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“I have had my results for a long time, but I do not yet 
know how I am to arrive at them.”	


	
–Carl Friedrich Gauss, 1777-1855 

 In Situ Data Analysis	
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Scalable Analysis & Visualization: The 
Data Parallel Approach���

Treat analysis as any other parallel computation	


-Decompose the domain	

-Assign to processors	

-Combine local and global operations	

-Use parallel I/O, MPI, other programming models	

-Balance load, minimize communication	

-Measure strong, weak scaling, efficiency	


“The combination of massive scale and complexity is such that high performance computers 
will be needed to analyze data, as well as to generate it through modeling and simulation.” 	

–Lucy Nowell, Scientific Data Management and Analysis at Extreme Scale, Office of Science Program 
Announcement LAB 10-256, 2010. 2	


Integrate with simulation	




Particle tracing of thermal hydraulics flow Information entropy analysis of astrophysics 

Morse-Smale complex of combustion Voronoi tessellation of cosmology 

Data Analysis Comes in Many Flavors	




Separate Analysis Ops from Data Ops	


You do this yourself	


Can use serial libraries such as OSUFlow, Qhull, VTK 
(don’t have to start from scratch) 

DIY handles this 
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Tackling the Data-Intensive Part of Data Analysis���

DIY: help the user write own data-parallel analysis algorithms. ���
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Main ideas and Objectives 	


-Large-scale parallel analysis (visual and 
numerical) on HPC machines	

-Scientists, visualization researchers, 
tool builders	


-In situ, coprocessing, postprocessing	

-Data-parallel problem decomposition	

-Scalable data movement algorithms	


Benefits	


-Researchers can focus on their own 
work, not on parallel infrastructure	


-Analysis applications can be custom	

-Reuse core components and algorithms 
for performance and productivity	




Implement Data Operations in a Library with a small l	
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Library	


Written in C++	

C bindings, future Fortran bindings	

Autoconf build system (configure, make, make install)	

Lightweight: libdiy.a 800KB	

Maintainable: ~15K lines of code, including examples	


DIY usage and library organization	


Features	


Parallel I/O to/from storage	

-MPI-IO, BIL	


Domain decomposition	

-Decompose domain	

-Describe existing decomposition	


Network communication	

-Global reduction (2 flavors)	

-Local nearest neighbor	
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Group Data Items Into Blocks	
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The block is DIY’s basic unit of data. Original dataset is decomposed into generic 
subsets called blocks, and associated analysis items live in the same blocks. Blocks 
contain one or more instances of the data type described earlier.	
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Block ≠ Process	
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All data movement operations are per block; blocks exchange information with 
each other using DIY’s communication algorithms. DIY manages and optimizes 
exchange between processes based on the process assignment. This allows for 
flexible process assignment as well as easy debugging.	
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Group Blocks into Neighborhoods	
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-Limited-range communication	

-Allow arbitrary groupings	

-Distributed, local data structure and 
knowledge of other blocks (not master-
slave global knowledge)	
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Provide Different Neighborhood Communication Patterns	
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DIY provides point to point and different varieties of collectives within a neighborhood via 
its enqueue_item mechanism. Items are enqueued are subsequently exchanged (2 steps).	
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Make Global and Neighborhood Communication 
Fast and Easy	
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DIY provides 3 efficient scalable communication algorithms on top of MPI. May be 
used in any combination.	


Analysis Communication 

Particle Tracing Nearest neighbor 

Global Information 
Entropy 

Merge-based reduction 

Point-wise Information 
Entropy 

Nearest neighbor 

Morse-Smale Complex Merge-based reduction 

Computational Geometry Nearest neighbor 

Region growing Nearest neighbor 

Sort-last rendering Swap-based reduction 

Factors to consider when 
selecting communication 
algorithm:	

-associativity	

-number of iterations	

-data size vs. memory size	

-homogeneity of data	




3 Communication Patterns	
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Data Input	
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Multiblock and Multifile I/O	


-Application-level two-phase I/O	

-Reads raw, netCDF, HDF5 (future)	

-Read requests sorted and aggregated  into large contiguous accesses	

-Data redistributed to processes after reading	

-Single and multi block/file domains	

-75% of IOR benchmark on actual scientific data	


Input algorithm	


Kendall et al., Towards a General I/O Layer for Parallel Visualization Applications, CG&A ‘11 



Analysis Output	
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Features	


Binary	

General header/data blocks	

Footer with indices	

Application assigns semantic value to DIY blocks	

Written efficiently in parallel	

Parallel block-wise compression	


Output file format	


!"#$"%
&#'#

()#*+,-,
&#'# ././. ././.01,' 01,' 01,'20'3*4,

5/)

3*064/7 3*064/8 3*064/)/9/8 :00'"%

!"#$"%
&#'#

()#*+,-,
&#'#

!"#$"%
&#'#

()#*+,-,
&#'#



Example Usage	
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// initialize	

int dim = 3; // number of dimensions in the problem	


int tot_blocks = 8; // total number of blocks	

int data_size[3] = {10, 10, 10}; // data size	


MPI_Init(&argc, &argv); // init MPI before DIY	

DIY_Init(dim, ROUND_ROBIN_ORDER, tot_blocks, &nblocks, 

data_size, MPI_COMM_WORLD);	


// read data	

 for (int i = 0; i < nblocks; i++) {	


    DIY_Block_starts_sizes(i, min, size);	

    DIY_Read_add_block_raw(min, size, infile, MPI_INT, (void**)&(data[i]));	


}	

DIY_Read_blocks_all();	


// decompose domain	

int share_face = 0; // whether adjoining blocks share the same face	


int ghost = 0; // additional layers of ghost cells	

int ghost_dir = 0; // ghost cells apply to all or some sides of a block	


int given[3] = {0, 0, 0}; // constraints on blocking (none)	

DIY_Decompose(share_face, ghost, ghost_dir, given);	




Example API Continued	


16	


// your own local analysis	


// merge results, in this example	

// could be any combination / repetition of the three communication patterns	


int rounds = 2; // two rounds of merging	

int kvalues[2] = {4, 2}; // k-way merging, eg 4-way followed by 2-way merge	


int nb_merged; // number of output merged blocks	

DIY_Merge_blocks(in_blocks, hdrs, num_in_blocks, out_blocks, num_rounds, k_values, 
&MergeFunc, &CreateItemFunc, &DeleteItemFunc, &CreateTypeFunc, &num_out_blocks);	


// write results	

DIY_Write_open_all(outfile);	

DIY_Write_blocks_all(out_blocks, num_out_blocks, datatype);	

DIY_Write_close_all();	


// terminate	

DIY_Finalize(); // finalize DIY before MPI	


MPI_Finalize();	




Applications	
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Parallel Voronoi Tessellation	


Thresholding cell volume to reveal cosmological voids	


Particles Processes Total Time (s) Simulation 
Time (s) 

Tessellation 
Time (s) 

512^3 2048 3852 3684 167 

4192 2008 1918 89 

8096 1784 1722 62 

16384 1406 1344 61 

Subset of strong and weak 
scaling test results shows 
good scalability and relatively 
small fraction of total run 
time for in situ analysis	




Parallel Particle Tracing	
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Particle tracing of ¼ million particles in a 20483 thermal hydraulics dataset results in 
strong scaling to 32K processes and an overall improvement of 2X over earlier algorithms	




Information Entropy Performance and Scalability	
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Computation of information entropy in 126x126x512 
solar plume dataset shows 59% strong scaling efficiency.	




Morse-Smale Complex Performance and Scalability	
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Computation of Morse-Smale complex in 11523 Rayleigh-Taylor instability 
data set results in 35% end-to-end strong scaling efficiency, including I/O. 	




Summary	


-Consider data and data movement as first-class citizens	


-Tools needed both for run-time as well as postprocessing analysis	


-Analysis is any sequence of operations on data that hopefully 
reduces its size and/or improves its understandability	


-Much more work to be done!	
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