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Architecture Trends

• What happened to Moore’s Law?
• Power density and system power
• Multicore trend
• Game processors and GPUs
• What this means to you
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Moore’s Law is Alive and Well

2X transistors/Chip Every 1.5 years
Called “Moore’s Law”

Moore’s Law

Microprocessors have
become smaller, denser,
and more powerful.

Gordon Moore (co-founder of
Intel) predicted in 1965 that the
transistor density of
semiconductor chips would
double roughly every 18
months.

Slide source: Jack Dongarra
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But Clock Scaling Bonanza Has Ended
•Processor designers forced to go “multicore”:

• Heat density: faster clock means hotter chips
• more cores with lower clock rates burn less power

• Declining benefits of “hidden” Instruction Level Parallelism
(ILP)
• Last generation of single core chips probably over-engineered
• Lots of logic/power to find ILP parallelism, but it wasn’t in the apps

• Yield problems
• Parallelism can also be used for redundancy
• IBM Cell processor has 8 small cores; a blade system with all 8 sells

for $20K, whereas a PS3 is about $600 and only uses 7
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Clock Scaling Hits Power Density Wall
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Scaling clock speed (business as usual) will not work
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Revolution is Happening Now
• Chip density is

continuing
increase ~2x every
2 years
• Clock speed is not
• Number of

processor cores
may double
instead

• There is little or no
hidden parallelism
(ILP) to be found

• Parallelism must
be exposed to and
managed by
software

Source: Intel, Microsoft (Sutter) and
Stanford (Olukotun, Hammond)
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NERSC 2005 Projections for
Computer Room Power (System + Cooling)
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Power is a system
level problem, not just
a chip level problem
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Concurrency for Low Power
• Highly concurrent systems are more power efficient

• Dynamic power is proportional to V2fC
• Increasing frequency (f) also increases supply voltage

(V): more than linear effect
• Increasing cores increases capacitance (C) but has

only a linear effect
• Hidden concurrency burns power

• Speculation, dynamic dependence checking, etc.
• Push parallelism discover to software (compilers and

application programmers) to save power
• Challenge: Can you double the concurrency in your

algorithms every 18 months?
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Cell Processor (PS3) on Scientific Kernels

• Very hard to program: explicit control over memory hierarchy
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Game Processors Outpace Moore’s Law

• Traditionally too specialized (no scatter, no inter-core
communication, no double fp) but trend to generalize

• Still have control over memory hierarchy/partitioning

sp
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What Does this Mean to You?
•The world of computing is going parallel

• Number of cores will double every 12-24 months
• Petaflop (1M processor) machines common by 2015

•More parallel programmers to hire ☺
•Climate codes must have more parallelism 

• Need for fundamental rewrite and new algorithms
• Added challenge of combining with adaptive algorithms

•New programming model or language likely ☺
• Can the HPC benefit from investments in parallel languages

and tools?
• One programming model for all?
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Performance on Current Machines
Oliker, Wehner, Mirin, Parks and Worley

• Current state-of-the-art systems attain around 5% of peak at
the highest available concurrencies
• Note current algorithm uses OpenMP when possible to increase

parallelism
• Unless we can do better, peak performance of system must

be 10-20x of sustained requirement
• Limitations (from separate studies of scientific kernels)

• Not just memory bandwidth: latency, compiler code generation, ..
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Strawman 1km Climate Computer
Oliker, Shalf, Wehner

• Cloud system resolving global atmospheric model
• .015oX.02o horizontally with 100 vertical levels

• Caveat: A back-of-the-envelope calculation, with many
assumptions about scaling current model

• To acheive simulation time 1000x faster than real time:
• ~10 Petaflops sustained performance requirement
• ~100 Terabytes total memory
• ~2 million horizontal subdomains
• ~10 vertical domains
• ~20 million processors at 500Mflops each sustained inclusive of

communications costs.
• 5 MB memory per processor
• ~20,000 nearest neighbor send-receive pairs per subdomain per

simulated hour of ~10KB each
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A Programming Model Approach:
Partitioned Global Address Space

(PGAS) Languages

What, Why, and How
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Parallel Programming Models
• Easy parallel software is still an unsolved problem !
• Goals:

• Making parallel machines easier to use
• Ease algorithm experiments
• Make the most of your machine (network and memory)
• Enable compiler optimizations

• Partitioned Global Address Space (PGAS)
Languages

• Global address space like threads (programmability)
• One-sided communication
• Current static (SPMD) parallelism like MPI
• Local/global distinction, i.e., layout matters (performance)
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Partitioned Global Address Space
• Global address space: any thread/process may directly

read/write data allocated by another
• Partitioned: data is designated as local or global
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• 3 Current languages: UPC, CAF, and Titanium
• All three use an SPMD execution model
• Emphasis in this talk on UPC and Titanium (based on Java)

• 3 Emerging languages: X10, Fortress, and Chapel
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PGAS Language for Hybrid Parallelism
• PGAS languages are a good fit to shared

memory machines
• Global address space implemented as reads/writes
• Current UPC and Titanium implementation uses threads
• Working on System V shared memory for UPC

• PGAS languages are a good fit to distributed
memory machines and networks
• Good match to modern network hardware
• Decoupling data transfer from synchronization can

improve bandwidth
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PGAS Languages on Clusters:
One-Sided vs Two-Sided Communication

• A one-sided put/get message can be handled directly by a network
interface with RDMA support
• Avoid interrupting the CPU or storing data from CPU (preposts)

• A two-sided messages needs to be matched with a receive to
identify memory address to put data
• Offloaded to Network Interface in networks like Quadrics
• Need to download match tables to interface (from host)

address

message id

data payload

data payload
one-sided put message

two-sided message

network
 interface

memory

host
CPU

Joint work with Dan Bonachea
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One-Sided vs. Two-Sided: Practice
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GASNet: Portability and High-Performance
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GASNet better for latency across machines
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Joint work with UPC Group; GASNet design by Dan Bonachea
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GASNet at least as high (comparable) for large messages

Flood Bandwidth for 2MB messages
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GASNet: Portability and High-Performance

Joint work with UPC Group; GASNet design by Dan Bonachea
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GASNet excels at mid-range sizes: important for overlap

GASNet: Portability and High-Performance
Flood Bandwidth for 4KB messages
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Communication Strategies for 3D FFT

Joint work with Chris Bell, Rajesh Nishtala, Dan Bonachea

chunk = all rows with same destination

pencil = 1 row

• Three approaches:
• Chunk:

• Wait for 2nd dim FFTs to finish
• Minimize # messages

• Slab:
• Wait for chunk of rows destined

for 1 proc to finish
• Overlap with computation

• Pencil:
• Send each row as it completes
• Maximize overlap and
• Match natural layout slab = all rows in a single plane with

same destination
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NAS FT Variants Performance Summary

• Slab is always best for MPI; small message cost too high
• Pencil is always best for UPC; more overlap
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Making PGAS Real:
Applications and Portability
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Coding Challenges: Block-Structured AMR
• Adaptive Mesh Refinement

(AMR) is challenging
• Irregular data accesses and

control from boundaries
• Mixed global/local view is useful

AMR Titanium work by Tong Wen and Philip Colella

Titanium AMR benchmark available
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Languages Support Helps Productivity

C++/Fortran/MPI AMR
• Chombo package from LBNL
• Bulk-synchronous comm:

• Pack boundary data between procs
• All optimizations done by programmer

Titanium AMR
• Entirely in Titanium
• Finer-grained communication

• No explicit pack/unpack code
• Automated in runtime system

• General approach
• Language allow programmer

optimizations
• Compiler/runtime does some

automatically

Work by Tong Wen and Philip Colella; Communication optimizations joint with Jimmy Su
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Conclusions
• Future hardware performance improvements

• Mostly from concurrency, not clock speed
• New commodity hardware coming (sometime) from

games/GPUs
• PGAS Languages

• Good fit for shared and distributed memory
• Control over locality and (for better or worse) SPMD
• Available for download

• Berkeley UPC compiler: http://upc.lbl.gov
• Titanium compiler: http://titanium.cs.berkeley.edu

• Implications for Climate Modeling
• Need to rethink algorithms to identify more parallelism
• Need to match needs of future (efficient) algorithms
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Extra Slides
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Parallelism Saves Low Power
• Exploit explicit parallelism for reducing power

Power = C * V2 * F Performance = Cores * F

• Using additional cores
– Allows reduction in frequency and power supply

without decreasing (original) performance
– Power supply reduction lead to large power savings

Power = 2C * V2 * F Performance = 2Cores * F
Power = 4C * V2/4 * F/2 Performance = 4Lanes * F/2
Power = (C * V2 * F)/2 Performance = 2Cores * F

• Additional benefits
– Small/simple cores  more predictable performance



Kathy Yelick,  32Climate 2007                       

Where is Fortran?

Source: Tim O’Reilly
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