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ABSTRACT
Effective use of communication networks is critical to the
performance and scalability of parallel applications. Parti-
tioned Global Address Space languages like UPC bring the
promise of performance and programmer productivity. Stud-
ies of well-tuned programs have suggested that PGAS lan-
guages are effective at utilizing modern networks because
their one-sided communication is a good match to the un-
derlying network hardware. An open question is whether the
manual optimizations required to achieve good performance
can be performed automatically by the compiler in a perfor-
mance portable manner.

In this paper we present a compiler and runtime opti-
mization framework for loops containing communication op-
erations. Our framework performs compile time message
vectorization and strip-mining and defers until runtime the
selection of the actual communication operations. At run-
time, the communication requirements of the program are
analyzed, and communication is instantiated and scheduled
based on highly tuned network and application performance
models. The runtime analysis takes into account network
flow control and quality-of-service restrictions, and it is able
to select from a large class of available communication primi-
tives the communication schedule best suited for the dynamic
combination of input size and system parameters. The re-
sults indicate that our framework produces code that scales
and performs better than that of manually optimized imple-
mentations. Our approach not only improves performance,
but increases programmer productivity as well.

Categories and Subject Descriptors
C.4 [Performance of Systems]: [Design studies, Mod-
eling techniques]; D.2.4 [Software Engineering]: Met-
rics—Performance measures; D.1.3 [Programming Tech-
niques]: Concurrent Programming—Parallel programming ;
D.3 [Programming Languages]: [Parallel, Compilers]; I.6.4
[Computing Methodologies]: Simulation and Modeling—
Model Validation and Analysis

Copyright 2008 Association for Computing Machinery. ACM acknowl-
edges that this contribution was authored or co-authored by an employee,
contractor or affiliate of the U.S. Government. As such, the Government re-
tains a nonexclusive, royalty-free right to publish or reproduce this article,
or to allow others to do so, for Government purposes only.
ICS’08, June 7–12, 2008, Island of Kos, Aegean Sea, Greece.
Copyright 2008 ACM 978-1-60558-158-3/08/06 ...$5.00.

General Terms
Performance, Measurement, Languages, Design

Keywords
Parallel Programming, Program Transformations, Perfor-
mance Portability, Communication Code Generation, La-
tency Hiding

1. INTRODUCTION
As high end computing systems continue to scale in CPU

computational power and overall node count, optimization
techniques that can reduce communication overhead have
proven important [7, 10, 29]. Communication optimizations
have been explored in the context of parallelizing compilers
and data parallel languages. Most of these studies have tra-
ditionally been performed using MPI as the communication
library and at a time when networks had a relatively high
latency and low bandwidth. As a result, most techniques [8,
21] concentrate on eliminating redundant messages and re-
ducing message count through aggregation. Research [4, 12]
on recent networks has shown that significant performance
improvements can be achieved using fine grained communi-
cation decomposition and overlap.

Manual application of communication optimizations af-
fects programmer productivity as these transformations are
tedious and error-prone. Multiple code generation schemes
are available for the communication in a given loop nest, and
the best performance depends on a large set [17] of architec-
ture and application parameters that cannot be estimated
statically. Optimizations need to account for flow control
network restrictions and the quality of service provided at
a given system scale. It is thus difficult for programmers to
generate code that can achieve good performance under dif-
ferent application input sets or on different cluster systems.
An open research question is whether the manual optimiza-
tions required to achieve best performance can be performed
automatically by the compiler.

In this paper, we present a loop optimization framework
designed to achieve both efficient overlap of communica-
tion with computation and performance portability. The
framework has been implemented in the Berkeley UPC com-
piler [9] and uses a combination of compile time and runtime
analysis. The resulting infrastructure is capable of perform-
ing strip-mining optimizations and to implement a multi-
protocol approach for programs that use scatter/gather style
operations.

Experimental results indicate that our framework pro-
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Figure 1: Overall design.

duces code that is faster, more scalable, and exhibits more
performance portability than that of manually optimized im-
plementations. We have observed an average speedup of
9.5% over manually optimized implementations for applica-
tion kernels from the NAS Parallel Benchmarks suite. The
average speedup is as high as 17% for some kernels for a
large class of configurations evaluated. To our knowledge,
this is the first compiler research effort able to exploit non-
blocking communication in such a scalable manner. Since
our approach is mostly transparent to the user, it not only
improves performance and scalability but increases program-
mer productivity as well.

2. DESIGN
UPC [28] is a parallel extension of the ISO C program-

ming language aimed at supporting high performance scien-
tific applications. The language adopts the Single-Program-
Multiple-Data (SPMD) programming model and provides a
shared memory space abstraction. Communication in UPC
is either explicit through library calls or implicit through
shared variable accesses. The Berkeley UPC compiler is im-
plemented using the Open64 [23] infrastructure and gener-
ates calls to the GASNet [5] communication layer.

Our goal is to provide performance portable loop opti-
mizations in the presence of communication: for any given
loop nest we need to select the best sequence of transforma-
tions to provide good serial performance and to hide com-
munication latency. Even for simple cases, communication
performance depends on a variety of dynamic factors de-
scribed in Section 4, and a static compile time approach
alone cannot determine the best performing optimizations.
This problem is compounded by the fact that for each sys-
tem, there is a wide set of communication interfaces avail-
able for code generation, each with different performance
characteristics.

We analyze and transform programs written in a shared
memory style, with fine-grained remote array accesses. Fig-
ure 1 presents the overall design of our approach. We extend
the compiler to perform message vectorization and message
strip mining optimizations. At compile time loop nests are
analyzed, their communication requirements determined, and
the computation overhead estimated. The compiler passes
analysis information to the runtime, and performance porta-
bility is achieved by decoupling data movement from local
computation and using system specific models for commu-
nication instantiation. We generate template code that uses
the transferred data without making any assumptions about
the communication mechanism. At each loop boundary the
generated code contains callbacks into a runtime analysis
module. Based on actual application and network param-

eters, the runtime analysis phase selects the most efficient
communication operations for a loop nest. For this we use
a performance model and heuristics to determine dynamic
application characteristics, such as computational and com-
munication load. The communication schedule computed
by our analysis takes into account flow control restrictions,
network quality of service and application communication
topology. For any given scenario, the analysis is able to se-
lect dynamically between contiguous communication primi-
tives (Put, Get) and scatter/gather primitives implemented
using Active Messages.

A major challenge of such approach is designing a light–
weight yet efficient code generator for an optimization space
with many dimensions. We achieve this by using an ex-
pressive program representation and by enforcing as little
hardware awareness as possible1. Our work makes contribu-
tions in the areas of: 1) code generation strategies for loops
containing one-sided communication; and 2) runtime mech-
anisms for performance portability and adaptation at high
concurrency across a variety of communication interfaces.

3. PERFORMANCE PORTABLE LOOP
OPTIMIZATIONS

Consider the code in Figure 2-(1) that performs a mul-
tiplication between a local vector b and a remote matrix
a. In this unoptimized code, the remote accesses in every
iteration of the loop add significant overhead. Message vec-
torization eliminates the overhead of fine-grained transfers
by fetching the remote data in a single bulk copy outside the
loop nest. The transformed code is presented in Figure 2-
(2). The serial code has been blocked for cache and contains
a triple-nested loop.

Message vectorization alone usually does not achieve op-
timal performance because it does not exploit the potential
of communication and computation overlap. A more ag-
gressive optimization called message strip-mining, shown in
Figure 2-(5), can be applied to further reduce the commu-
nication overhead. Message strip-mining divides the com-
munication and computation of a loop nest into sub-blocks
(strips) and pipelines the communication. In this partic-
ular example, strip-mining is performed at the granularity
of B elements, imposed by the cache blocking. Compared
to the vectorized code, the optimization increases the num-
ber of messages and thus the startup overhead, but could
hide communication latencies through the overlap of non-
blocking transfers with independent computation.

The effectiveness of message strip-mining clearly depends
on the strip size; an overly coarse-grained decomposition
means insufficient overlap, while an overly fine-grained de-
composition may result in excessive message start-up costs.
The optimal strip size and communication schedule for an
optimized loop are determined by both architectural param-
eters (e.g., latency and bandwidth) and application char-
acteristics (e.g., data volume, local computation overhead,
and communication pattern). For optimal performance, the
optimizer needs to determine precisely the communication
granularity and schedule for a given setting. For perfor-
mance portability, the transformed code needs to be able
to accommodate different granularities and schedules. The
values of most of the important parameters become avail-

1We try to minimize the number of hardware related per-
formance parameters incorporated in any model.
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for(i=0; i<M; i++)
   for(j=0; j<N; j++)
      c[i] += a[i*N+j]*b[j];

Get(temp, a, M*N);
for(j=0; j<N/B; j++)
   for(i=0; i<M; i++)
      for(jj=0; jj<B; jj++)
         c[i] += temp[i*N + j*B + jj]*b[j*B+jj];

h[0] = Get_nb(…B);
h[1] = Get_nb(…B);
…
h[M*N/B] =Get_nb(…B);
for(j=0; j<N/B; j++)
   Cj = …;
   for(i=0; i<M; i++)
      Sync(h[j]);
      Ci = ..;
      for(jj=0; jj<B; jj++)
         c[i] += a[i*Ci + j*Cj + jj]*b[j*B+jj];

(1)                                                   (2)

X

B

communication order

C

(3)                                                  (4)                                                    (5)

X

B

computation order

M

N

Figure 2: (1) Fine-grained loop; (2) Loop after message vectorization and cache blocking; (3) Memory order
for cache blocked loop; (4) Possible memory order for packed communication; (5) Code for strip-mined
loop;

able only at runtime and in order to achieve good overlap,
dynamic techniques are required.

Another complication is that many applications perform
non-contiguous remote sub-array accesses, either due to stri–
ded accesses or accesses to a rectangular section of multi-
dimen–sional arrays. Examples include transfers of bound-
ary data in finite difference calculations, particle-mesh struc-
tures or as a result of tiling optimizations (e.g., Figure 2-
(4)). For these disjoint memory regions, the optimizer has to
choose between multiple protocols for data communication.
For example, one option is to copy each contiguous region
individually and use communication pipelining to overlap
their latencies, with the alternative to aggregate the non-
contiguous regions by performing packing/unpacking inside
the runtime. The performance for both approaches again is
highly sensitive to the network and application parameters.
Several previous studies [14, 19, 27] have examined the per-
formance of multi-protocol scatter/gather operations, but
fall short of providing a good methodology for choosing the
right implementation for a given application, especially for
systems with wide SMP nodes.

4. NETWORK PERFORMANCE
For efficient optimizations, an understanding of the varia-

tion of performance parameters across both small and large
time scales is required. In [17], we examine the variation
of the LogGP [1, 11] network performance parameters for
one-sided Put/Get primitives on the InfiniBand and Elan
networks. The model parameters are o, the send overhead
of a message; L, round-trip network latency; and G, the in-
verse network bandwidth. A brief summary of these findings
follows.

On each network, the overhead of initiating non-blocking
communication is minimized for a certain number of consec-
utive operations. The overhead of initiating communication
operations is payload dependent. Network resource con-
straints matter and application level optimizations should
work their way around such constraints. Network Interface
Cards (NIC) have a limit on the number of outstanding com-
munication operations allowed and implement flow control
mechanisms that can affect the amount of effective overlap

achieved. The fairness of the bandwidth allocation provided
by the network varies with system scale and load. For com-
munication patterns that require full bisection, there is a
large difference in the bandwidth observed by communicat-
ing processor pairs and end-to-end application performance
is directly determined by this bandwidth repartition.

In our implementation, we achieve performance porta-
bility for strip-mining optimizations by using some of the
models presented in [17], which we extend with runtime
techniques for instantaneous system load estimation. Our
runtime mechanisms take into account the variation of com-
munication initiation overhead with payload and number of
back-to-back messages: o = o(b, S), where S is payload and b
is the number of consecutive messages. The fairness of band-
width allocation at scale is captured by the bandwidth pa-
rameters Gh(P, S) and Gl(P, S): the upper and lower bound
of the service level achieved at each degree of concurrency
(P is the number of nodes). For efficient strip-mining, the
models require an estimate of loop overhead.

The networking layer used for the Berkeley UPC com-
piler also provides scatter-gather style communication prim-
itives [6] which are collectively referred to as Vector-Index-
Strided (VIS) functions. VIS calls transfer efficiently mul-
tiple non-contiguous memory regions and are implemented
by GASNet using Active Messages (AM) and data packing.
Our runtime communication analysis is able to combine dis-
joint Put/Get transfers into VIS calls. The GASNet VIS
implementation packs any non-contiguous data items into
contiguous internal buffers and overlaps the packing with
the data transmission. At the remote end, received data is
unpacked and copied into its final destination. The length of
the internal buffers, referred to as AMSize, can be selected
at GASNet installation time and has a default value of 1500
bytes. All of our site installations use this default value.

For our runtime mechanisms we develop novel heuristics
to choose dynamically between instantiating communication
using pipelined Put/Get operations and VIS calls, based on
the problem settings. A distinguishing characteristic of our
approach is the ability to handle systems with wide SMP
nodes. Multi-protocol scatter/gather operations have been
previously studied [14, 19, 27], but we believe that the ex-
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Figure 3: Relative speed of multi-protocol gather on 8 way PowerPC SMP cluster. Color-map represents
the ratio TV IS/TPIPE. Values lower than 1 indicate that the VIS implementation is faster. SIZE = length of
contiguous region in doubles, NMSGS = number of regions. Left: Inter-node, 1 CPU per node active. Center:
Inter-node, 8 CPUs active per-node. Right: Intra-node (SMP only), 8CPUs.

isting work falls short on choosing the right implementation
on clusters of wide SMPs or systems where noise is present
due to limited hardware resources.

Our approach is based on the following assumption. The
performance of such implementations depends on a seem-
ingly large parameter space. However, on each parameter
axis there are large contiguous regions where the perfor-
mance of a given implementation behaves in a continuous
manner. In those regions, a simple comparison of previously
observed performance will indicate the best performing im-
plementation. Whenever noise appears in the system, we
assume that the implementation that best avoids it will per-
form best.

To guide the protocol selection we directly compare the
performance of pipelined implementations with the perfor-
mance of VIS implementations across the parameter space.
The parameters we consider are: message length, number
of messages, number of active processors and whether com-
munication is intra-node or inter-node. For each setting we
record the duration of the slowest operation observed across
all endpoints involved. We then build comparative maps
across the parameter space.

Figure 3 presents the evolution of the comparative perfor-
mance of the two implementations for various scenarios on
the IBM Power5 cluster described in Table 1. The number
of regions is labeled NMSGS and the length of a region is
labeled SIZE. The graph shows the evolution of TV IS

TP IP ELINE
.

Similar trends are observed on the InfiniBand and the Cray
XT networks.

The sequence of the graphs shows how the effectiveness of
the VIS implementations is gradually affected by resource
contention within an SMP node. The leftmost graph cor-
responds to a scenario where only one processor is actively
communicating within an eight-way SMP node. The cen-
ter graph shows the performance when all eight processors
within a node are communicating outside the node. The
rightmost graph shows the comparative performance when
all communication occurs within an SMP node.

We build these performance profiles for an increasing de-
gree of node concurrency and incorporate them directly into
the runtime mechanisms described in Section 8. For lack of
space we do not show results for higher concurrency. The
results indicate that VIS implementations gradually start

over-performing pipelined implementations due to less2 traf-
fic injected into the network.

5. LINEAR MEMORY ACCESS
DESCRIPTORS

The runtime system in our framework retrieves the de-
scription of the structure of a communication operation from
a compile time generated representation: Linear Memory
Access Descriptors (LMAD). The LMAD has been intro-
duced by Paek et al [24] as a representation designed to
capture precisely the access region of a loop nest and to
enable analysis techniques that expose the simple memory
footprint of access regions. Their basic observation is that
sometimes loop index expressions that cannot be easily ana-
lyzed or correlated end up accessing memory in similar pat-
terns. The patterns are characterized by two factors: stride
and span.

The stride records the distance traveled in memory when
a loop index is incremented. The span records the total dis-
tance traveled in memory due to the variation of a single
index, with the other indices constant. Given a loop nest
with induction variables (i1, i2, ..., id) and an array A, the
following representation, called LMAD, captures the entire
access pattern for an array reference

Aδi1 ,δi2 ,...,δid
σi1 ,σi2 ,...,σid

+ τ

where δik and σik are the stride and span due to index ik,
and τ is the base offset of the array and holds the contribu-
tion of loop constant terms.

They show how to compute the terms for the LMAD as-
sociated with an array reference and define a rich set of
operations that can be used to simplify and reason about
the memory regions accessed by two LMADs. They dis-
tinguish the following types of LMADs: 1) coalescible where
the number of dimensions within the LMAD can be reduced;
2) interleaved which combine address streams with different
strides and 3) contiguous where the combination of all the

2Data packing produces fewer network packets when the
length of any contiguous region is lower than the AMSize
threshold.
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address streams describes a contiguous region. The con-
straints on the loop induction variables are represented by
a polytope.

The polytope associated to the nest in Figure 2-1) is the
set {(0, N), (0, M)}. The array reference a[i*N+j] is rep-

resented by the LMAD a
N,1
M∗N,N +0. For the code in Figure 2-

(2) the LMAD describing temp[i*N+j*B+jj] is aB,N,1
N,M∗N,B+

0. The two LMADs in this example are equivalent and us-
ing the coalescing operation they are simplified to a1

M∗N +
0 which captures the total memory footprint of M ∗ N .
An example of contiguous LMADS is encountered in sten-
cil operations, e.g. the references a[i][j], a[i][j+1] can be
represented by one single LMAD a1

M∗(N+1). Interleaved
LMADS are generated by references such as a[i*100+1],
a[i*100+2] which are both covered by a1,100

2,N+2. More de-
tails about LMAD simplification can be found in [24].

6. COMPILE TIME ANALYSIS AND
TRANSFORMATIONS

Open64 contains a rich loop optimization infrastructure,
capable of performing unimodular, tiling and cross nest trans-
formations which we have extended to perform communi-
cation aware analyses and optimizations. The supported
optimizations are message vectorization and message strip-
mining. The compile time analysis also extracts information
about the serial overhead of loop bodies. We have also writ-
ten an analysis pass able to recognize data redistribution
operations where the target buffers are explicitly provided
by the application. In this case data can be transferred
directly into its final destination without any intermediate
runtime buffering.

During the vectorization process, for each remote refer-
ence we extract the LMAD corresponding to the index ex-
pression. For each nest that has been vectorized, we gen-
erate template code with entries into the runtime analysis
layer. The code for each nest contains the loop description,
the LMADs that describe communication and place holders
for communication synchronization operations. The code
resembles the interface for a communication iterator, and
Figure 4 shows the code generated for a reduction opera-
tion.

The first calls describe the loop bounds and the LMADs
involved in communication. Selection of the actual commu-
nication primitive is deferred until runtime. The call
analyze_transfers performs LMAD simplification opera-
tions, determining for the communication operations required
their granularity and schedule. Communication operations
can be instantiated or retired inside any of the calls: ana-

lyze_transfers, advance_dim(level),
finalize_dim(level). Implementation details are presented
in Section 7. For multiple loop nests, each nesting level
contains calls into the runtime (advance_dim and final-

ize_dim) that can be used for communication synchroniza-
tion. With this abstract description the runtime can dy-
namically choose the granularity of the communication op-
erations and overlap. Temporary communication buffers are
managed by the runtime (get_local_address).

To provide potential for communication overlap, we auto-
matically strip-mine single nested loops at compile time, as
shown in Figure 4 ( get_strips call). Since the strip size is
not determined until execution time, the runtime analysis is
able to determine the cases where this optimization is not

ln = start_nest( key);
add_polytope_dim(ln, DEPTH, LB, UB, STRIDE);
br = new_base_ref(ln, ALIAS, element_size;
lmad = new_lmad(ln, br, base_ptr, READ);
add_sos_dim(ln, br, lmad, 0, stride, span);
refvect = analyze_transfers(ln);
if(refvect== 1) {
   lbase = (double *) get_local_address(ln, br, lmad);
   sd = get_strips(ln);
   for(oidx = 0; oidx <= ((N-1 / sd) -1); oidx = oidx + 1) {
        advance_dim(ln, DEPTH);
        for(iidx = 0; iidx <= (sd -1); iidx = iidx + 1) {
          i = iidx + oidx * sd;
          sumv =lbase[i] + sumv;

    //patch-up code
      finalize_dim(ln, 0);
else {
       //fallback code - shared memory version

end_nest(ln);

Figure 4: Optimized Code

actually profitable and set the number of strips to one. For
deeper loop nests, overlap is already present due to the loop
structure. However, it might be the case that long inner-
most loops can benefit from further blocking. Accordingly,
we always strip-mine unit strided innermost loops. Loops
containing references with non-unit stride are likely to re-
quire VIS calls and are not currently blocked. If we find a
motivating application, future extensions to this work will
consider decomposition and overlap across VIS calls.

Our approach for discovering and exploiting overlap is dy-
namic. We are aware of only one other compiler effort to ex-
ploit overlap for loop nests using one sided communication.
This is work performed by Paek and presented in his PhD
Thesis. He only considers a static approach where overlap
is provided at a compile time static nesting level.

The analysis we have implemented does not handle loops
with conditionals and does not perform cross nest optimiza-
tions. For the compile time LMAD generation analysis we
have not implemented yet the full symbolic simplification
described by Paek. Our compile time analysis does not
attempt to eliminate redundant communication operations.
Such a case is encountered in the CG benchmark described
in Section 9 where transferred data is reused twice in subse-
quent computation. To eliminate redundant communication
we provide a runtime data caching module that preserves
transferred data according to the UPC language memory
consistency model. However, in all applications we have ex-
amined, the parts of the code where data is reused are sepa-
rated by synchronization operations which, according to the
memory model, will trigger an invalidation of the runtime
caches. This situation is encountered in the CG benchmark.
Due to these limitations, application developers using our
infrastructure might have to perform manual elimination of
redundant communication.

Optimizations are performed only for loop nests where the
regions accessed in any complete loop iteration are disjoint.
This requirement is captured by LMADS that satisfy the
constraint span(i−1) ≤ stride(i)||span(i−1) == 0, for any
dimension i. The first constraint specifies non-overlapping
memory regions, the second allows for reuse of a region as
encountered in tiled loops. All of the applications examined
in this paper exhibit these characteristics.
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7. RUNTIME ANALYSIS
The runtime analysis part of our framework is responsible

for instantiating the communication operations and deter-
mining their granularity and schedule. For each source level
array reference, the compile time analysis will generate code
to describe the associated LMAD. The goal of the analysis
is to determine for each source level reference an equivalent
communication LMAD whose memory footprint subsumes
the footprint of the original one and it captures all contigu-
ous memory regions. For brevity and clarity, in the rest of
this description we use the word reference to refer to source
level array references. We will use the word LMAD to refer
only to the communication descriptors that are internal to
the analysis.

At the beginning of the analysis, there exists a one to
one correspondence between references and LMADs. Sim-
plification operations will reduce the number of LMADs (if
possible) and at the end one communication LMAD might
subsume multiple references. In order to illustrate the anal-
ysis steps, we will use as example a “stencil” operation.

a[100][100], b[100][100];
...
for(j=1; j<99; j++)
for(i=1; i<99; i++)

a[i][j] = b[i][j] + b[i+1][j];

The first step of the analysis is simplification which starts
by ordering the LMADs by their starting address. The anal-
ysis starts with the list of references R and the list of LMADs
L.

R = { b100,1
990,99 + 0,b100,1

990,99 + 100 },

L = { b100,1
990,99 + 0,b100,1

990,99 + 100 }.

Afterward, coalescing is attempted for each LMAD. During
this process, the list of dimension (stride, span) descriptors
is sorted by stride. In order to keep track of the nesting
level at which communication needs to be synchronized, the
resulting list has associated with each dimension its position
in the original list. The result at the end of this step is

R = { b100,1
990,99 + 0,b100,1

990,99 + 100 },

L1 = { b1,100
99,990 + 0,b1,100

99,990 + 100 }.

In L1, the (stride, span) pairs have changed positions
when compared to L and will have associated their original
nesting level in order ensure proper synchronization. There
is still a one to one association between the elements of R
and L1.

After coalescing each LMAD, the analysis combines the
LMADs that are contiguous or interleaved. This is done
by scanning the LMAD list only once. During this process,
whenever two LMADs are combined, the analysis continu-
ously tracks the memory offsets of the participating LMADs
and maintains a“memory distance”required for correct com-
munication synchronization. The result after this stage is

R = { b100,1
990,99 + 0,b100,1

990,99 + 100 },

L2 = { b1,100
99,100 + 0 }.

There is a many-to-one correspondence between references
and LMADs and the element of L2 has associated the infor-
mation that for the loop with stride 100 (index i), it needs

to fetch 100 elements in advance in case that communication
will be generated at the i loop boundary.

At the end of the simplification stage, the runtime has a
global view of the loop transfer requirements. Based on the
performance models, the runtime determines the instantia-
tion of communication operations, granularity of decompo-
sition and schedule. For LMADs that require the transfer
of a single contiguous region, the runtime analysis uses the
models presented in [17] to choose the communication gran-
ularity and schedule. The initiation and synchronization
of communication calls are dynamically associated with the
entry points for the loop prologue or epilogue at the appro-
priate nesting level. For LMADs that require the transfer
of multiple disjoint memory regions, the runtime chooses
between pipelining Put/Get calls or synthesizes a VIS call
using a model based on the performance profiles described
in Section 4. The result of this step is a communication plan.
A communication plan can be viewed as a tuple:

CP = (Type, Comm Args, N, S, B Issue,

Init Level, Sync Level, B Sync) (1)

Inside a communication plan Type can be either a point-

to-point operation or a VIS operation, Comm Args hold the

actual arguments, N is the number of total operations, S is

the transfer granularity, B Issue is the burst length for issu-

ing communication operations. Init Level indicates the nest

depth where communication should be issued and is associ-

ated to the advance_dim/finalize_dim calls. Sync Level

indicates the nest depth where communication is retired and

finally B Sync indicates the number of communication op-

erations retired in one step.

For our example, this step will choose to instantiate all

the communication outside the (j) loop and it will apply the

heuristics to determine whether it should pipeline 100 mes-

sages of 99 doubles each or call directly the VIS library. Our

communication generation can be easily extended to accom-

modate other techniques, given proper guiding heuristics. In

our contrived example, one could imagine performing only

one “bounding box” transfer for the whole 100x100 domain.

8. PERFORMANCE DATABASE AND
HEURISTICS

The performance database to guide the optimization of

strip mined loops contains the network specific parameters

{o(b, S), Gl(P, S), Gh(P, S)}

described in Section 4. We use separate models for com-

munication bound loops and computation bound loops as

described in [17]. To estimate computation load we use a

micro-benchmark to determine the minimum number of unit

stride independent memory streams present in a loop that

will make it computation bound. Any loop containing less

streams than this threshold value is classified as communi-

cation bound. Our prototyping shows that this approach

works well in practice.

Load estimation is the most important factor in the strip-

mining performance models. For each communicating pair
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System Network CPU type
AMD cluster [18] InfiniBand 4x 640 x 2.2GHz Opteron

IBM p575 [2] Federation 888 x 1.9 Ghz POWER5

Cray XT3[3] Custom 2068 x 2.6 Ghz Opteron

Table 1: Systems Used for Benchmarks

of processors, our estimator computes a communication dis-

tance (CD) measure, defined as the distance between the

ranks of the endpoints. The heuristic to choose the band-

width profile based on CD is:

if(CD < MIN THRESH)
choose Gh(P, S)

else if(MIN THRESH < CD < P
2
)

choose Gl(P
2
, S)

else
choose Gl(P, S)

The value MIN THRESH for the fat-tree networks we in-
vestigated is chosen to be the number of ports of the first
level of switches and the heuristic to estimate the communi-
cation distance works well in practice for the benchmarks we
have examined. For loop nests with a large number of inde-
pendent remote references a weighted average communica-
tion distance might be required but we have not encountered
this situation in the applications we have examined.

The performance data used to guide the selection of pipe–
lined communication over VIS calls uses only the perfor-
mance profiles for inter-node and intra-node communication
when all the processors within an SMP node are active. In
this case we ignore the effects of load (network scale and ap-
plication communication topology) and use only the profiles
determined with two nodes communicating. Our experimen-
tal results indicate that this simple strategy performs well
in practice.

9. EXPERIMENTS
We validate our compiler and runtime optimization frame-

work using the CG, MG, SP, BT, IS and FT application ker-
nels from the NAS [22] Parallel Benchmarks suite. Table 1
presents the systems used in our experiments. We evaluate
three different machines: a mid-size InfiniBand cluster [18],
a large IBM p575 POWER5 system [2] and a large scale
Cray XT3 system [3]. The InfiniBand and IBM systems
are connected in a fat-tree topology, while the Cray has a
torus network architecture. The IBM system has 8-way SMP
nodes, while the other systems contain 2-way SMP nodes.
On the Cray system we report an incomplete set of results
and all results on this system have been obtained in runs
with only one processor active inside the 2-way SMP nodes.
The missing results on the Cray XT3 are due to problems
with the native Portals communication library.

We compare the performance of manually optimized ver-
sions of the benchmarks with the performance achieved by
our compiler and runtime optimizations. All versions are
based on the officially released UPC implementation [28] of
the NAS benchmarks, which we use as a performance base-
line. The selected benchmarks cover a wide range of com-
munication patterns. CG (get) and MG (put) perform point
to point contiguous communication. In CG the granularity
of communication for a given call site is fixed by the problem
and system size and messages are small to mid-size, ranging
from few Kbytes to tens of Kbytes. In MG, the communi-

cation granularity varies dynamically at each call site and
messages range in size from few bytes to few Kbytes. SP
(put) and BT (put and get) issue a large number of mes-
sages to a given processor, and the count and granularity
of these messages varies with problem and system size. In
BT, the contiguous transfers range from few bytes to few
Kbytes. SP exhibits characteristics similar to BT. IS and
FT perform all-to-all communication operations with gran-
ularity determined by the problem and system size. Both
benchmarks perform large message transfers, ranging from
hundreds of Kbytes to several Mbytes.

Figure 5 presents the performance results obtained on the
InfiniBand and the Cray XT3 systems. We report
POPT /PBASE , where PBASE represents the performance of
the baseline implementation, which uses manually vector-
ized blocking communication. We use for the comparison
the performance in operations per second as reported by the
benchmarks. Each benchmark has been run for ten times
an each system. Unless noted otherwise, we use the fastest
run for the comparison.

For each benchmark we manually modify the implementa-
tion to use non-blocking communication for maximal overlap
without any other source modifications. In particular, we do
not perform manual strip-mining. Where multiple imple-
mentations are available, we always report the performance
for the best one under the bars labeled HAND. The bars la-
beled OPT show the performance of the programs compiled
within our optimizations framework. For these implementa-
tions we replace all bulk communication calls in the original
program with shared memory style code. If the target buffer
of a communication operation is reused within the program
(as in the CG benchmark), we do not perform redundant
communication elimination. For the IS and FT benchmarks
we had to manually break data dependences and introduce
a double-buffering scheme directly in the application. Thus,
these two benchmarks execute additional serial work.

The results indicate that the compiler based approach out-
performs in most cases the manually optimized implemen-
tations and provide performance portability across systems.
The performance provided by our approach scales well with
system and problem size: best speedups are obtained at
high concurrency. The optimization parameters chosen for
each instance vary dynamically with the problem setting and
system architecture. For example, on the InfiniBand system
the average speedup over the manual version is 9.5% across
all experiments, the average speedup per benchmark is as
high as 17% for some classes, and the maximum3 speedup
observed over all experiments is 27%.

9.1 Strip Mining Performance
The performance of CG, IS, and FT benefits from strip-

mining and depends on the estimation of computation and
system load. For brevity, we present full only results for the
InfiniBand system and discuss the trends observed on the
XT3 system.

Across all platforms, the performance improvements for
the CG benchmark are modest. There are several reasons
for this behavior. The compiler optimized version of CG
performs redundant communication operations and the mes-

3For IS and FT at very high concurrencies we obtain
speedups of 80%. This behavior is caused by un-tuned all-
to-all implementations. We have discarded these results in
computing the averages.
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sages exchanged have short to medium size for all problem
instances. The benefits of strip mining are less pronounced
for short messages and the benchmark itself does not spend
a significant amount of time performing communication op-
erations. The benefits of our optimizations are most pro-
nounced on the InfiniBand system. This system has lower
communication initiation overhead and lower relative band-
width than both the Cray and the IBM systems. When com-
pared to manual optimizations, compiler techniques improve
performance by additional 3% across the CG workload, with
a maximum improvement of 12%.

The FT and IS benchmarks capture the network response
under congestion. On the InfiniBand system, compiler opti-
mizations improve performance by 12% for the FT workload
and by 18% for the IS workload. On all systems, the higher
the concurrency, the greater the impact of our optimiza-
tions. These benchmarks also illustrate the benefits of our
load estimation technique for strip-mining optimizations. In
Figure 5, the bars labeled FT-NLE show how the benefits
of strip-mining are diminished at higher concurrency (32,
64) when load estimation is not performed. In this case we
use in the model the bandwidth reported by a two node
experiment. This choice leads to a finer grained decomposi-
tion and a larger number of independent transfers. At high
concurrency, the latency of transfers is adversely affected
by congestion and for example, with 64 processors the FT
benchmark which is 40% faster than the baseline in the op-
timal case, becomes 2% slower than the baseline.

The torus network in the XT3 system responds differently
to congestion than the fat-tree networks. On this system,
the performance trends for FT and IS at lower concurren-
cies are similar to trends observed on the InfiniBand sys-
tem. At high concurrencies, the performance of optimized
implementations either becomes noisy or degrades drasti-
cally. The application of our techniques improves consider-
ably the performance of the non-blocking implementations,
albeit the improvements over the baseline blocking imple-
mentation are more modest. While our techniques definitely
improve performance on this system, further tuning of the
load estimation heuristics might help significantly.

9.2 Vector (VIS) Operations
The performance of MG, SP, and BT depends on the dy-

namic selection of pipelined Put/Get operations instead of
proper VIS calls and our techniques clearly improve the per-
formance of these kernels. Figure 6 shows the impact of our
techniques. Note that the results in Figure 5 correspond to
statically choosing the VIS calls.

The behavior of BT and SP benchmarks at different scales
and across systems illustrates well the pitfalls of achiev-
ing performance portability when using manual optimization
techniques. These benchmarks contain several communica-
tion stages that are expressed at source level as multiple
independent loop nests containing conditionals. Our com-
piler optimizations analyze only the innermost loops that do
not contain conditionals and the runtime analysis does not
attempt cross nest optimizations.

The results in Figure 6 report performance normalized to
that of a manual implementation that optimizes one nest
with conditionals at a time. Thus, this implementation
provides significantly more overlap than the compiler op-
timized code. The PIPE-GLOB and VIS-GLOB implemen-
tations schedule communication across multiple nests and

these implementations exploit all of the overlap available in
the benchmarks.

On the InfiniBand system, the overall performance of com-
piler generated code is superior to that of any manually at-
tempted optimization. On this system, global communica-
tion scheduling of pipelined implementations does not seem
to improve performance. Global scheduling of VIS imple-
mentations improves performance to a lesser degree than
our automated approach.

On the IBM system. which has wide SMP nodes, the per-
formance results paint a less clear picture. Different manual
implementations perform better depending on the bench-
mark setting. The impact of our optimization techniques
is best illustrated by the performance of the MG bench-
mark which does not provide opportunities for global com-
munication scheduling. For this benchmark our approach
clearly outperforms manual optimization. For the SP and
BT benchmarks, the overall performance of our approach
is better than the performance of any manual optimization
that performs local scheduling but less than the performance
of global scheduling. Manual optimizations labeled as“local”
also exploit more overlap than compiler based optimizations.

Experimental results on the wide-SMP IBM cluster indi-
cate that instantaneous load on the node network interface
is a deciding performance factor. We are currently work-
ing on refining our intra-node heuristics for dynamic VIS
selection. Preliminary results are very promising and indi-
cate that with a good intra-node load estimator the compiler
based approach outperforms manually optimized implemen-
tations that are not load aware. We believe that given the
current trend of increasing number of cores within a multi-
core processor, such techniques will become important for
achieving good communication performance.

9.3 Analysis Overhead
On all systems, the overhead of the dynamic runtime anal-

ysis is very small and for all benchmarks it amounts to a
small fraction of a percent of the total running time. The
benchmarks run for tens to thousands seconds and the anal-
ysis accounts for tens to thousands of milliseconds. We split
the analysis overhead in the time to describe the problem
and the time to analyze the problem. For all systems and
problems we observe average overheads of 5µs for the prob-
lem description and 3µs for the analysis and communication
plan generation. For reference, the round trip latency of the
InfiniBand system is 14 µs and the round-trip latency of the
Elan4 system is 9 µs.

10. RELATED WORK
Communication optimizations for parallel programs have

been studied extensively in the context of data parallel lan-
guages [15, 16, 20, 25, 26]. Initial efforts focused on ar-
ray optimizations and performed message vectorization and
coalescing on a loop nest basis. More recent efforts focus
on global program analysis. Chakrabarti et al. [7] present
a global algorithm for communication analysis and place-
ment implemented in the IBM pHPF compiler using con-
trol flow graph analysis. Kandemir et al. [20, 21] present
data flow techniques for global communication scheduling
for HPF programs, assuming either MPI communication or
one-sided communication. They perform message vectoriza-
tion, message coalescing and redundancy elimination across
multiple loop nests. One common characteristic of these
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Figure 5: Results for NAS application kernels. Class A on 4 and 8 processors, Class B on 16 and 32
processors and Class C on 64 and 128 processors. Performance (Mops) is reported as relative to that of
the officially released version. HAND refers to the best performing manually optimized implementation.
OPT refers to the performance of compiler optimized code.
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Figure 6: Performance of selected benchmarks using“global” optimization techniques compared to the perfor-
mance of more “local” optimizations. PIPE-GLOB refers to global communication scheduling using pipelined
communication only. VIS-GLOB refers to global scheduling of VIS operations, OPT refers to the performance
of compiler generated code.
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efforts is that they focus on minimizing the number and vol-
ume of communication operations. These techniques worked
well at the time due to the high latency and the low band-
width of the networks. For contemporary networks, studies
have shown that a finer-grained interleaving of communica-
tion and computation operations is able to provide better
overlap. Furthermore, until very recently, the performance
of MPI implementations was relatively system agnostic, and
previous research did not target performance portability.

Communication optimizations have also been studied in
the context of parallelizing compilers. Of these efforts, most
relevant to our work is the approach taken in the Polaris
compiler. Paek et al. [24] introduce the Linear Memory Ac-
cess Descriptor (LMAD), which is used to efficiently rep-
resent generic array regions. In particular, Paek discusses
code generation for loops containing communication opera-
tions using a one-sided communication model. He presents
simple heuristics for placement of communication operations
in order to optimize memory consumption and achieve com-
munication pipelining. His approach is static and does not
discuss how to achieve optimal overlap.

The existing compilers for PGAS languages perform var-
ious communication optimizations. The Co-Array Fortran
compiler [13] supports message vectorization but does not
perform code generation using higher level data packing and
unpacking primitives. It also does not perform strip-mining
or other compile time optimizations to exploit non-blocking
communication. The authors report very noisy performance
results when manually using VIS primitives in applications.
The Titanium compiler and runtime provide array copy li-
braries that can select either contiguous or data packing
calls. This selection is static and the compiler does not per-
form communication and computation overlap transforma-
tions. Su and Yelick [27] describe a compile and runtime ap-
proach for inspector-executor based programs. They provide
models for data packing latency estimation and selection of
communication strategies but they have not validated their
approach on wide SMP systems.

11. CONCLUSION
Effective use of communication networks is critical to the

performance and scalability of parallel applications. Parti-
tioned Global Address Space languages have proven effective
at utilizing modern networks because their one-sided com-
munication is a good match to underlying network hard-
ware. These languages also provide the means to leverage
communication overlap for latency hiding, however the use
of split-phase communication operations has primarily been
applied manually by programmers.

In this paper we have presented a compiler and runtime
optimization framework for loops containing communication
operations. Our framework performs compile time message
vectorization and strip-mining, and defers until runtime the
instantiation of the actual communication operations. At
runtime, the communication requirements of the program
are analyzed, and communication is instantiated and sched-
uled based on highly tuned network and application perfor-
mance models. The runtime analysis is able to select from
a large class of available communication interfaces the in-
terface and communication schedule best suited for the dy-
namic combination of input size and system load. The re-
sults indicate that our framework produces code that is bet-
ter performing and more scalable than manually optimized

implementations. The dynamic optimization approach used
in our system increases both programmer productivity and
performance portability.

We believe that our results are of interest to application
developers as well as communication library implementors
and language designers. Compiler assisted techniques might
be able to produce well performing implementations of some
classes of collective communication calls such as reductions
and ALLTOALLs, thereby either reducing the implementa-
tion effort or completely eliminating the need for such prim-
itives in communication libraries. Implementors of auto-
tuning parallel libraries could use our optimization approach
and decouple the serial optimizations from the communica-
tion optimizations.
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