 Preliminaries

Assumptions.
It is assumed that the optimizer’s intermediate represen-

tation is in the form of a medium- to high-level abstract
syntax tree1: 1) a function is represented as a hierarchi-
cal list of statements, where side-effects are only allowed at
statement boundaries (simplifies value numbering); 2) ar-
ray references correspond closely to the source-level, so that
1A linear IR could be used, but as will be seen in section 4,
operating over expression trees exposes more context which
can be capitalized upon for manipulating expressions in cer-
tain ways.

index expressions have not been expanded to low-level ad-
dress expressions; 3) any array/vector syntax (e.g., Fortran
90 triplet notation) has been scalarized into explicit looping
constructs.

It is also assumed that the optimizer has a high-quality
data dependence analyzer, which is critical to the success
of CSR, ESR, or any other dependence-based transforma-
tion. This implies that no assumptions are made regarding
the form or complexity of array subscripts. Any subscripted
variable is an ESR candidate as long as the dependence an-
alyzer can disambiguate them. No special assumptions are
made regarding the naming scheme of variables, such as that
required by static single assignment form.

Definitions.
In order to detect inter-iteration redundancies, we need to

incorporate into value numbering the notion that an expres-
sion may have been computed on some previous iteration.
The term expression threshold (denoted ∆(e1, e2)) is coined
to represent a quantity analogous to dependence distance or
threshold, but applied to whole expressions. Intuitively, if
two expressions have the same value d iterations apart (over
the whole iteration space), then the distance between them
(expression threshold) is d. More formally, for two expres-
sion trees e1 and e2 with the same operator (or algebraically
equivalent), and operands c1

1 . . . cn
1 and c1

2 . . . cn
2 , respectively,

∆(e1, e2) is defined as
8
>><
>>:

thresh(e1, e2), if n = 0 ∧ (thresh(e1, e2) 6= ⊥)
∀i, min∆(ci

1, c
i
2), if n > 0 ∧ (∆(c1

1, c
1
2) ≡

∆(c2
1, c

2
2) ≡ . . . ≡ ∆(cn

1 , cn
2 ))

⊥, otherwise.

Function thresh(r1, r2) is defined to compute the distance
between a pair of leaves (references), or to return undefined
(denoted by ⊥) if none exists.

thresh(r1, r2) =

8
>><
>>:

τ, if (r1 δ∗ r2) ∧ consistent(τ)
−τ, if (r2 δ∗ r1) ∧ consistent(τ)
∞, if invar(r1) ∧ invar(r2)
⊥, otherwise

Where invar(e) is a predicate that returns true if expres-
sion e is loop invariant, or false otherwise. If both leaves
are array references with a consistent dependence between
them, then the function will determine the direction of the
dependence edge and return the threshold τ (or its negative).
If both references are loop invariant, then the “threshold” is
defined to be ∞. The equivalence of expression thresholds
(≡) is defined to be true if both operands are the same con-
stant, if one operand is constant and the other ∞, or if both
are ∞, and false otherwise.

3.2 Algorithm
Our algorithm fits into the overall CSR framework by cre-

ating a new primary data structure analogous to name par-
titions, which we call expression groups. These groups will
contain entire redundant expressions, not just array refer-
ences. We use the term “groups” instead of partitions be-
cause redundant expressions in one group can overlap with
those of other groups (i.e., when they share some operands).
We insert a new Groups phase between the Partitions and
Select phases which computes the expression groups. It does
this by performing inter-iteration value numbering. Once all
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expression groups are known, we prune away certain unin-
teresting groups and then calculate the number of registers
required to rewrite/replace each one. The rest of scalar re-
placement operates essentially as before, but using expres-
sion groups instead of name partitions.

3.2.1 Determining Expression Groups (inter-iteration
VN)

The classic descriptions of value numbering assume a lin-
ear intermediate form (see section 2.2) and they perform
replacements online (that is, incrementally as redundancies
are discovered). Because ESR will be operating on an AST,
and the question of high register pressure needs to be ad-
dressed, and inter-iteration redundant subexpressions need
to be detected, a few adaptations of the standard techniques
must be made.

1. Adapt to AST: Recall that the basic algorithm tra-
verses each operation (a simple three-address expres-
sion) in program order assigning numbers to each. This
is done so that the inputs to each operation will already
have value numbers assigned to them before the opera-
tion is processed. The equivalent idea on an arbitrarily
complex expression tree is to traverse the tree in pos-
torder (i.e., bottom up), so that each child (operand)
of an operator will have been visited before the oper-
ator.

2. Offline replacement: A key part of CSR is moderation
of register pressure. CSR defers selection of references
to rewrite until all opportunities are known. To fit into
the CSR framework, the value numberer must oper-
ate offline, only collecting and recording redundancies.
Once all redundancies have been discovered, the algo-
rithm will determine register pressure and select some
subset of the expressions to rewrite.

3. Inter-iteration redundancies: Finally, the value num-
berer in ESR must incorporate data dependence by
numbering array references appropriately and utilizing
∆(e1, e2) in determining redundant expressions. This
is the key to value numbering in the presence of array
references and to detecting inter-iteration opportuni-
ties.

Traditional value numbering has the limitation that un-
less two references to the same array have index expressions
with the same value number, then the array references them-
selves will be assigned different value numbers. In the con-
text of a loop, this results in only being able to detect when
array references have the same value within a single itera-
tion of the loop. Value numbering in a loop with induction
variable i could thus recognize that expressions sqrt(a(i))
and sqrt(a(i)) are redundant, but not that expressions
sqrt(a(i+3)) and sqrt(a(i)) are. So a key issue in de-
tecting redundancies across loop iterations is to somehow
assign meaningful value numbers to array references, even
when their index expressions do not have the same value
number.

A solution in the context of CSR presents itself if we re-
call that the key to CSR is the use of name partitions—
that is, having information regarding which array references
represent re-use. In other words, references in the same par-
tition all access the same value, just on different iterations.
This simple but critical observation gives us a way to value

number array references. We assign the same value number
to all references in the same partition. In practice, we get
this effect by treating each array reference as having a new
name derived from its CSR name partition. Each reference
in partition 0, for example, is treated as if its name is “?p0”.

With a method to number array references in hand, value
numbering now applies to larger expressions involving those
references. But there is still the issue of expression distance
being taken into account. That is, value numbering should
not consider the addition subexpressions

do i

... = (c(i)+b(i+1))-(b(i+2)+c(i+2))

enddo

redundant since the expression distance is undefined be-
tween them. This is done by modifying the hash table
lookup to utilize ∆. On the first occurrence of an expression
(it isn’t found in the hash table), the expression is inserted
into the hash table. If a subsequent expression occurrence
e1 hits in the hash table, then an arbitrary existing expres-
sion eref from the matching bucket is used as a reference
point (every occurrence is inserted into the hash table, since
we remove redundancies offline). We then check if expres-
sion difference ∆(eref , e1) is defined, in which case an inter-
iteration redundancy has been detected. Otherwise there is
no match. Note that if expression distance is not checked,
then the code snippet above would appear (incorrectly) to
have a redundant addition subexpression.

Looking at the recursive definition of ∆, it might appear
that the many repeated expression difference checks required
would be prohibitively costly. But the actual calculation
does not have to be structured in the same way the math-
ematical definition is (which is written for conciseness and
clarity of explanation). What we do is to incrementally carry
the AST leaves up the tree during the postorder traversal, so
that when we compare two expression trees, all leaves nec-
essary for the computation are immediately available. The
reader will also notice that it isn’t strictly necessary to carry
all the leaves up the tree, but one from each child will do.
However, carrying all the leaves makes checking for alge-
braic inter-iteration equivalences easier. That is, since ESR
is based on value-identity, we’d like to detect that expres-
sions such as z(i)+z(i) and 2*z(i+3) are redundant.

Finally, scalar assignments require slightly more book-
keeping in inter-iteration value numbering than in the intra-
iteration case. Not only must we set the value number of
the scalars, but we must maintain a list of leaves associated
with them. This is so that we can test expression distance
between expressions that involve one or more scalars. For
instance, it could be that two expressions x/a(i+3) and
y/a(i+2) are redundant, but that depends on the value
numbers of x and y as well as the distance between the ex-
pressions that defined x and y. In this way, we track values
through assignments as in normal value numbering, but we
also carry leaves through assignments so that the expression
distance computation can be done efficiently.

3.2.2 Pruning Expression Groups
The value numberer iterates through every statement of

the AST, numbering and inserting every expression into the
hash table. Thus, once all expression groups are known,
there are a number of uninteresting groups that need to be
pruned from the hash table— that is, groups that will not be
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replaced and rewritten. For example, an expression that is
nested in a larger expression is automatically rewritten when
the larger containing one is. Other uninteresting groups in-
clude those that only contain one occurrence, those consist-
ing of an integer constant, etc. Once the Groups phase has
computed all expression groups, it prunes away all those
uninteresting types in preparation for Replace.

3.2.3 Determining Number of Scalar Temporaries
In CSR, determining the number of scalar temporaries

needed to rewrite a partition is straightforward. Given par-
tition pi with generator ri, the number of temporaries NT
needed to rewrite pi is

NT (pi) = 1 + max
e∈(riδ∗rj)

τ(e).

In other words, it is one more than the threshold of the de-
pendence edge with source at the generator whose threshold
is largest. This works because each partition is independent—
whether or not some partition pk is scalar replaced does not
affect the number of registers that any other partition pm

will require to be replaced.
If we assume for the moment that all expression groups

are independent, then an analogous formula works for the
ESR scenario:

NT ′(egi) = 1 + max
ej∈exprs(egi)

∆(ei, ej),

where ei is the generating expression of group egi with ex-
pressions exprs(egi). However, the situation is generally
more complicated in the ESR scenario since we can have
overlap (nested subexpressions) among the different groups.
Consider:

DO K=2,N

s1 P = (A(I,J,K+1)-B(K+1))*C(K+1)*D(K+1)

s2 M = (A(I,J,K-1)-B(K-1))*C(K-1)*D(K-1)

s3 X(K) = C(K)*D(K)

s4 F(K) = P-M

ENDDO

Here there is not only a “large” RSE (group 1) in s1 and s2,
but a smaller nested RSE C(...)*D(...) (group 2) in s1,
s2, and s3. If we only consider the first RSE in isolation, it is
easy to see we need 3 temporaries (∆ = 2). Likewise, consid-
ering only the second RSE, we also need 3 temporaries. But
if we wish to eliminate both RSEs, then the number of tem-
poraries is not the sum of them in isolation, but something
different.

In fact, only five (3 and 2) temporaries are required to
eliminate both RSEs, rather than six (3 and 3) if we just
summed the number of temporaries for each in isolation.
The reason is that the containing RSE will only occur once
in the transformed code, so we have fewer occurrences of
the contained RSE (and ∆ of the remaining occurrences is
smaller).

The challenge is in computing this algorithmically. For
the overlap case above, the algorithm has to determine that
in the rewritten code, if both groups are eliminated, that
there won’t really be three occurrences of the nested expres-
sion, but just two. More generally, if more than two groups
overlap, then we need to calculate the number of tempo-
raries needed for every combination of overlapping groups
that could be eliminated.

3.2.4 Register Pressure Moderation
CSR models register pressure moderation as a 0-1 Knap-

sack Problem. This problem can be solved to optimality via
a pseudo-polynomial time dynamic programming algorithm.
A key feature of the 0-1 KP problem is that each “object”
(i.e., a name partition in CSR) has a fixed weight and profit
assigned ahead of time. That is, objects are independent
and choosing one object for inclusion into the knapsack has
no effect on the weight or profit of any of the other ob-
jects. Name partitions satisfy this property since choosing
one doesn’t affect the weight or profit of the others.

Things are more complicated for expression groups in ESR
since they may overlap. If some groups do overlap, then the
decision to replace a redundant expression can actually de-
termine how many registers are needed to eliminate one of
the overlapping ones (and even the number of operations
the other one will have). In the knapsack analogy, this is
the same as saying that both the weight and profit of an ob-
ject might change depending on whether or not some other
object is chosen to be in the knapsack.

This new twist on the knapsack problem is critical, be-
cause it becomes strongly NP-hard. In fact, it is a gener-
alized version of the Quadratic Knapsack Problem discussed
in [17]. In the QKP case, only one of the object parameters
change, while in our case, both do. Even the simpler QKP is
strongly NP-hard, so our problem is too. This implies that,
unlike 0-1 KP, there is no hope of even a pseudo-polynomial
dynamic programming algorithm. We must rely strictly on a
heuristic. We have developed a simple iterative heuristic to
solve the problem in reasonable time that is derived from a
QKP heuristic given in [17]. There is still more work needed
to understand how well the algorithm works in practice on
a large number of inputs.

Note that if all the expression groups happen to be inde-
pendent, as they often are, then our problem reduces to 0-1
KP and we solve using the standard RPM algorithm.

4. REASSOCIATION
The ESR algorithm presented in section 3 achieves the

goal of detecting a broad range of inter-iteration redundan-
cies. However, it still carries one of the limitations of clas-
sical redundancy elimination techniques— it operates over
a fixed code shape for expressions (other than allowing for
simple commutativity in binary operators). Thus minor dif-
ferences in expression code shape can foil the value num-
berer. For example, in the expressions (using scalars for
simplicity) x=a*(b*(c*d)) and y=a*(b*(c*e)), not a sin-
gle redundancy is recognized because the innermost value
number has a mismatch. That is, assuming d and e have
different value numbers, then expressions c*d and c*e have
different value numbers. Since value numbering performs a
postorder traversal of the expression tree, it has the effect
of propagating the mismatched value number up the tree.
The effect is the same for value numbering applied to linear
representations such as three-address code.

On the other hand, if the expressions are rearranged using
associativity to be x=((a*b)*c)*d and y=((a*b)*c)*e, then
the subexpression ((a*b)*c) in the second statement will be
discovered to be redundant. 2

2For floating-point expressions, reassociation is not necessar-
ily safe. Like commercial compilers that perform optimiza-
tions using the associative property (e.g., parallelization of
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Often, expressions are not explicitly coded with parenthe-
ses as above. Depending on the specification of the source
language being compiled, expressions are usually consistently
associated (internally) to the right or to the left. So even
though redundancies may be present, they can be hidden
due to the shape of the code.

Despite this problem having been mentioned numerous
times in the literature over decades, no one has yet pro-
posed a solution in the context of value numbering. In order
to increase the robustness of value numbering so that it is
impervious to (or at least less hindered by) such changes
in representation, it is desirable to automatically arrange
expressions in such a way that latent redundancies are ex-
posed. This section incorporates the idea of reassociation
into value numbering (and hence ESR), so that the proper-
ties of associativity and commutativity are used to produce
equivalent expressions with more redundancies.

4.1 Issues and Design of a Reassociation Al-
gorithm

To get an idea of some of the challenging issues involved in
designing a reassociation algorithm (and our high-level solu-
tions), this section discusses some more thought-provoking
examples. For this discussion, it is assumed that all chains
of binary operators in the input AST have been “flattened”
into equivalent operators of arbitrary arity (N-ary opera-
tors). Prefix notation is used for conciseness, and to help
illustrate the shape of the corresponding ASTs.

Canonical orders and affinity.
Consider the following expression (again using scalars for

simplicity):

/* Example "Diabolic". */

(+ (* X (+ A C I H B H)))

(* Y (+ A B I D C E F G A C I B))

(* Z (+ F D E G D E F G))

Inspecting the + terms carefully, it can be seen that there is
a subexpression (+ A B C I) that occurs three times— once
in the first line and twice in the second line. A second subex-
pression (+ D E F G) also occurs three times, with the first
occurrence in the second line, and two more occurrences in
the third line. While this is reasonably easy for a human to
eyeball, the value numberer has no chance of discovering this
unless the expressions are shaped so that the subexpressions
become apparent. That is, the algorithm must reshape the
operators so that redundancies are explicit in the AST:

(+ (* X (+ (+ A B C I) H H)))

(* Y (+ (+ A B C I) (+ A B C I) (+ D E F G)))

(* Z (+ (+ D E F G) (+ D E F G)))

In this way, the redundancies can now be easily discovered
by the value numberer.

The difficulty is in determining how to automatically group
the operands in a satisfactory way. There must be guid-
ing principles to be able to reorder operands for maximal
(or at least more) redundancy. Some researchers have sug-
gested the possibility of using some canonical ordering or
ranking scheme for operands, such as lexical order of vari-
able names [15]. That scheme clearly fails for our example,

sum reductions, tree height reduction), we provide a com-
piler option to disable reassociation when it is known to be
unsafe.

and even for simpler cases such as (+ R S T S R) where
we would fail to recognize subexpression (+ R S). Another
ranking might be by frequency of occurrence of each vari-
able, which would get some cases. This also fails for Diabolic
since all interesting operands occur with the same frequency,
so that it provides no basis for ranking. In fact, there does
not seem to be any single canonical ordering that will do.
This is especially true in the Diabolic example where subex-
pressions occur within and across terms, so that we cannot
just consider reassociating one term at a time in isolation,
but instead all must be considered together.

The fundamental problem is that expressions like Diabolic
require a ranking that expresses affinity. That is, we wish
to group together the names that have the most mutual
attraction across the entire expression. To that end, we
develop the following notion of affinity. For each unordered
pair of of names (X,Y), the affinity A associated with that
particular pair is the number of times that X and Y occur
together in the same term. For example, in expression (+
R R S S S), the pair (R,S) appears twice. To be useful, the
affinities for all unordered pairs of names are needed and can
be represented by a symmetric n× n table for n names.

Alternatively, the affinities can be naturally viewed as an
undirected affinity graph. That is, let each node represent
a name. Then for every pair of names which have affinity
greater than one, let there be an undirected edge between
the two nodes representing those names. Each edge can
be thought of as being labeled or weighted by the affinity.
Coming back to expression Diabolic, the affinities would be
computed as follows (affinities > 1). The pairs (A,B), (A,C),
(A,I), (B,C), (B,I), (C,I), (D,E), (D,F), (D,G), (E,F), (E,G),
(F,G) all have an affinity of three. The corresponding affin-

ity graph is:
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Once viewed graphically, we can observe that redundant
subexpressions appear as maximal cliques in the graph. Thus,
at a high level, the problem of grouping names/operands into
redundant subexpressions reduces to the problem of deter-
mining all (or“enough”) of the maximal cliques of the affinity
graph. Note that nested subexpressions are also naturally
handled with the method. Any sub-clique with higher affin-
ity than the containing clique represents a nested subex-
pression. Finally, given the list of cliques, the algorithm
mechanically rewrites the ASTs to reflect the cliques.

Despite the NP-completeness of maximal clique finding,
there are efficient heuristics that work well on the types of
graphs we encounter in practice. We currently use an O(n2)
sequential greedy heuristic [5] (n is the number of nodes
in the graph) which appears to find most of the interesting
cliques we see in practice.

Value numbering with reassociation.
Thus far, we’ve only discussed reordering operands of ex-

pressions where we have a variable name to work with. If
those were the only kind of expressions to reassociate, then
a simple way to incorporate reassociation into value num-
bering is to run the clique finder as a pre-pass. However, in
general, expressions will have operands that themselves are
arbitrary expressions. Suppose we have expression (+ (cos

R) (cos R) S S S) (where cos is a pure function call) and
we wish to reassociate the + operands. We have available
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the name S, but what is to be used for the operand (cos

R), which is itself a subtree (and the subtree can be arbi-
trarily complex)? One approach is to sidestep the issue by
ignoring those operands, and only attempt to reassociate
operands that are variables. But that misses opportunities
as the example shows. A better approach is to assign some
surrogate name to each subtree, so that redundant subtrees
have the same name. The surrogate names can then be
used for building the affinity graph. A key observation is
that we can do exactly that by using the value numbers of
the operands as surrogate names. This enables us to reorder
arbitrarily complex operands of an expression.

Using value numbers as names leads to an interesting cir-
cularity. In order to do reassociation, we need value num-
bers. On the other hand, to do value numbering, we need
reassociation. This implies that it is impossible to perform
reassociation as a separate pre-pass. Instead, reassociation
must be tightly intertwined with value numbering. Our ap-
proach is to, in some sense, iterate between reassociating
and value numbering on portions of the AST.

In order to enable this, we change the ESR value numberer
from a simple postorder traversal to a worklist approach akin
to the list scheduling used in many instruction schedulers.
Recall that the idea of the postorder traversal is to ensure
all operands of an AST node have been numbered before the
node is numbered. The same effect is achieved in the work-
list approach where a “ready” list of nodes is maintained.
This list is initialized with all nodes that have no children.
All other nodes are iteratively added to the ready list to
be numbered only after all children of each node have been
processed.

To integrate reassociation into the worklist algorithm, we
do not immediately put associative operators on the ready
list when they become ready, but instead add them to a “de-
ferred” list (one list for each opcode). At the point when a
node becomes ready, all of its children have been numbered,
so the children of that node could be reassociated at that mo-
ment. But recall that we wish to consider all terms of the
expressions with the same operator simultaneously (e.g., Di-
abolic). For that reason, we do not immediately reassociate
that node, but defer it and continue the numbering process
as long as nodes are available on the ready list. Eventually, a
point will be reached where either the numbering is finished
(every node was numbered), or the process has blocked be-
cause the only remaining nodes are on the deferred list(s). It
is at this blocking point that we perform reassociation, us-
ing the clique finding technique described previously. Once
all deferred expressions have been reshaped, then they are
added to the ready list. Note that expressions will never
be deferred more than once. Finally, the worklist algorithm
continues the value numbering process with the newly re-
associated nodes. This will in turn enable ancestors of the
reassociated nodes that were not available before because of
the blockage, and some of those too may be reassociated. In
this way, numbering and reassociation continues iteratively
until it eventually terminates. The process is efficient– ig-
noring the cost of reassociating deferred nodes, the worklist
algorithm runs in time linear in the number of nodes. The
time is dominated by reassociation, if reassociation occurs
(i.e., clique detection and alignment, see the following sec-
tions).

Inter-iteration reassociation.
The previous discussion has been using only scalar vari-

ables in expressions to simplify the explanation. That is
sufficient for detecting redundancies in acyclic regions (or a
single loop iteration). However, in this work what we are
really after is inter-iteration redundancy detection, so that
distance between expressions (∆(e1, e2)) must now be incor-
porated. The clique finder described so far groups expres-
sions based only on their name. This means potentially that
either a clique may not actually represent an inter-iteration
RSE at all, or that expressions must be“aligned” in a certain
way (to be explained below) to be redundant.

Take the simple case when the operands to be considered
are just array references. Recall that baseline ESR repre-
sents an array reference by a name derived from the partition
it was placed in during the Partitions phase. For the expres-
sion (* A(I+1) A(I+3) B(I+0) B(I+3) B(I+2)), the name
partitions created by scalar replacement would be p0={A(I+1),
A(I+3)} and p1={B(I+0), B(I+3), B(I+2)}. The clique
finder effectively treats the expression as (* ?p0 ?p0 ?p1

?p1 ?p1). A clique representing (* ?p0 ?p1) would be found
as expected. The problem is that this clique could represent
at least two different ways of rewriting the expression, de-
pending on what order we happen to choose the operands
to rewrite. One rewrite,

(* (* A(I+1) B(I+0))

(* A(I+3) B(I+2)) B(I+3))

is an RSE, while another rewrite

(* (* A(I+1) B(I+3))

(* A(I+3) B(I+2)) B(I+0))

is not because the expression distance isn’t defined between
the two subexpressions in it.

The problem is that in the inter-iteration case, the clique
represents potential RSEs. That is, we need to verify whether
the clique can be written as an RSE, and then make sure we
rewrite it properly. This is done by aligning the operands
represented by each clique node so that the maximum num-
ber of references are at a constant distance from each other.
That is, think of each each clique node having an associated
column or vector of operands sorted by distance from the
group’s generator. Note that the operands can be arbitrar-
ily complex, even though for clarity of explanation we are
using simple array references. For the example, the columns
would be (dashes show an empty entry):

Group ?p0 [distance] ?p1 [distance]

A(I+3) [0] B(I+3) [0]

---- [1] B(I+2) [1]

A(I+1) [2] ---- [2]

B(I+0) [3]

It is clear that if we are to create redundant expressions from
these operands, that we should choose A(I+3) and B(I+2)

for one subexpression and A(I+1) and B(I+0) for the other.
In this case, no other choice will create a redundant expres-
sion.

Algorithmically, we need to do an alignment of the columns,
so that the maximum number of operands on each row line
up. This corresponds to shifting up or down the columns
to create matches. In the above example, there is only one
alignment that makes sense, which would be done by shifting
the first column down one position:
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B(I+3) [0]

A(I+3) [0] B(I+2) [1] (match)

---- [1] ---- [2]

A(I+1) [2] B(I+0) [3] (match)

Another way to view the columns is as a bit vector where
a “1” is placed in a position where a reference exists, and
a “0” where no reference exists. Then the best alignment
can be found by iteratively trying each possible alignment
of the two vectors, and bitwise ANDing the vectors into a
third vector. The number of bits set in each result vector is
the number of rows that had a match. The best alignment
is the one that maximizes this sum. Interestingly, this is
exactly the well known Match-count Problem which arises
in computational biology among other places [16]. There is
a naive way to solve this which can be done in O(n2) time
for two vectors of length n. Gusfield shows a more sophis-
ticated O(nlogn) approach, but it has fairly high overhead,
so that large sizes of n are likely required to beat the naive
approach3. In practice, we see small vectors, so the naive
approach is acceptable. It is the approach we adopt.

Note that the match-count problem only involves two vec-
tors. Generally, our cliques will have more than two nodes,
so there are more than two vectors. This implies we need to
compute the match-count for every pair of vectors. We de-
signed an O(rn2) approach that in theory may not perform
as well as an all-pairs approach, but gives reasonable results
for our tested set of loops.

The idea is to only perform r − 1 match-counts instead
of r2. First, we order the columns from left to right by
decreasing number of 1’s in the column. Starting at the left-
most column 1, we compare (match-count) it with column
2. We do the same for columns 2 and 3, and so on up to
r − 1 with r. Once the match-count for a pair is found, we
mark which entries matched and how many positions up or
down the second column was shifted for the match. Each
time a subsequent pair is matched, only rows that also had
matches in the previous column match in this pair (which
simplifies rewriting). Finally, two entries can only match if
the operands belong to the same term in the original expres-
sion.

Once all columns are aligned, we can readily choose the
redundant expressions to create. Each matching row repre-
sents one new subexpression, and all the operands marked
as matched in that row will be in the new subexpression.
If the alignment results in only one row with matches, then
there are no redundant expressions, since that corresponds
to only one expression.

5. EXPERIMENTAL RESULTS
We have implemented ESR+reassociation (“ESR+”) in

the Open64 compiler, as part of a high-level loop nest op-
timizer. Table 1 shows the direct results of applying CSR,
ESR, and ESR+ to loops from SPEC2000, SPEC2006, hand-
written DSP, and LANL POP. Most of the selected loops are
floating-point computations, with the exception of the con-
servative smoothing filter and Laplacian of Gaussian filter,
which use integer arithmetic. Each column shows a type of
operation occurring in the source code, the original number

3Felsenstein’s implementation on early 1980’s hardware in-
dicates that the FFT approach is only faster when n >
2000 [14]. However, on modern hardware with fast floating-
point, n might be much less today.

of occurrences, and the number remaining after ESR and
ESR+, respectively. A blank column indicates that either
the operation does not occur in the loop, or none of those
operations were removed during optimization. A boldface
entry indicates a case where ESR+ improved upon ESR.
Since CSR only removes memory references, and all three
methods remove the same number of loads, the CSR results
can be read from the“load” column. Any column other than
“load”which is not empty shows a case where ESR or ESR+
removed operations not detected by CSR.

It is evident from the table that CSR already optimizes
these loops well, removing many redundant loads. Even so,
ESR discovers other redundancies involving arithmetic oper-
ations. These include operations that are typically expensive
on most hardware, such as floating-point divide and cosine
intrinsics. For example, ESR eliminated 4 of 8 cos calls and
4 of 8 sin calls in calc_tpoints, a substantial reduction.

The table also indicates that applying reassociation in
conjunction with ESR is important. In 8 of 13 loops, re-
association allowed more redundancies to be detected than
ESR alone. Moreover, in most of those cases, reassociation
was necessary to detect any arithmetic redundancies at all.
While some loops only had a modest improvement, others
had dramatic reductions in the overall operation count.

It is also interesting that, at least on this set of loops,
the simple O(rn2) alignment heuristic performs satisfacto-
rily (e.g., all redundancies were detected in pintgr, resid,
and others). However, one loop where the alignment did
not perform well is lapl_of_gaussian. Despite 12 of 65 re-
dundant additions eliminated, there are at least twice that
many that could be eliminated with a stronger alignment
algorithm.

App/Bench Proc/Loop CSR ESR+ CSR
ESR+

LANL POP calc tpoints 3.6 2.4 1.5
SPEC2000 mgrid:resid 473.41 289.33 1.64

mgrid:psinv 232.02 143.27 1.62
mgrid:interp 30.57 27.8 1.1
mgrid:rprj3 74.49 73.24 1.02

Table 2: Runtime (seconds) and speed-up

We also measured the runtime of some of the loops to see
how the static reduction in redundant operations helped ex-
ecution time on a particular machine. We targeted a 3.2GHz
Intel Pentium 4 CPU box with 1GB of RAM, running Red
Hat Linux FC4. We tested 172.mgrid from SPEC CPU2000
and measured the four most time consuming routines in sec-
onds. We also extracted a kernel from the Los Alamos Na-
tional Lab’s Parallel Ocean Model program, which was run
for a 128x128x128 problem. In Table 2 the CSR column is
the time for a version optimized with classic scalar replace-
ment, while the ESR+ column was optimized with enhanced
scalar replacement.

6. RELATED WORK
The work most closely related to ours is a paper by Deitz,

et. al. [11]. Their work extends common subexpression elim-
ination to the inter-iteration case, obtaining an effect simi-
lar to ours, albeit on a more restrictive class of inputs. Also
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Loop add cos div load max min mul sin sub x2

applu:rhs:2658 6/4/4 - 2/1/1 10/5/5 - - 18/16/16 - - 8/3/3
applu:pintgr:2433 8/8/5 - - 8/4/4 - - - - - -
swim:calc1:262 9/8/8 - - 23/6/6 - - 11/10/10 - - -
swim:calc2:316 9/9/7 - - 23/11/11 - - - - - -
mgrid:resid 23/23/11 - - 32/14/14 - - - - - -
mgrid:psinv 27/27/15 - - 32/14/14 - - - - - -
mgrid:rprj3 26/26/20 - - 27/18/18 - - - - - -
apsi:dtdtz:1476 - - - 15/6/6 - - 8/6/5 - 4/3/3 -
apsi:smth:3443 - - - 9/2/2 - - - - 3/2/2 -
zeusmp:forces:493 - - - 60/23/23 - - 36/27/27 - 12/10/10 12/8/8
csmooth filter - - - 19/3/3 9/9/5 9/9/5 - - 3/2/2 -
lapl of gaussian 64/64/52 - - 65/9/9 - - - - - -
calc tpoints 11/8/8 8/4/4 - 16/4/4 - - 11/7/7 8/4/4 - -

Table 1: Static operation counts (original/ESR/ESR+)

noteworthy is that they take into account associativity to en-
large the class of common subexpressions detected. While
similar opportunities are exploited by both their technique
and ours, the algorithms are completely distinct and ours
is more general. First, they handle only expressions in the
form of a sum-of-products and the operands can only be ar-
ray references (and all arrays must be of the same rank and
index expressions must be of a stringent form). We handle
arbitrary expressions of any form and any level of nesting, so
that no assumption is made regarding whether an operand
is an array reference or some arbitrary expression.

Next, our technique is based on value-numbering, and
hence value-identity. This allows us to detect, e.g., alge-
braic equivalences across loop iterations, which their tech-
nique cannot. That is, we have the same advantages that
traditional value numbering has over traditional CSE based
on lexical identity. Moreover, our reassociation is more pow-
erful since it is completely integrated with value numbering,
so that reassociation applies to any level of an arbitrary ex-
pression (not just leaf expressions).

Finally, ESR is fully integrated with the standard scalar
replacement framework. We thus leverage the register pres-
sure moderation technique which is critical to avoid over-
applying scalar replacement. We are able to consider ordi-
nary scalar replacement opportunities (memory references)
and enhanced opportunities (general expressions) equally
and in a unified way. Deitz would have to independently
apply scalar replacement as a subsequent pass.

Bodik, et. al. describe a path-sensitive dataflow analy-
sis framework which combines value partitioning, symbolic
back substitution, and dataflow analysis [3, 4]. The frame-
work can be used to build a powerful PRE-like algorithm
which can detect some values across loop iterations. The
handling of loops is somewhat complicated, and requires re-
peatedly performing symbolic back substitution of expres-
sions for some pre-determined window of iterations. They
do not exploit associativity. The algorithm uniformly han-
dles scalars, indirect references, and array references, poten-
tially making it applicable to more codes than our current
algorithm (which focuses on array-based codes).

An early and interesting attempt by Breuer [6] proposes
a “grow factor” heuristic which incrementally builds up fac-
tors (common subexpressions) utilizing commutativity and
associativity to increase the number of factors found. The

technique is only applicable to a limited form for expressions
and does not detect inter-iteration common subexpressions.

Briggs and Cooper discuss a global reassociation technique
that aims to improve the results of code motion in a PRE-
like algorithm [7]. While their algorithm does improve code
motion, it doesn’t necessarily lead to more common subex-
pressions. This technique can be seen as orthogonal to our
reassociation technique.

7. FUTURE WORK
We do not currently use distributivity to increase the num-

ber of redundancies, though there are times when this is
possible. The difficulty with distribution is that it may in-
troduce more operations, so that any heuristic must be care-
fully designed and applied.

We’ve already seen the value of reassociation opportuni-
ties in the inter-iteration scenario. We would like to imple-
ment reassociation in a traditional acyclic value numberer,
to determine experimentally how many opportunities arise
in scalar and non-loop code.

We would like to extend ESR to reuse entire vectors, in
the same way as Allen and Kennedy’s “vector register allo-
cation” [1] does, but for general inter-iteration expressions.
Vector extensions are now becoming common in commer-
cial CPUs, so that vector register reuse will be increasingly
important.

There is much more algorithm design and experimenta-
tion that could be done in various parts of ESR+, especially
alternative alignment heuristics and alternative ways of per-
forming register pressure moderation.

Our entire heuristic approach to reassociation is based on
the notion that exhaustively exploring the enormous number
of ways to rearrange expressions during value numbering
is not practical. But given the moderate size of some of
interesting loops we see, and ever rising CPU performance, it
may actually be feasible to try some sort of optimal approach
for cases where the heuristics don’t perform well. Even if not
practical in all cases, it would set a“gold standard”by which
heuristics could be measured.

Finally, it would be interesting to explore the possibility
of incorporating reassociation into other redundancy elimi-
nation techniques, such as the recent PRE-based algorithms
discussed in section 6.
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8. CONCLUSIONS
A number of codes exhibit redundant computations that

are undetectable by the classic redundancy elimination tech-
niques. We combined classic scalar replacement with value
numbering into a more powerful algorithm which detects a
broad class of inter-iteration redundancies. The experimen-
tal results show that removal of these kinds of redundan-
cies can improve runtime performance significantly, and that
such computations appear in important application domains
such as scientific computing and digital signal processing.

It was also seen that a number of redundancies in real
applications are “hidden” in the sense that they are not di-
rectly available to a value numberer due to fixed association
of operands. We describe an algorithm which incorporates
into value numbering the ability to perform aggressive rear-
rangements (reassociation) of expressions in order to expose
more redundancies. Examination of a number of applica-
tions shows that opportunities for inter-iteration redundan-
cies are enhanced with reassociation. Before this work, no
classic value numberer had this capability.

The new technique builds directly on the classic scalar
replacement framework implemented in many current in-
dustrial compilers. Practitioners can thus incorporate our
algorithms into their compilers with relatively modest ef-
fort.
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