An overview of the R-matrix electron-impact scattering package at NERSC

Workshop on Leadership-class Machines, Petascale Applications and Performance Strategies

July 27-30, Granlibakken Resort

Connor Ballance

Auburn University

Collaborators : D C Griffin : S D Loch : N R Badnell : M S Pindzola

Acknowledgments : Dept of Energy : NERSC

<u>Structure of Talk</u>

- 1. What is the R-matrix method ?
- 2. What is the underlying computational formalism and structure of the code base ?
- 3. Scaling up from 1000 -> 10000 processors on franklin.
- 4. Current bottlenecks/possible future directions

Computational Method

1. The formation of many real symmetric matrices (Hamiltonians), typically 60-100, requiring anywhere from 10-500 Gb of storage

2. The diagonalisation of each matrix, from which EVERY eigenvalue and EVERY eigenvector is required.

We achieve this through the ScaLapack package and in particular routines : pdsyevx and pdsyevd. Preference is given to the latter as it ensures orthogonality between all eigenvectors.

Matrices vary in size from 2K * 2K to 100K * 100 K , depending on the complexity of the atomic target

FORMATION

DIAGONALISATION

PHYSICAL RESULT

pstgf is well tuned ... DGEMM and loop-unrolling, make future impact on code optimisation difficult!

FRANKLIN (2500 procs) during the dual core period

📅 pstgf.batch.e505287	7 - /scratch/scrat	chdirs/cball/18	10grasp/ <	<@nid04 📃	
<u>File Edit Search Prefere</u>	nces She <u>l</u> l Ma <u>c</u> r	o <u>W</u> indows			<u>H</u> elp
Totals for program					
Time% Time		100.0% 7109.115661			
Inte Int. Time		21.832049			
Imb. Time%		0.3%			
Calls	2045 (75W)	404			
PAPI_TOT_INS PAPI_L1_DCA	3045.675M/sec 1924.964M/sec	20301132566037 12830963966484			
PAPI FP OPS	3107.882M/sec	20715780954715	ops		
DATA_CACHE_MISSES	49.228M/sec	328134470394	misses		
Cycles User time (approx)		17330459478592 17330459478592			
Utilization rate	0000.001 0000	93.8%	cycrco		
Instr per cycle			inst/cyclc		
HW FP Ops / Cycles HW FP Ops / User time	3107.882M/sec	20715780954715	ops/cycl	59.8%peak	
HW FP Ops / WCT	2913.974M/sec	20110100004110	opo	ob. o.speak	
HW FP Ops / Inst		102.0%			
Computation intensity MIPS	7614187.14M/sec	1.61	ops/ref		
MFLOPS	7769706.07M/sec				
Instructions per LD ST			inst/ref		
LD & ST per Dl miss Dl cache hit ratio		39.10 97.4%	refs/miss		
LD ST per Instructions		63.2%			
					V

However plenty of progress to be made on the formation and diagonalisation

The formation of the scattering Hamiltonian

The formation of the continuum-continuum part of the N+1 electron Hamiltonian is the most time consuming

Therefore, if there are several thousand scattering channels

(NCHAN*(NCHAN+1))/2

matrix blocks !!!

=

i.e. several million

not very subtle, but effective parallel concurrent diagonalisation

(with help from NERSC consultants : Woo-Sun Yang ,Katie Antypas)

pstg3r_split | ie 5200 processors

Ν

 mpi_comm_split

Each small box represents a partial wave

Each subgroup reads a single Hamiltonian and diagonalises it in parallel, concurrently with every other.

Almost endlessly scalable

Reduces all future R-matrix close-coupling calculations to the time required for a single partial wave.

Present situation when 'scaling up' on franklin 96 matrices , each 10721*10721 in dimension

sample profiling for the same case

📅 pstg3r.profile.txt -	/home/connor,	/latex/worksh	op/ 🧐 💦 .	_ _ ×
<u>F</u> ile <u>E</u> dit <u>S</u> earch <u>P</u> refe	rences She <u>l</u> l N	1a <u>c</u> ro <u>W</u> indows		<u>H</u> elp
				4
Totals for program				
Time%		100.0%		
Time		179.868711		
Imb. Time		0.485217	secs	
Imb.Time%	0 6 /	0.3%	11-	
Calls RETIRED MMX AND FP INS	2.6 /sec	405.0	Calls	
PACKED_SSE_AND_SSE2		272399534900	instr	
PAPI_FML_INS	1076.992M/sec	170305883797	ops	
PAPI_FAD_INS	1081.897M/sec	171081650827	ops	
PAPI FDV INS	2.185M/sec	345548107	003	
User time (approx)	158.131 secs	363701551563	cycles 87.9%Time	
Average Time per Call		0.444120	sec	
CrayPat Overhead : Tim HW FP Ops / Cycles	ne U.U≪	0.04	ops/cycle	
HW FP Ops / User time	2158 889M/sec	341387534625	ops 23.5%peak(DP)	
	1897.982M/sec	041001004020	opo zo.ospeak(br)	
FP Multiply / FP Ops		49.9%		
FP Add / FP Ops		50.1%		
MFLOPS (aggregate) 3	3316053.72M/sec			
				$\overline{\mathbf{v}}$

In a nutshell ,one of the biggest remaining challenges to continued scaling of the problem is:

the construction of the Hamiltonian,

then distributing the pertinent information to

a particular processor, in a particular ScaLapack context, before diagonalisation.