Personal tools
You are here: Home Publications Productivity and Performance Using Partitioned Global Address Space Languages
Document Actions

K. Yelick, D. Bonachea, W. Y Chen, P. Colella, K. Datta, J. Duell, S. Graham, P. Hargrove, P. Hilfinger, P. Husbands, C. Iancu, A. Kamil, R. Nishtala, J. Su, M. Welcome, and T. Wen (2007)

Productivity and Performance Using Partitioned Global Address Space Languages

In: Proceedings of Parallel Symbolic Computation (PASCO), pp. 24-32, London, Ontario, ACM.

Partitioned Global Address Space (PGAS) languages combine the programming convenience of shared memory with the locality and performance control of message passing. One such language, Unified Parallel C (UPC) is an extension of ISO C defined by a consortium that boasts multiple proprietary and open source compilers. Another PGAS language, Titanium, is a dialect of JavaTM designed for high performance scientific computation. In this paper we describe some of the highlights of two related projects, the Titanium project centered at U.C. Berkeley and the UPC project centered at Lawrence Berkeley National Laboratory. Both compilers use a source-to-source strategy that trans-lates the parallel languages to C with calls to a communication layer called GASNet. The result is portable high-performance compilers that run on a large variety of shared and distributed memory multiprocessors. Both projects combine compiler, runtime, and application efforts to demonstrate some of the performance and productivity advantages to these languages.

by admin last modified 2008-02-15 04:51
« September 2017 »
Su Mo Tu We Th Fr Sa
12
3456789
10111213141516
17181920212223
24252627282930
 

Powered by Plone

CScADS Collaborators include:

Rice University ANL UCB UTK WISC