
8/9/2007

1

Parallel Tiled Algorithms for Parallel Tiled Algorithms for
Multicore ArchitecturesMulticore Architectures

Alfredo Buttari, Jack Dongarra, Jakub Kurzak and Julien Langou

SciDAC CScADS Summer Workshop on Libraries and
Algorithms for Petascale Applications

Snowbird UT, July 31st 2007

The free lunch is overThe free lunch is over

Problem

• power consumption

Solution

reduce clock and

Hardware

p p
• heat dissipation
• pins

increase execution
units = Multicore

Software

Consequence

Non-parallel software won't run any faster. A new
approach to programming is required.

8/9/2007

2

What is a Multicore processor, BTW?What is a Multicore processor, BTW?

“a processor that combines two or more independent
processors into a single package” (wikipedia)

What about:
• types of core?

homogeneous (AMD Opteron, Intel Woodcrest...)
heterogeneous (STI Cell, Sun Niagara...)

• memory?
how is it arranged?

• bus?
is it going to be fast enough?
h ?• cache?
shared? (Intel/AMD)
non present at all? (STI Cell)

• communications?

What is a Multicore processor, BTW?What is a Multicore processor, BTW?

Parallel software for multicores should have two
characteristics:
•fine granularity:

high parallelism degree is needed
cores are (and probably will be) associated with
relatively small local memories. This requires splitting
an operation into tasks that operate on small portions
of data in order to reduce bus traffic and improve data
locality.

•asynchronicity: as the degree of TLP grows and•asynchronicity: as the degree of TLP grows and
granularity of the operations becomes smaller, the
presence of synchronization points in a parallel execution
seriously affects the efficiency of an algorithm.

8/9/2007

3

Parallelism in Linear Algebra software so farParallelism in Linear Algebra software so far

LAPACK ScaLAPACK

Shared Memory Distributed Memory

Threaded
BLAS

parallelism

PBLAS

PThreads OpenMP BLACS
+ MPI

Parallelism in Linear Algebra software so farParallelism in Linear Algebra software so far

LAPACK

Threaded
BLAS

parallelism

PThreads OpenMP

8/9/2007

4

Parallelism in Linear Algebra software so farParallelism in Linear Algebra software so far

LAPACK LAPACK

parallelism

Threaded
BLAS

parallelism

sPThreads OpenMP

PThreads OpenMP sequential
BLAS

sequential
BLAS

The LAPACK algorithm for The LAPACK algorithm for
QR factorizationQR factorization

8/9/2007

5

The QR factorization in LAPACKThe QR factorization in LAPACK
The QR transformation factorizes a matrix A into the factors Q
and R where Q is unitary and R is upper triangular. It is based
on Householder reflections.

Assume that is the part of
the matrix that has been already
factorized and contains the
Householder reflectors that
determine the matrix Q.

The QR factorization in LAPACKThe QR factorization in LAPACK
The QR transformation factorizes a matrix A into the factors Q
and R where Q is unitary and R is upper triangular. It is based
on Householder reflections.

=DGEQR2()

8/9/2007

6

The QR factorization in LAPACKThe QR factorization in LAPACK
The QR transformation factorizes a matrix A into the factors Q
and R where Q is unitary and R is upper triangular. It is based
on Householder reflections.

=DLARFB()

The QR factorization in LAPACKThe QR factorization in LAPACK
The QR transformation factorizes a matrix A into the factors Q
and R where Q is unitary and R is upper triangular. It is based
on Householder reflections.

How does it compare to LU?
It is stable because it uses

Householder transformations that are
orthogonal
It is more expensive than LU

because its operation count is
versus4 /3 n3 2 /3 n3

8/9/2007

7

Parallelism in LAPACK: LU/QR factorizationsParallelism in LAPACK: LU/QR factorizations

DGEQR2: BLAS-2
non-blocked panel
factorization

DLARFB: BLAS-3
updates U with
transformation computed
in DGETF2

Parallelism in LAPACK: LU/QR factorizationsParallelism in LAPACK: LU/QR factorizations

strict synchronization
poor parallelism
poor scalability

DGEQF2 DGEQRF
cores

1 0.45 3.31
2 0.46 5.51
4 0.46 9.69
8 0.45 10.58

(Gflop/s) (Gflop/s)

Time

8/9/2007

8

A ll l til d l ithA ll l til d l ithA parallel tiled algorithm A parallel tiled algorithm
for QR factorizationfor QR factorization

Parallel tiled QR factorizationParallel tiled QR factorization

=DGEQT2()

A different algorithm can be used where operations can be
broken down into tiles.

The QR factorization of the upper
left tile is performed. This operation
returns a small R factor and the
corresponding Householder p g
reflectors .

8/9/2007

9

=DLARFB()

A different algorithm can be used where operations can be
broken down into tiles.

Parallel tiled QR factorizationParallel tiled QR factorization

All the tiles in the first block-row
are updated by applying the
transformation

computed at the previous p p
step.

1 =DTSQT2()

A different algorithm can be used where operations can be
broken down into tiles.

Parallel tiled QR factorizationParallel tiled QR factorization

The R factor computed at the
first step is coupled with one tile in
the block-column and a QR
factorization is computed. Flops p p
can be saved due to the shape of
the matrix resulting from the
coupling.

8/9/2007

10

1=DSSRFB()

A different algorithm can be used where operations can be
broken down into tiles.

Parallel tiled QR factorizationParallel tiled QR factorization

Each couple of tiles along the
corresponding block rows is
updated by applying the
transformations computed in the p
previous step. Flops can be saved
considering the shape of the
Householder vectors.

1 =DTSQT2()

A different algorithm can be used where operations can be
broken down into tiles.

Parallel tiled QR factorizationParallel tiled QR factorization

The last two steps are repeated for
all the tiles in the first block-column.

8/9/2007

11

1=DSSRFB()

A different algorithm can be used where operations can be
broken down into tiles.

Parallel tiled QR factorizationParallel tiled QR factorization

The last two steps are repeated for
all the tiles in the first block-column.

1=DSSRFB()

A different algorithm can be used where operations can be
broken down into tiles.

Parallel tiled QR factorizationParallel tiled QR factorization

The last two steps are repeated for
all the tiles in the first block-column.

25% more Flops than the LAPACK version!!!*

*we are working on a way to remove these extra flops.

8/9/2007

12

Parallel tiled QR factorizationParallel tiled QR factorization

Column-Major Block data layout

Parallel tiled QR factorization: block data layoutParallel tiled QR factorization: block data layout

8/9/2007

13

Column-Major Block data layout

Parallel tiled QR factorization: block data layoutParallel tiled QR factorization: block data layout

Column-Major Block data layout

Parallel tiled QR factorization: block data layoutParallel tiled QR factorization: block data layout

8/9/2007

14

Blocking Speedup

The use of block data layout storage can significantly
improve performance

Parallel tiled QR factorization: block data layoutParallel tiled QR factorization: block data layout

0.6

0.8

1

1.2

1.4

1.6

1.8

2

DGEMM
DTRSM

sp
ee

du
p

64 128 256
0

0.2

0.4

block size

Parallel tiled QR factorization: schedulingParallel tiled QR factorization: scheduling

The whole factorization can be
represented as a DAG:
•nodes: tasks that operate on tiles
•edges: dependencies among tasks

Tasks can be scheduled
asynchronously and in any order as
long as dependencies are not
violated.

8/9/2007

15

Parallel tiled QR factorization: schedulingParallel tiled QR factorization: scheduling

A critical path can be defined as the
shortest path that connects all the
nodes with the higher number of
outgoing edges.

Priorities:

very fine granularity
few dependencies, i.e., high
flexibility for the scheduling of
tasks asynchronous

Parallel tiled QR factorizationParallel tiled QR factorization

tasks asynchronous
scheduling
no idle times
some degree of adaptativity
better locality thanks to block data
layout

8/9/2007

16

Execution flow on a 8-way dual core Opteron.

Parallel tiled QR factorizationParallel tiled QR factorization

Time

Parallel tiled QR factorization: resultsParallel tiled QR factorization: results

32.5
35

37.5

QR -- 8-way dual Opteron

5
7.5
10

12.5
15

17.5
20

22.5
25

27.5
30

async 2d
async 2d raw
LAPACK+ t h

G
flo

p/
s

0 2 4 6 8 10 12 14 16
0

2.5
5

cores

8/9/2007

17

Parallel tiled QR factorization: resultsParallel tiled QR factorization: results

32.5
35

37.5

QR -- 8-way dual Opteron

5
7.5
10

12.5
15

17.5
20

22.5
25

27.5
30

async 2d
async 2d raw
LAPACK+ t h

G
flo

p/
s

0 2 4 6 8 10 12 14 16
0

2.5
5

cores

Parallel tiled QR factorization: resultsParallel tiled QR factorization: results

32 5
35

37.5

QE -- 8-way Dual Opteron

12.5

15
17.5

20
22.5

25
27.5

30
32.5

async 2d
async 2d raw
LAPACK+ t hG

flo
p/

s

0 2000 4000 6000 8000 10000 12000 14000
7.5

10

prob lem size

8/9/2007

18

Parallel tiled QR factorization: resultsParallel tiled QR factorization: results

37.5
40

42.5

QR -- 2-way Quad Clovertown

10
12.5

15
17.5

20
22.5

25
27.5

30
32.5

35

async 2d
async 2d raw

G
flo

p/
s

1 2 3 4 5 6 7 8
5

7.5
10 LAPACK+ t h

cores

Parallel tiled QR factorization: resultsParallel tiled QR factorization: results

40
42.5

45

QR -- 2-way Quad Clovertown

17 5
20

22.5
25

27.5
30

32.5
35

37.5
40

async 2d
async 2d raw
LAPACK+ t h

G
flo

p/
s

0 2000 4000 6000 8000 10000 12000 14000
12.5

15
17.5

problem size

8/9/2007

19

C t k d f t lC t k d f t lCurrent work and future plansCurrent work and future plans

Current work and future plansCurrent work and future plans

Implement LU factorization on multicores
Is it possible to apply the same approach to two-sided

transformations (Hessenberg, Bi-Diag, Tri-Diag)?
Explore techniques to avoid extra flops
Implement the new algorithms on distributed memory

architectures (J. Langou and J. Demmel)
Implement the new algorithms on the Cell processor
Explore automatic exploitation of parallelism through

graph driven programming environments

8/9/2007

20

CellSuperScalar and SMPSuperScalarCellSuperScalar and SMPSuperScalar

http://www.bsc.es/cellsuperscalar

uses source to source translation to determineuses source-to-source translation to determine
dependencies among tasks
scheduling of tasks is performed automatically by

means of the features provided by a library
it is easily possible to explore different scheduling

policies
all of this is obtained by instructing the code with y g

pragmas and, thus, is transparent to other compilers

for (i = 0; i < DIM; i++) {
for (j= 0; j< i-1; j++){

for (k = 0; k < j-1; k++) {
sgemm_tile(A[i][k], A[j][k], A[i][j]);

}

CellSuperScalar and SMPSuperScalarCellSuperScalar and SMPSuperScalar

}
strsm_tile(A[j][j], A[i][j]);

}
for (j = 0; j < i-1; j++) {

ssyrk_tile(A[i][j], A[i][i]);
}
spotrf_tile(A[i][i]);

}

void sgemm tile(float *A float *B float *C)void sgemm_tile(float *A, float *B, float *C)

void strsm_tile(float *T, float *B)

void ssyrk_tile(float *A, float *C)

8/9/2007

21

for (i = 0; i < DIM; i++) {
for (j= 0; j< i-1; j++){

for (k = 0; k < j-1; k++) {
sgemm_tile(A[i][k], A[j][k], A[i][j]);

}

CellSuperScalar and SMPSuperScalarCellSuperScalar and SMPSuperScalar

}
strsm_tile(A[j][j], A[i][j]);

}
for (j = 0; j < i-1; j++) {

ssyrk_tile(A[i][j], A[i][i]);
}
spotrf_tile(A[i][i]);

}

#pragma css task input(A[64][64], B[64][64]) inout(C[64][64])
void sgemm tile(float *A float *B float *C)void sgemm_tile(float *A, float *B, float *C)

#pragma css task input (T[64][64]) inout(B[64][64])
void strsm_tile(float *T, float *B)

#pragma css task input(A[64][64], B[64][64]) inout(C[64][64])
void ssyrk_tile(float *A, float *C)

ConclusionsConclusions

Fine granularity and loose synchronism are key features
for multicore-friendly algorithms
Is it worth paying the cost of higher opcounts for the sake
of scalability?of scalability?

YES
parallel tiled algorithms
OSKI
low latency iterative solvers

8/9/2007

22

• Alfredo Buttari, Julien Langou, Jakub Kurzak, and Jack Dongarra
“Parallel Tiled QR Factorization for Multicore Architectures”.
LAWN #190, UT-CS-07-598,
July 2007.

•Brian Gunter and Robert van de Geijn.
“Parallel Out-of-Core Computation and Updating of the QR
Factorization”.
ACM Transactions on Mathematical Software, 31(1):60-78, March 2005.

•E. L. Yip.
“FORTRAN Subroutines for Out-of-Core Solutions of Large
Complex Linear Systems”.
Technical Report CR-159142, NASA,
November 1979.

Th kTh kThank youThank you

http://icl.cs.utk.edu

8/9/2007

23

Parallel tiled QR factorizationParallel tiled QR factorization

Parallel tiled QR factorizationParallel tiled QR factorization

8/9/2007

24

Parallel tiled QR factorizationParallel tiled QR factorization

Parallel tiled QR factorizationParallel tiled QR factorization

8/9/2007

25

Parallel tiled QR factorizationParallel tiled QR factorization

Parallel tiled QR factorizationParallel tiled QR factorization

8/9/2007

26

Parallel tiled QR factorizationParallel tiled QR factorization

Parallel tiled QR factorizationParallel tiled QR factorization

8/9/2007

27

Parallel tiled QR factorizationParallel tiled QR factorization

Parallel tiled QR factorizationParallel tiled QR factorization

