Parallel Tiled Algorithms for
Multicore Architectures

SciDAC CScADS Summer Workshop on Libraries and
Algorithms for Petascale Applications

IcL {3 2 UNIVERSITYof
ENNESSEE

INNOVATIVE COMPUTING
LABORATORY

Hardware

* power consumption reduce clock and
* heat dissipation increase execution
* pins units = Multicore

Software

Non-parallel software won't run any faster. A new
approach to programming is required.

‘a processor that combines two or more independent
processors into a single package” (wikipedia)

What about:
* types of core?

>

>
* memory?
e bus?

>
e cache?

>

>

* communications?

Parallel software for multicores should have two
characteristics:
fine granularity:
> high parallelism degree is needed
> cores are (and probably will be) associated with
relatively small local memories. This requires splitting
an operation into tasks that operate on small portions
of data in order to reduce bus traffic and improve data
locality.
sasynchronicity: as the degree of TLP grows and
granularity of the operations becomes smaller, the
presence of synchronization points in a parallel execution
seriously affects the efficiency of an algorithm.

Parallelism in Linear Algebra software so far

Shared Memory Distributed Memory

parallelism

Threaded
BLAS
PThreads OpenMP

Parallelism in Linear Algebra software so far

LAPACK
Threaded
BLAS

parallelism

Parallelism in Linear Algebra software so far

parallelism

LAPACK LAPACK

parallelism

Threaded)
PThreads OpenMP
PThread OpenMP sequential sequential

The LAPACK algorithm for
QR factorization

The QR transformation factorizes a matrix A into the factors Q

and R where Q is unitary and R is upper triangular. It is based
on Householder reflections.

Assume that @ the part of
the matrix that has been already
factorized and contaifiSlhe
Householder reflectors that
determine the matrix Q.

The QR transformation factorizes a matrix A into the factors Q

and R where Q is unitary and R is upper triangular. It is based
on Householder reflections.

-

=DGEQR2(

The QR factorization in LAPACK

The QR transformation factorizes a matrix A into the factors Q
and R where Q is unitary and R is upper triangular. It is based
on Householder reflections.

E BE

The QR factorization in LAPACK

The QR transformation factorizes a matrix A into the factors Q
and R where Q is unitary and R is upper triangular. It is based
on Householder reflections.

How does it compare to LU?

. Itis stable because it uses
Householder transformations that are
orthogonal
. It is more expensive than LU
because its operation count is
413 n’versus 2/3r°

Parallelism in LAPACK: LU/QR factorizations

factorization

‘ \ DLARFB: BLAS-3
updates U with
transformation computed
in DGETF2

Parallelism in LAPACK: LU/QR factorizations

DGEQR2: BLAS-2
non-blocked panel

. strict synchronization DGEQF2 DGEQRF
- poor parallelism #oores| (stopy (stops
. poor scalability ' :

A different algorithm can be used where operations can be
broken down into tiles.

| |=— M\ |=DGEQT2(|

The QR factorization of the upper
left tile is performed. This operation
returns a small R factor and the
corresponﬂ Householder

reflectors k

A different algorithm can be used where operations can be
broken down into tiles.

| |=—1| |-pDLARFBIN. |)

All the tiles in the first block-row
are updated by applying the
transformation

computed at the previous

A different algorithm can be used where operations can be

broken down into tiles.
o "

The R factor —Lomputed at the
first step is coupled with one tile in
the block-column and a QR
factorization is computed. Flops
can be saved due to the shape of
the matrix resulting from the
coupling.

A different algorithm can be used where operations can be

broken down into tiles.
H—e=qf}

Each couple of Dles along the
corresponding block rows is
updated by applying the
transformations computed in the
previous step. Flops can be saved
considering the shape of the
Householder vectors.

A different algorithm can be used where operations can be

broken down into tiles.

— 1 T:DTSQTz(EF
B

The last two steps are repeated for
all the tiles in the first block-column.

A different algorithm can be used where operations can be

broken down into tiles.
H—=u]

The last two steps are repeated for
all the tiles in the first block-column.

A different algorithm can be used where operations can be

broken down into tiles.
H~H=a]

The last two steps are repeated for
all the tiles in the first block-column.

25% more Flops than the LAPACK version!!!*

*we are working on a way to remove these extra flops.

-

Parallel tiled QR factorization
.4411 filg I ;‘{llé_}f

Az Az

) *
.

.,"‘ri;{}]— ..’i}.i{xﬂ o ﬁ"{}.g}g

!ﬁ

14¥:
11:

DLERFB,{;&I‘-;E: }‘v“.}" :

end for

fori=k| Lk | 1.,pdo
DTSAT2(Bex, Aix, Tir);
for j — b+ 1,E+2

DSSREB{As;, Ay

end for

cnd for

12: end for

Parallel tiled QR factorization: block data layout

Column-Major

Block data layout

Parallel tiled QR factorization: block data layout

Column-Major Block data layout

Parallel tiled QR factorization: block data layout

Column-Major Block data layout

Parallel tiled QR factorization: block data layout

The use of block data layout storage can significantly
improve performance

Blocking Speedup

128
block size

Parallel tiled QR factorization: scheduling

The whole factorization can be

@
represented as a DAG: ..Q..
*nodes: tasks that operate on tiles ..Q..
-edges: dependencies among tasks ® 00000
o0 000 00
000000 00
oo oo
. e e
® o
o

Tasks can be scheduled
asynchronously and in any order as
long as dependencies are not

violated.

o
©
®

Parallel tiled QR factorization: scheduling

A critical path can be defined as the
shortest path that connects all the
nodes with the higher number of
outgoing edges.

Priorities:

Parallel tiled QR factorization

.very fine granularity

.few dependencies, i.e., high
flexibility for the scheduling of
tasks mmpasynchronous
scheduling

-no idle times

.some degree of adaptativity
.better locality thanks to block data
layout

-

Parallel tiled QR factorization

Execution flow on a 8-way dual core Opteron.

Parallel tiled QR factorization: results

QR -- 8-way dual Opteron

async 2d |
async 2d raw
LAPACK+th B

8
cores

QR -- 8-way dual Opteron

async 2d
async 2d raw
LAPACK+ th

8
cores

QE -- 8-way Dual Opteron

async 2d
async 2d raw
LAPACK+ th

2000 4000 6000 8000 10000 12000 14000
problem size

QR -- 2-way Quad Clovertown

async 2d
async 2d raw [
LAPACK+ th

4 5
cores

QR -- 2-way Quad Clovertown

async 2d
async 2d raw
LAPACK+ th

2000 4000 6000 8000 10000 12000 14000

problem size

. Implement LU factorization on multicores

. Is it possible to apply the same approach to two-sided
transformations (Hessenberg, Bi-Diag, Tri-Diag)?

- Explore techniques to avoid extra flops

- Implement the new algorithms on distributed memory
architectures (J. Langou and J. Demmel)

. Implement the new algorithms on the Cell processor

. Explore automatic exploitation of parallelism through
graph driven programming environments

e i

CellSuperScalar and SM PuperScaIar

http://www.bsc.es/cellsuperscalar

. Uses source-to-source translation to determine
dependencies among tasks

. scheduling of tasks is performed automatically by
means of the features provided by a library

. it is easily possible to explore different scheduling
policies

. all of this is obtained by instructing the code with
pragmas and, thus, is transparent to other compilers

for (j= 0; j<i-1; j++){
for (k = 0; k < j-1; k++) {
sgemm_tile(A[i][k], A[][K], Alil[i]);
strsm_tile(A[j][], AL);

}
for (j = 0; j < i-1; j++) {
ssyrk_tile(A[il[il, Al);

}

spotrf_tile(Afi][i]);
void sgemm_tile(float *A, float *B, float *C)
void strsm_tile(float *T, float *B)

void ssyrk_tile(float *A, float *C)

for (j= 0 j< i-L; j++){
for (k = 0; k <j-1; k++) {
sgemm_tile(A[]][K], ALiI[K], AL);

strsm_tile(A[i][j], Alillil);

for(j=0;j<i-1; j++){
ssyrk_tile(A[il[i], ALl);

}
spotrf_tile(A[i][i]);

#pragma css task input(A[64][64], B[64][64]) inout(C[64][64])
void sgemm_tile(float *A, float *B, float *C)

#pragma css task input (T[64][64]) inout(B[64][64])
void strsm_tile(float *T, float *B)

#pragma css task input(A[64][64], B[64][64]) inout(C[64][64])

void ssyrk_tile(float *A, float *C)

Conclusions

. Fine granularity and loose synchronism are key features
for multicore-friendly algorithms
.Is it worth paying the cost of higher opcounts for the sake
of scalability?
YES
> parallel tiled algorithms
> OSKI
> low latency iterative solvers

« Alfredo Buttari, Julien Langou, Jakub Kurzak, and Jack Dongarra
“Parallel Tiled QR Factorization for Multicore Architectures”.
LAWN #190, UT-CS-07-598,

July 2007.

*Brian Gunter and Robert van de Geijn.
“Parallel Out-of-Core Computation and Updating of the QR

Factorization’.
ACM Transactions on Mathematical Software, 31(1):60-78, March 2005.

*E. L. Yip.
“FORTRAN Subroutines for Out-of-Core Solutions of Large
Complex Linear Systems”.

Technical Report CR-159142, NASA,
November 1979.

.

-

http://icl.cs.utk.edu

,

-

Parallel tiled QR factorization

Parallel tiled QR factorization

Parallel tiled QR factorization

Parallel tiled QR factorization

=

Parallel tiled QR factorization

=

