
Sandia is a multiprogram laboratory operated by Sandia Corporation, a Lockheed Martin Company,
for the United States Department of Energy!s National Nuclear Security Administration

 under contract DE-AC04-94AL85000.

Dynamic Load Balancing and

Partitioning using the Zoltan

Toolkit
Karen Devine, Erik Boman, Vitus Leung, Lee Ann Riesen

Sandia National Laboratories

Umit Çatalyürek

Ohio State University

The Zoltan Toolkit

Unstructured Communication

Data Migration
Matrix Ordering

Dynamic Memory

Debugging

!

Dynamic Load

Balancing

Distributed Data Directories

A B C

0 1 0

D E F

2 1 0

G H I

1 2 1

• Library of data management services for unstructured, dynamic

and/or adaptive computations.

Graph Coloring

Partitioning and Load Balancing

• Assignment of application data to processors for parallel

computation.

• Applied to grid points, elements, matrix rows, particles, ….

Static Partitioning

• Static partitioning in an application:

– Data partition is computed.

– Data are distributed according to partition map.

– Application computes.

• Ideal partition:

– Processor idle time is minimized.

– Inter-processor communication costs are kept low.

Initialize

Application

Partition

Data

Distribute

Data

Compute

Solutions

Output

& End

Dynamic Repartitioning

(a.k.a. Dynamic Load Balancing)

Initialize

Application

Partition

Data

Redistribute

Data

Compute

Solutions

& Adapt

Output

& End

• Dynamic repartitioning (load balancing) in an application:

– Data partition is computed.

– Data are distributed according to partition map.

– Application computes and, perhaps, adapts.

– Process repeats until the application is done.

• Ideal partition:

– Processor idle time is minimized.

– Inter-processor communication costs are kept low.

– Cost to redistribute data is also kept low.

What makes a partition

“good,” especially at petascale?

• Balanced work loads.

– Even small imbalances result in many wasted processors!

• 50,000 processors with one processor 5% over average workload
 is equivalent to

2380 idle processors and 47,620 perfectly balanced processors.

• Low interprocessor communication costs.

– Processor speeds increasing faster than network speeds.

– Partitions with minimal communication costs are critical.

• Scalable partitioning time and memory use.

– Scalability is especially important for dynamic partitioning.

• Low data redistribution costs (for dynamic partitioning).

– Redistribution costs must be recouped through reduced total
execution time.

Partitioning Algorithms

in the Zoltan Toolkit

Recursive Coordinate Bisection (Berger, Bokhari)

Recursive Inertial Bisection (Taylor, Nour-Omid)

Zoltan Graph Partitioning

ParMETIS (U. Minnesota)

Jostle (U. Greenwich)

Hypergraph Partitioning

Hypergraph Repartitioning

PaToH (Catalyurek & Aykanat)

Geometric (coordinate-based) methods

Hypergraph and graph (connectivity-based) methods

Space Filling Curve Partitioning

 (Warren&Salmon, et al.)

Refinement-tree Partitioning (Mitchell)

1st cut

2nd

2nd

3rd

3rd3rd

3rd

Geometric Partitioning: RCB

• Recursive Coordinate Bisection: Developed by Berger

& Bokhari (1987) for Adaptive Mesh Refinement.

• Idea:

– Divide work into two

equal parts using a

cutting plane

orthogonal to a

coordinate axis.

– Recursively cut the

resulting

subdomains.

9

20

19

18

17

16

15

14

13
12

11 10

8

7

6
5

4

3 2 1

9

20

19

18

17

16

15

14

13
12

1110

8

7

6
5

4

321

Geometric Partitioning: SFC
• Space-Filling Curve Partitioning

– Gravitational simulations (Warren & Salmon, 1993)

– Smoothed particle hydrodynamics (Pilkington & Baden, 1994)

– Adaptive mesh refinement (Patra & Oden, 1995).

• SFC Partitioning Algorithm:

– Run SFC through domain (mapping from R3 to R1).

– Order objects according to position on curve.

– Perform 1-D partitioning of curve.

Applications of Geometric Methods

Parallel Volume Rendering

Crash Simulations

and Contact Detection

Adaptive Mesh Refinement

Particle Simulations

Geometric Methods

Advantages and Disadvantages

• Advantages:

– Conceptually simple; fast and inexpensive.

– All processors can inexpensively know entire partition (e.g.,

for global search in contact detection).

– No connectivity info needed (e.g., particle methods).

– Good on specialized geometries.

• Disadvantages:

– No explicit control of communication costs.

– Mediocre partition quality.

– Need coordinate information.

SLAC’S 55-cell Linear Accelerator with couplers:

One-dimensional RCB partition reduced runtime up

to 68% on 512 processor IBM SP3. (Wolf, Ko)

Graph Partitioning

• Represent problem as a

weighted graph.

– Vertices = objects to be
partitioned.

– Edges = dependencies between
two objects.

– Weights = work load or amount
of dependency.

• Partition graph so that …

– Parts have equal vertex weight.

– Weight of edges cut by part
boundaries is small.

• Kernighan, Lin, Schweikert, Fiduccia, Mattheyes, Simon,

Hendrickson, Leland, Kumar, Karypis, et al.

Applications using Graph

Partitioning

x bA

=

Linear solvers & preconditioners

(square, structurally symmetric systems)

Finite Element

Analysis

Multiphysics and

multiphase simulations

Graph Partitioning:

Advantages and Disadvantages

• Advantages:

– Highly successful model for mesh-based PDE problems.

– Explicit control of communication volume gives higher

partition quality than geometric methods.

– Excellent software available.

• Serial: Chaco (SNL)

Jostle (U. Greenwich)

METIS (U. Minn.)

Party (U. Paderborn)

Scotch (U. Bordeaux)

• Parallel: Zoltan (SNL)

ParMETIS (U. Minn.)

PJostle (U. Greenwich)

• Disadvantages:

– More expensive than geometric methods.

– Edge-cut model only approximates communication volume.

Hypergraph Partitioning

• Alpert, Kahng, Hauck, Borriello, Çatalyürek, Aykanat,

Karypis, et al.

• Hypergraph model:

– Vertices = objects to be partitioned.

– Hyperedges = dependencies between two or more objects.

• Partitioning goal: Assign equal vertex weight while

minimizing hyperedge cut weight.

A

Graph Partitioning Model

A

Hypergraph Partitioning Model

Hypergraph Applications

Circuit Simulations

1

2

Vs
SOURCE_VOLTAGE

1
2

Rs
R

1
2 Cm012

C

1
2

Rg02
R

1

2

Rg01
R

1
2 C01

C

1
2 C02
C

12

L2

INDUCTOR

12

L1

INDUCTOR

12

R1

R

12

R2

R

1

2

Rl
R

1

2

Rg1
R

1
2

Rg2
R

1
2 C2

C

1
2 C1

C

1
2 Cm12

C

Linear programming

 for sensor placement

x bA

=

Linear solvers & preconditioners

(no restrictions on matrix structure)

Finite Element

Analysis

Multiphysics and

multiphase simulations

Data Mining

Hypergraph Partitioning:

Advantages and Disadvantages

• Advantages:

– Communication volume reduced 30-38% on average
over graph partitioning (Catalyurek & Aykanat).

• 5-15% reduction for mesh-based applications.

– More accurate communication model than graph
partitioning.

• Better representation of highly connected and/or
non-homogeneous systems.

– Greater applicability than graph model.
• Can represent rectangular systems and non-symmetric

dependencies.

• Disadvantages:

– More expensive than graph partitioning.

Performance Results

• Experiments on Sandia’s Thunderbird cluster.

– Dual 3.6 GHz Intel EM64T processors with 6 GB RAM.

– Infiniband network.

• Compare RCB, SFC, graph (ParMETIS) and

hypergraph methods.

• Measure …

– Amount of communication induced by the partition.

– Partitioning time.

Test Data

SLAC *LCLS

Radio Frequency Gun

6.0M x 6.0M

23.4M nonzeros

Xyce 680K ASIC Stripped

Circuit Simulation

680K x 680K

2.3M nonzeros

Cage15 DNA

Electrophoresis

5.1M x 5.1M

99M nonzeros

SLAC Linear Accelerator

2.9M x 2.9M

11.4M nonzeros

Communication Volume:

Lower is Better

Cage15 5.1M electrophoresis

Xyce 680K circuitSLAC 6.0M LCLS

SLAC 2.9M Linear Accelerator

Number of parts

= number of

processors.

RCB

Graph

Hypergraph

SFC

Partitioning Time:

Lower is better

Cage15 5.1M electrophoresis

Xyce 680K circuitSLAC 6.0M LCLS

SLAC 2.9M Linear Accelerator

1024 parts.

Varying number

of processors.

RCB

Graph

Hypergraph

SFC

Repartitioning Experiments

• Experiments with 64 parts on 64 processors.

• Dynamically adjust weights in data to simulate,

say, adaptive mesh refinement.

• Repartition.

• Measure repartitioning time and

total communication volume:

 Data redistribution volume

+ Application communication volume

 Total communication volume

Best Algorithms Paper Award at IPDPS07

“Hypergraph-based Dynamic Load Balancing for
Adaptive Scientific Computations”

Catalyurek, Boman, Devine, Bozdag, Heaphy, & Riesen

Repartitioning Results:

Lower is Better
Xyce 680K circuitSLAC 6.0M LCLS y

Repartitioning

Time (secs)

Data

Redistribution

Volume

Application

Communication

Volume

Zoltan Toolkit:

Suite of Partitioners

• No single partitioner works best for all

applications.

– Trade-offs:

• Quality vs. speed.

• Geometric locality vs. data dependencies.

• High-data movement costs vs. tolerance for remapping.

• Application developers may not know which

partitioner is best for application.

– Suite of partitioners allows experimentation,

comparisons.

Zoltan Interface Supports

Many Applications
• Different applications, requirements, data structures.

Multiphysics simulations

x bA

=

Linear solvers &

preconditioners

Adaptive mesh refinement

Crash simulations

Particle methods

Parallel electronics networks

1
2

Vs
SOURCE_VOLTAGE

1
2

Rs
R

1
2 Cm012

C

1
2

Rg02
R

1
2

Rg01
R

1
2 C01

C

1
2 C02

C

12

L2

INDUCTOR

12

L1

INDUCTOR

12

R1

R

12

R2

R

1
2

Rl
R

1
2

Rg1
R

1
2

Rg2
R

1
2 C2

C

1
2 C1

C
1

2 Cm12
C

Zoltan Interface

• Simple, easy-to-use interface.

– Small number of callable Zoltan functions.

– Callable from C, C++, Fortran90.

• Two ways to access Zoltan:

– Through ITAPS mesh implementation.

– Directly from application through native Zoltan
interface.

• Coming in FY08:

– Matrix-based interface through Trilinos/Isorropia.

Zoltan ITAPS Interface

• Interoperable Tools for Advanced Petascale Simulations

• ITAPS iMesh implementation provides information to

Zoltan for partitioning.

– Number of mesh entities, connectivity, coordinates.

• Given a loaded iMesh_Instance, the application …

– Constructs an ITAPSZoltan object;

– Specifies number of parts, partitioning method, etc.; and

– Invokes partitioning.

• Parts returned as tagged entity sets.

• Initial ITAPS-compliant implementation available.

– https://svn.scorec.rpi.edu/wsvn/TSTT/Distributions/

Zoltan Native Interface Design

• Data-structure neutral design.

– Supports wide range of applications and data structures.

– Imposes no restrictions on application’s data structures.

– Application does not have to build Zoltan’s data

structures.

• Requirement: Unique global IDs for objects to be

partitioned. For example:

– Global element number.

– Global matrix row number.

– (Processor number, local element number)

– (Processor number, local particle number)

Zoltan Native Interface

• Application interface:

– Zoltan queries the application for needed info.

• IDs of objects, object weights, part assignments.

• Geometric algorithms: dimensions, coordinates.

• Connectivity-based algorithms: edge lists, edge weights.

– Application provides simple functions to answer

queries.

• Once query functions are implemented, application can

access all Zoltan functionality.

– Can switch between algorithms by setting

parameters.

Zoltan Application Interface

Initialize Zoltan

(Zoltan_Initialize,

Zoltan_Create)

Select LB Method

(Zoltan_Set_Params)

Register

query functions

(Zoltan_Set_Fn)

(Re-)partition

(Zoltan_LB_Partition)

COMPUTE

Move data

(Zoltan_Migrate)

Clean up

(Zoltan_Destroy)

APPLICATION
Zoltan_LB_Partition:

• Call query functions.

• Build data structures.

• Compute new

decomposition.

• Return import/export

lists.

Zoltan_Migrate:

• Call packing query

functions for exports.

• Send exports.

• Receive imports.

• Call unpacking query

functions for imports.

ZOLTAN

Aiming for Petascale

• Reducing communication costs for applications.

– Reducing communication volume.
• Two-dimensional sparse matrix partitioning

(Catalyurek, Aykanat, Bisseling).

• Partitioning non-zeros of matrix
rather than rows/columns.

– Reducing message latency.
• Minimize maximum number of

neighboring parts (with Kumfert, LLNL).

• Balancing both computation and communication
(Pinar & Hendrickson); balance criterion is complex function
of the partition instead of simple sum of object weights.

– Reducing communication overhead.
• Map parts onto processors to take advantage of network

topology.

• Minimize distance messages travel in network.

Entire System

...Subsystem Subsystem

...

Proc Proc...

...

Proc Proc...

Aiming for Petascale

• Hierarchical partitioning in Zoltan v3.

– Partition for multicore/manycore architectures.

• Partition hierarchically with respect to chips and then cores.

• Similar to strategies for clusters of SMPs (Teresco, Faik).

• Treat core-level parts as separate threads or MPI processes.

– Support 100Ks processors.

• Reduce collective communication operations during

partitioning.

• Allow more localized partitioning on subsets of processors.

Entire System

...Processor Processor

Core Core...Core Core...

– Refactored partitioners for bigger data sets and

processor arrays.

• Improving scalability of partitioning algorithms.

– Hybrid partitioners (particularly for mesh-based apps.)

• Use inexpensive geometric methods for initial partitioning;

refine with high quality hypergraph/graph-based algorithms.

• Use geometric information to accelerate multilevel

hypergraph/graph-based partitioners.

Aiming for Petascale

Partition

coarse data

Refine partitionCoarsen data

using geometric

info

Aiming for Petascale

• Developing specialized partitioning strategies.

– E.g., for particle-in-cell applications, multiscale.

• Data ordering within a processor.

– Better memory performance.

– Multicore support.

• Testing and performance evaluation.

– Examine effectiveness of partitions in applications.

• Wanted: Collaborations with

application developers!

WANTED

APPLICATIONS FOR

PERFORMANCE

ANALYSIS

For More Information…

• Zoltan web page: http://www.cs.sandia.gov/Zoltan

– Download Zoltan v3 (open-source software).

– Tutorial and User’s Guide.

• ITAPS Interface to Zoltan:

https://svn.scorec.rpi.edu/wsvn/TSTT/Distributions/

Thanks

•S. Attaway (SNL)

•C. Aykanat (Bilkent U.)

•A. Bauer (RPI)

•R. Bisseling (Utrecht U.)

•D. Bozdag (Ohio St. U.)

•T. Davis (U. Florida)

•J. Faik (RPI)

•J. Flaherty (RPI)

•R. Heaphy (SNL)

•B. Hendrickson (SNL)

•M. Heroux (SNL)

•K. Ko (SLAC)

•G. Kumfert (LLNL)

•L.-Q. Lee (SLAC)

•V. Leung (SNL)

•G. Lonsdale (NEC)

•X. Luo (RPI)

•L. Musson (SNL)

•S. Plimpton (SNL)

•J. Shadid (SNL)

•M. Shephard (RPI)

•C. Silvio (SNL)

•J. Teresco (Mount Holyoke)

•C. Vaughan (SNL)

•M. Wolf (U. Illinois)

SciDAC CSCAPES Institute (A. Pothen, Old Dominion U., PI)

SciDAC ITAPS Center (L. Diachin, LLNL, PI)

NNSA ASC Program

http://www.cs.sandia.gov/Zoltan

