Center for Scalable Application Development Software: Libraries and Compilers

Kathy Yelick (U.C. Berkeley)
Redundancy Elimination in Loops

- Redundancy elimination: re-use previously computed expressions
- Previous techniques
 - value numbering: detects general expressions within a single iteration
 - scalar replacement: detects inter-iteration redundancies involving only array references
- Miss opportunities to improve stencil operations: scientific computations, plus signal, and image processing
 - “a+c+d+b” and “d+a+c+b+e” contain redundant subexpression
 - need to change code shape (using associativity and commutativity)
- Approach: construct a graph representation, such that finding the maximal cliques corresponds to redundant subexpressions
- Prototyped in Open64 compiler as part of the loop nest optimizer
- More redundancies eliminated with combined technique
 - ~50% performance improvement on a POP kernel and multigrid stencil

Exploring Optimization of Components

Offline optimization of fine-grained TSTT mesh operations

<table>
<thead>
<tr>
<th>Component</th>
<th>Execution Time Relative to Native C</th>
</tr>
</thead>
<tbody>
<tr>
<td>SIDL</td>
<td>5.47</td>
</tr>
<tr>
<td>SIDL + HOARD</td>
<td>3.82</td>
</tr>
<tr>
<td>SIDL + IPO</td>
<td>3.58</td>
</tr>
<tr>
<td>SIDL + IPO + HOARD</td>
<td>2.67</td>
</tr>
<tr>
<td>NATIVE</td>
<td>1.00</td>
</tr>
<tr>
<td>NATIVE + HOARD</td>
<td>0.83</td>
</tr>
</tbody>
</table>

SIDL: Generic code using SIDL Arrays

HOARD: Optimized memory allocator

IPO: LLVM interprocedural optimization (whole program)

NATIVE: Native C code using pointers and C arrays

TSTT Mesh Interface: http://tetra.mech.ubc.ca/ANSLab/publications/TSTT asm06.pdf
The Case for Dynamic Compilation

- **Static compilation challenges**
 - software: modular designs, abstract interfaces, de-coupled implementations, dynamic dispatch, dynamic linking/loading
 - hardware: difficult to model, unpredictable latencies, backwards compatibility precludes specialization

- **Dynamic compilation opportunities**
 - cross-library interprocedural optimization (true whole program)
 - program specialization based on input data
 - machine dependent optimizations for the underlying architecture
 - profile-guided optimization
 - branch straightening for hot paths
 - inlining of indirect function calls
 - insertion/removal of software prefetch instructions
 - tuning of cache-aware memory allocators
Approach

• Fully exploit offline opportunities
 – aggressive interprocedural optimization statically at link time
 – static analysis to detect potential runtime opportunities
 – classic profile-feedback optimization between executions

• Minimize online cost
 – lightweight profiling
 • hardware performance counter sampling (using HPCToolkit infrastructure)
 – multiple cores
 • runtime analysis and optimization in parallel with program execution

• Leverage strengths of multiple program representations
 – optimized native code: provides efficient baseline performance
 – higher-level IR: enables powerful dynamic recompilation (LLVM)

• Selectively optimize
 – focus optimization only on promising regions of code
Toward Dynamic Optimization

- Working with ORNL to explore similar optimization of a true CCA mesh benchmark
- Integrating HPCToolkit measurement infrastructure with dynamic compilation framework
- Beginning experimentation with inter-component dynamic optimization of CCA applications using LLVM

Work is being presented at the Spring 2009 CCA Forum Meeting, April 23-24, 2009
Dynamic Optimizations in PGAS Languages

- Runtime optimization techniques were also used overlap communication in UPC, in this case bulk operations.
- Dynamically checks dependences to ensure correct semantics.

Use one-sided communication to optimize UPC collectives

Developing automatic tuning to select optimizations

- Tree shapes, overlap techniques, synchronization protocols, etc.

These results are on reduction operations for multicore

Nishtala & Yelick, HotPar 2009
PGAS Communication Runtime Work

- PGAS languages use a one-sided communication model
- GASNet is widely used as a communication layer (joint funding)
 - Berkeley UPC compiler, Berkeley Titanium compiler
 - Cray UPC and CAF compilers for XT4 and XT5
 - Intrepid UPC (gcc-upc); Cray Chapel compiler; Rice CAF compiler
- Released in November, CDs distributed at SC08
 - Improvements in Portals performance (Cray XT) with “firehose”
 - New implementation for BG/P DCMF layer with help from ANL

Hargrove et al, CUG 2009
3D FFT Performance on BG/P

- Strong scaling: shows good performance up to 16K cores

Upper bound is based on a performance model of torus topology and bandwidth

Packed slabs is a bulk-synchronous algorithm that minimizes the number of messages

Slabs overlaps communication with computation by sending data as soon as it is ready

Nishtala et al, IPDPS 2009
Experiments Comparing MPI and UPC

- UPC work motivated MPICH work
- Table of timings extracted from various experiments with NPB-FT
 - UPC code from Berkeley and MPI code by ANL
- On 512 processes of BG/P
 - Fastest (by a teeny bit) is MPI isend/irecv with interrupts on
- On 1024 processes of BG/P
 - Tuned Berkeley UPC is slightly faster, but MPI all2all is close.
UPC and MPI

• Asynchronous progress in the communication engine is what matters for performance in this particular example
 – Not so much the one-sidedness of UPC put
 – Not so much the fact that UPC

• Non-blocking collective operations in MPI are needed
 – Being worked on now by the MPI-3 Forum.

• But there is no reason that MPI and UPC need to compete
 – MPI + UPC is an important hybrid programming model
 – An alternative path to effective use of multicore
 • Saves memory within a node compared to all MPI: sharing rather than replication
 • Sometimes faster
 – UPC offers locality control for multisocket SMP nodes unlike OpenMP
 – Working on this model is ongoing
Numerical Libraries
Multicore is a disruptive technology for software

• Must rethink and rewrite applications, algorithms and software
 – as before with cluster computing and message passing
• Numerical libraries, e.g. LAPACK and ScLAPACK, need to change

A Motivating Example: Cholesky

Existing software based on BLAS uses fork-join parallelism
 – causes stalls on multicore systems

Nested fork-join parallelism (e.g., Cilk, TBB)
PLASMA: Parallel Linear Algebra s/w for Multicore

• Objectives
 – parallel performance
 • high utilization of each core
 • scaling to large numbers of cores
 – any memory model
 • shared memory: symmetric or non-symmetric
 • distributed memory
 • GPUs

• Solution properties
 – asychronicity: avoid fork-join (bulk synchronous design)
 – dynamic scheduling: out-of-order execution
 – fine granularity: independent block operations
 – locality of reference: store data using block data layout

A community effort led by Tennessee and Berkeley
(similar to LAPACK/ScaLAPACK)
PLASMA Methodology

Computations as DAGs
Reorganize algorithms and software to work on tiles that are scheduled based on the directed acyclic graph of the computation
Cholesky using PLASMA

Nested fork-join parallelism (e.g., Cilk, TBB)

PLASMA
Arbitrary DAG
Fully dynamic scheduling
PLASMA Provides Highest Performance
DAG Scheduling of LU in UPC + Multithreading

- UPC uses a static threads (SPMD) programming model
 - Multithreading used to mask latency and to mask dependence delays
 - Three levels of threads:
 - UPC threads (data layout, each runs an event scheduling loop)
 - Multithreaded BLAS (boost efficiency)
 - User level (non-preemptive) threads with explicit yield
 - New problem in distributed memory: allocator deadlock
Leveraging Mixed Precision

- Why use single precision as part of the computation? Speed!
 - higher parallelism within vector units
 - 4 ops/cycle (usually) instead of 2 ops/cycle
 - reduced data motion
 - 32-bit vs. 64-bit data
 - higher locality in cache
 - more data items in cache

- Approach
 - compute a 32-bit result
 - calculate a correction for 32-bit results using 64-bit operations
 - update of 32-bit results with the correction using high precision
Mixed-Precision Iterative Refinement

- Iterative refinement for dense systems, $Ax = b$, can work this way:

 $$L \ U = lu(A) \quad O(n^3)$$
 $$x = L \backslash (U \backslash b) \quad O(n^2)$$
 $$r = b - Ax \quad O(n^2)$$
 WHILE $||r||$ not small enough
 $$z = L \backslash (U \backslash r) \quad O(n^2)$$
 $$x = x + z \quad O(n^1)$$
 $$r = b - Ax \quad O(n^2)$$
 END

- Wilkinson, Moler, Stewart, & Higham provide error bound for SP floating point results when using DP floating point
- Using this, we can compute the result to 64-bit precision
Results for Mixed Precision

Iterative Refinement for Dense $Ax = b$

<table>
<thead>
<tr>
<th>Architecture (BLAS)</th>
<th># procs</th>
<th>n</th>
<th>DP Solve /SP Solve</th>
<th>DP Solve /Iter Ref</th>
<th># iter</th>
</tr>
</thead>
<tbody>
<tr>
<td>Intel Pentium III Coppermine (Goto)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Intel Pentium III Katmai (Goto)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Sun UltraSPARC IIe (Sunperf)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Intel Pentium IV Prescott (Goto)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Intel Pentium IV-M Northwood (Goto)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>AMD Opteron (Goto)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Cray X1 (libsci)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>IBM Power PC G5 (2.7 GHz) (VecLib)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Compaq Alpha EV6 (CXML)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>IBM SP Power3 (ESSL)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>SGI Octane (ATLAS)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Architecture (BLAS-MPI)</th>
<th># procs</th>
<th>n</th>
<th>DP Solve /SP Solve</th>
<th>DP Solve /Iter Ref</th>
<th># iter</th>
</tr>
</thead>
<tbody>
<tr>
<td>AMD Opteron (Goto – OpenMPI MX)</td>
<td>32</td>
<td>22627</td>
<td>1.85</td>
<td>1.79</td>
<td>6</td>
</tr>
<tr>
<td>AMD Opteron (Goto – OpenMPI MX)</td>
<td>64</td>
<td>32000</td>
<td>1.90</td>
<td>1.83</td>
<td>6</td>
</tr>
</tbody>
</table>
Autotuning Sparse Matrix Vector Multiply

- **Sparse Matrix-Vectory Multiply (SpMV)**
 - Evaluate \(y = Ax \)
 - \(A \) is a sparse matrix, \(x \) & \(y \) are dense vectors

- **Challenges**
 - Very low arithmetic intensity (often <0.166 flops/byte)
 - Difficult to exploit ILP (bad for superscalar),
 - Difficult to exploit DLP (bad for SIMD)

- **Optimizations for Multicore by Williams et al, SC07**
 - Supported in part by PERI

\[
\begin{align*}
\text{(a) algebra conceptualization} & \quad \begin{bmatrix} A \end{bmatrix} \times \begin{bmatrix} x \end{bmatrix} = \begin{bmatrix} y \end{bmatrix} \\
\text{(b) CSR data structure} & \quad \text{for } (r=0; r<A.\text{rows}; r++) \{
\quad \text{double } y0 = 0.0;
\quad \text{for } (i=A.\text{rowStart}[r]; i<A.\text{rowStart}[r+1]; i++)
\quad \quad y0 += A.\text{val}[i] * x[A.\text{col}[i]];
\quad \}
\quad y[r] = y0;
\end{align*}
\]

\[
\text{(c) CSR reference code}
\]
SpMV Performance
(simple parallelization)

- Out-of-the-box SpMV performance on a suite of 14 matrices
- Scalability isn’t great
- Is this performance good?
Auto-tuned SpMV Performance
(portable C)

- Fully auto-tuned SpMV performance across the suite of matrices
- Why do some optimizations work better on some architectures?
Auto-tuned SpMV Performance
(architecture specific optimizations)

- Fully auto-tuned SpMV performance across the suite of matrices
- Included SPE/local store optimized version
- Why do some optimizations work better on some architectures?

- Naïve Pthreads
- Naïve
- NUMA/Affinity
- SW Prefetching
- Matrix Compression
- Cache/LS/TLB Blocking
The Roofline Performance Model

Locations of posts in the building are determined by algorithmic intensity.

Will vary across algorithms and with bandwidth-reducing optimizations, such as better cache re-use (tiling), compression techniques.
Roofline model for SpMV
(matrix compression)

- Inherent FMA
- Register blocking improves ILP, DLP, flop:byte ratio, and FP% of instructions
Roofline model for SpMV
(matrix compression)

- SpMV should run close to memory bandwidth
 - Time to read matrix is major cost
- Can we do better?
- Can we compute $A^k \times x$ with one read of A?
- If so, this would
 - Reduce # messages
 - Reduce memory bandwidth
Avoiding Communication in Iterative Solvers

- Consider Sparse Iterative Methods for $Ax=b$
 - Use Krylov Subspace Methods: GMRES, CG
 - Can we lower the communication costs?
 - Latency of communication, i.e., reduce # messages by computing $A^k x$ with one read of remote x
 - Bandwidth to memory hierarchy, i.e., compute A

- Example: GMRES for $Ax=b$ on “2D Mesh”
 - x lives on n-by-n mesh
 - Partitioned on $p^{1/2}$-by-$p^{1/2}$ grid
 - A has “5 point stencil” (Laplacian)

- Much more complex in general
 - TSP algorithm to sort matrix
 - Minimize communication events
Avoiding Communication in Sparse Linear Algebra - Summary

• Take k steps of Krylov subspace method
 – GMRES, CG, Lanczos, Arnoldi
 – Parallel implementation
 • Conventional: $O(k \log p)$ messages
 • "New": $O(\log p)$ messages - optimal
 – Serial implementation
 • Conventional: $O(k)$ moves of data from slow to fast memory
 • "New": $O(1)$ moves of data – optimal

• Performance of $A^k x$ operation relative to Ax and upper bound
But the Numerics have to Change!

- Collaboration with PERI and Tops SciDACS among others
Summary

• All aspects of the optimization space
 – Changing languages
 – Changing compilers
 – Changing architecture
 • or at least evaluating them and exploit all features
 – Changing algorithms

• Joint projects within this SciDAC effort and between others