Center for Scalable Application Development Software: Center Summary and Plans

John Mellor-Crummey (Rice)
Center Organization

• World class team of researchers; decades of HPC experience
 – Pete Beckman - ALCF director; Senior Fellow CI, Univ. Chicago
 – Kathy Yelick - NERSC division director; Professor UC Berkeley
 – Rusty Lusk - MCS Division director; Distinguished Fellow ANL
 – Jack Dongarra – Univ. Distinguished Professor UTK; Member NAE; Director Innovative Computing Lab; Fellow of AAAS, ACM, IEEE, SIAM
 – Keith Cooper – Professor Rice; ACM Fellow
 – Bart Miller – Professor UW Madison; ACM Fellow
 – John Mellor-Crummey – Professor at Rice

• Management
 – coordinate center-wide activities telecons in regular time slot
 – most vertically integrated work is coordinated in pairs and groups
 – face to face discussions at workshops and national meetings
Scientific and Technical Merit

• Research focus: software stack for petascale systems
 – system software for leadership computing systems
 • memory management, I/O, communication
 – communication library optimization
 – multicore math libraries
 – compiler technology
 • dynamic optimization of CCA applications
 • optimization of memory hierarchy performance
 • implementation of PGAS languages
 – performance measurement, analysis, modeling, presentation
 • quantify and pinpoint performance bottlenecks on leadership platforms
 – application studies and engagement

• Advancing state of the art across entire petascale software stack
Research and Development

- Research and development
 - new system software for leadership computing
 - Zepto OS compute node kernel, ZOID I/O daemon
 - communication optimization
 - GASNet optimization for IB, BG/P, Cray XT
 - UPC collective optimizations for multicore processors
 - PLASMA and OSKI: dense and sparse LA on multicore processors
 - performance tools
 - binary analysis for call stack unwinding on Cray XT, BG/P (& SiCortex)
 - pinpoint scalability & performance problems on LCF & multicore
 - user interfaces for effective performance analysis: hpcviewer, Jumpshot
 - performance tool components: Dyninst components, libmonitor
 - performance modeling to understand application bottlenecks
 - open source compilers: LoopTool, Fortran & CAF support in ROSE

- Application engagement in addition to R&D accomplishments
Project Performance - II

• 31 journal articles; 15 conference papers
• 6 theses; many presentations
• Website: http://cscads.rice.edu
 – project publications, selected presentations
 – open source software
 – summer workshop series coordination and dissemination

• Contribute to efficient use of DOE HPC resources?
 – helped GTC and S3D application teams optimize applications
 • S3D production code incorporates LoopTool generated code along with manual performance optimizations (opportunities uncovered with HPCToolkit); improved performance 12+% for benchmark test
 • provided code changes (data & loop restructuring, adaptive reordering) back to GTC team; potential for 20+% improvement
 – worked with vendors on software stack for leadership platforms

• Unrivaled engagement and outreach with CScADS workshops
Appropriateness of Methods

• System software
 – jumbo pages to avoid TLB miss losses; high performance I/O

• Communication library optimization
 – dynamic page pinning for RDMA; optimizing collectives for multicore

• Compiler technology
 – accelerate scientific kernels using expression reassociation
 – dynamic optimization of late binding for CCA applications
 – PGAS languages + memory hierarchy optimization: source to source

• Multicore linear algebra
 – asynchronous dynamic scheduling of work to reduce synch delays

• Performance tools
 – sampling for low overhead, no blind spots
 – call stack unwinding to associate costs with dynamic context
 – binary analysis for broad applicability, accuracy
 – differential analysis for pinpointing scalability bottlenecks
 – effective user interfaces for analyzing performance data
 – components for community leverage
Software for Leadership Computing

<table>
<thead>
<tr>
<th>Institution</th>
<th>Software</th>
<th>Blue Gene</th>
<th>Cray XT</th>
<th>Linux</th>
<th>Other</th>
</tr>
</thead>
<tbody>
<tr>
<td>Argonne</td>
<td>Zepto OS</td>
<td>yes</td>
<td></td>
<td>yes</td>
<td>yes</td>
</tr>
<tr>
<td>Argonne</td>
<td>ZOID</td>
<td>yes</td>
<td></td>
<td>yes</td>
<td>yes</td>
</tr>
<tr>
<td>Berkeley</td>
<td>GASNet, UPC</td>
<td>yes</td>
<td>yes</td>
<td>yes</td>
<td>yes</td>
</tr>
<tr>
<td>Berkeley</td>
<td>OSKI</td>
<td>yes</td>
<td>yes</td>
<td>yes</td>
<td>yes</td>
</tr>
<tr>
<td>Tennessee</td>
<td>PLASMA</td>
<td>yes</td>
<td>yes</td>
<td>yes</td>
<td>yes</td>
</tr>
<tr>
<td>Rice</td>
<td>HPCToolkit</td>
<td>yes</td>
<td>yes</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Rice</td>
<td>hpcviewer</td>
<td>yes</td>
<td>yes</td>
<td>yes</td>
<td>yes</td>
</tr>
<tr>
<td>Rice</td>
<td>libmonitor</td>
<td>yes</td>
<td>yes</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Wisconsin</td>
<td>SymtabAPI</td>
<td>yes</td>
<td>yes</td>
<td>yes</td>
<td>yes</td>
</tr>
<tr>
<td>Wisconsin</td>
<td>InstructionAPI</td>
<td>yes</td>
<td>yes</td>
<td>yes</td>
<td>yes</td>
</tr>
<tr>
<td>Wisconsin</td>
<td>StackwalkerAPI</td>
<td>yes</td>
<td>yes</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Collaboration with Centers & Applications

• Strong collaboration with PERI
 – partially supports development of HPCToolkit
 – HPCToolkit used by PERI
 • outreach to application teams
 – Lattice QCD (Brower), Madness (Harrison), Chombo (Colella)
 • internally by PERI autotuning researchers
 – CScADS participates in and extends work of PERI Tiger Teams
 • GTC (Ethier), S3D (Chen), FLASH (Dubey), PFLOTRAN (Lichner)
 – broad participation by PERI in CScADS ET workshops
• Working with TOPS on sparse linear algebra
• Exploring dynamic compilation to accelerate CCA codes
Training

• Rice

• Wisconsin

• Berkeley
FY09 Plans

- **Rice**
 - performance tools
 - release HPCToolkit on the leadership computing platforms
 - begin work on support for analysis of data from a huge # of cores
 - compilers
 - release LoopTool for use by application teams
 - continue work on dynamic optimization, ROSE, scripting languages

- **Argonne**
 - continue replacing components in BG/P s/w stack with open source
 - release the first version of ZeptoOS for BG/P to the public

- **Berkeley**
 - release UPC & GASNet with improved support for BG/P, XT, and IB
 - continue optimizing sparse linear algebra for multicore (with UTK)

- **Tennessee**
 - explore dynamic and adaptive out-of-order execution patterns for linear algebra on multicore and heterogeneous nodes

- **Wisconsin**
 - continue development of InstructionAPI and ControlFlowAPI
FY10-11 Plans (Rice)

• **Performance tools**
 – develop & deploy parallel analysis of HPCToolkit measurement data
 – incorporate sionlib for parallel I/O of HPCToolkit measurement data
 – enhance hpcviewer to work with out-of-core data for 100K PE
 – develop and deploy hpctraceview for out-of-core data for > 1K PE
 – work with Wisconsin to consolidate unwinding in StackwalkerAPI

• **Compilers and communication libraries**
 – develop and deploy source-to-source CAF 2.0 for leadership computers
 • collaborate with LLNL & LANL on ROSE
 • collaborate with UC Berkeley on GASNet & IBM on APGAS runtime
 – develop and deploy and dynamic optimization for HPC applications
 – continue to work with Fortran standards committee on CAF

• **Continue application engagement**
 – continue collaboration with PERI Tiger teams
 – direct engagement with application teams and ET centers
FY10-11 Plans

• Argonne
 – make Big Memory a per-core resource for BG’s virtual node mode
 – add IBM’s recent improvements to the communication software stack
 – make high-performance file I/O transparent and easy for applications
 – enhance Jumpshot to display more summary data for > 10K nodes

• Berkeley
 – continue work on communication optimization and libraries
 – create autotuning environment for collectives
 – collaborate with Rice on GASNet & IBM on APGAS runtime

• Tennessee
 – continue exploration of math libraries for multicore and heterogeneous hybrid systems

• Wisconsin
 – continue work on InstructionAPI
 – development of graph API's (CFG, DDG, PDG), Dyninst for Cray XT
 – work with Rice to consolidate unwinding in StackwalkerAPI
Advancing SciDAC Goals

• R&D of software to enable petascale science
 – system software, communication libraries, math libraries, performance tools, compiler technology for leadership computing

• Collaborate with other SciDAC centers
 – collaborate with enabling technology centers
 • PERI @ UNC extends our impact by engaging application teams with HPCToolkit performance tools (e.g. Lattice QCD, Madness)
 • working on dynamic compilation to accelerate CCA
 – directly engage SciDAC application teams
 • extend work of PERI Tiger teams: Flash, GTC, S3D, PFLOTRAN
 • ensure performance tools meet application needs

• Engage the community in SciDAC
 – outreach workshops to foster interaction between ET and applications
 – ET workshops engage the broader research community
 • accelerate R&D of technologies supporting SciDAC mission