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The free lunch is overThe free lunch is over

Problem

• power consumption

Solution

reduce clock and

Hardware

p p
• heat dissipation
• pins

increase execution
units = Multicore

Software

Consequence

Non-parallel software won't run any faster. A new 
approach to programming is required.
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What is a Multicore processor, BTW?What is a Multicore processor, BTW?

“a processor that combines two or more independent 
processors into a single package” (wikipedia) 

What about:
• types of core?

homogeneous (AMD Opteron, Intel Woodcrest...) 
heterogeneous (STI Cell, Sun Niagara...) 

• memory?
how is it arranged?

• bus?
is it going to be fast enough?
h ?• cache?
shared? (Intel/AMD) 
non present at all? (STI Cell) 

• communications?

What is a Multicore processor, BTW?What is a Multicore processor, BTW?

Parallel software for multicores should have two 
characteristics:
•fine granularity: 

high parallelism degree is needed
cores are (and probably will be) associated with 
relatively small local memories. This requires splitting 
an operation into tasks that operate on small portions 
of data in order to reduce bus traffic and improve data 
locality.

•asynchronicity: as the degree of TLP grows and•asynchronicity: as the degree of TLP grows and 
granularity of the operations becomes smaller, the 
presence of synchronization points in a parallel execution 
seriously affects the efficiency of an algorithm.
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Parallelism in Linear Algebra software so farParallelism in Linear Algebra software so far

LAPACK ScaLAPACK

Shared Memory Distributed Memory

Threaded
BLAS

parallelism

PBLAS

PThreads OpenMP BLACS
+ MPI

Parallelism in Linear Algebra software so farParallelism in Linear Algebra software so far

LAPACK

Threaded
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parallelism
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Parallelism in Linear Algebra software so farParallelism in Linear Algebra software so far

LAPACK LAPACK

parallelism

Threaded
BLAS

parallelism

sPThreads OpenMP

PThreads OpenMP sequential
BLAS

sequential
BLAS

The LAPACK algorithm for The LAPACK algorithm for 
QR factorizationQR factorization
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The QR factorization in LAPACKThe QR factorization in LAPACK
The QR transformation factorizes a matrix A into the factors Q 
and R where Q is unitary and R is upper triangular. It is based 
on Householder reflections.

Assume that         is the part of 
the matrix that has been already 
factorized and          contains the 
Householder reflectors that 
determine the matrix Q.

The QR factorization in LAPACKThe QR factorization in LAPACK
The QR transformation factorizes a matrix A into the factors Q 
and R where Q is unitary and R is upper triangular. It is based 
on Householder reflections.

=DGEQR2(       )  
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The QR factorization in LAPACKThe QR factorization in LAPACK
The QR transformation factorizes a matrix A into the factors Q 
and R where Q is unitary and R is upper triangular. It is based 
on Householder reflections.

=DLARFB(                    ) 

The QR factorization in LAPACKThe QR factorization in LAPACK
The QR transformation factorizes a matrix A into the factors Q 
and R where Q is unitary and R is upper triangular. It is based 
on Householder reflections.

How does it compare to LU?
It is stable because it uses 

Householder transformations that are 
orthogonal
It is more expensive than LU 

because its operation count is 
versus4 /3 n3 2 /3 n3
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Parallelism in LAPACK: LU/QR factorizationsParallelism in LAPACK: LU/QR factorizations

DGEQR2: BLAS-2
non-blocked panel 
factorization

DLARFB: BLAS-3
updates U with 
transformation computed 
in DGETF2

Parallelism in LAPACK: LU/QR factorizationsParallelism in LAPACK: LU/QR factorizations

strict synchronization
poor parallelism
poor scalability

DGEQF2 DGEQRF
# cores

1 0.45 3.31
2 0.46 5.51
4 0.46 9.69
8 0.45 10.58

(Gflop/s) (Gflop/s)

Time
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A ll l til d l ithA ll l til d l ithA parallel tiled algorithm A parallel tiled algorithm 
for QR factorizationfor QR factorization

Parallel tiled QR factorizationParallel tiled QR factorization

=DGEQT2(      ) 

A different algorithm can be used where operations can be 
broken down into tiles.

The QR factorization of the upper 
left tile is performed. This operation 
returns a small R factor        and the 
corresponding Householder p g
reflectors       . 
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=DLARFB(             ) 

A different algorithm can be used where operations can be 
broken down into tiles.

Parallel tiled QR factorizationParallel tiled QR factorization

All the tiles in the first block-row 
are updated by applying the 
transformation  

computed at the previous p p
step.

1 =DTSQT2(      ) 

A different algorithm can be used where operations can be 
broken down into tiles.

Parallel tiled QR factorizationParallel tiled QR factorization

The R factor        computed at the 
first step is coupled with one tile in 
the block-column and a QR 
factorization is computed. Flops p p
can be saved due to the shape of 
the matrix resulting from the 
coupling.
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1=DSSRFB(             ) 

A different algorithm can be used where operations can be 
broken down into tiles.

Parallel tiled QR factorizationParallel tiled QR factorization

Each couple of         tiles along the 
corresponding block rows is 
updated by applying the       
transformations computed in the p
previous step. Flops can be saved 
considering the shape of the 
Householder vectors.

1 =DTSQT2(      ) 

A different algorithm can be used where operations can be 
broken down into tiles.

Parallel tiled QR factorizationParallel tiled QR factorization

The last two steps are repeated for 
all the tiles in the first block-column.
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1=DSSRFB(             ) 

A different algorithm can be used where operations can be 
broken down into tiles.

Parallel tiled QR factorizationParallel tiled QR factorization

The last two steps are repeated for 
all the tiles in the first block-column.

1=DSSRFB(             ) 

A different algorithm can be used where operations can be 
broken down into tiles.

Parallel tiled QR factorizationParallel tiled QR factorization

The last two steps are repeated for 
all the tiles in the first block-column.

25% more Flops than the LAPACK version!!!*

*we are working on a way to remove these extra flops.
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Parallel tiled QR factorizationParallel tiled QR factorization

Column-Major Block data layout

Parallel tiled QR factorization: block data layoutParallel tiled QR factorization: block data layout
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Column-Major Block data layout

Parallel tiled QR factorization: block data layoutParallel tiled QR factorization: block data layout

Column-Major Block data layout

Parallel tiled QR factorization: block data layoutParallel tiled QR factorization: block data layout
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Blocking Speedup

The use of block data layout storage can significantly 
improve performance

Parallel tiled QR factorization: block data layoutParallel tiled QR factorization: block data layout
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Parallel tiled QR factorization: schedulingParallel tiled QR factorization: scheduling

The whole factorization can be 
represented as a DAG:
•nodes: tasks that operate on tiles
•edges: dependencies among tasks

Tasks can be scheduled 
asynchronously and in any order as 
long as dependencies are not 
violated.
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Parallel tiled QR factorization: schedulingParallel tiled QR factorization: scheduling

A critical path can be defined as the 
shortest path that connects all the 
nodes with the higher number of 
outgoing edges. 

Priorities:

very fine granularity
few dependencies, i.e., high 
flexibility for the scheduling of 
tasks asynchronous

Parallel tiled QR factorizationParallel tiled QR factorization

tasks         asynchronous 
scheduling
no idle times
some degree of adaptativity
better locality thanks to block data 
layout



8/9/2007

16

Execution flow on a 8-way dual core Opteron.

Parallel tiled QR factorizationParallel tiled QR factorization

Time

Parallel tiled QR factorization: resultsParallel tiled QR factorization: results

32.5
35

37.5

QR -- 8-way dual Opteron

5
7.5
10

12.5
15

17.5
20

22.5
25

27.5
30

async 2d 
async 2d raw
LAPACK+ t h

G
flo

p/
s

0 2 4 6 8 10 12 14 16
0

2.5
5

#  cores



8/9/2007

17

Parallel tiled QR factorization: resultsParallel tiled QR factorization: results
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Parallel tiled QR factorization: resultsParallel tiled QR factorization: results
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C t k d f t lC t k d f t lCurrent work and future plansCurrent work and future plans

Current work and future plansCurrent work and future plans

Implement LU factorization on multicores
Is it possible to apply the same approach to two-sided 

transformations (Hessenberg, Bi-Diag, Tri-Diag)?
Explore techniques to avoid extra flops
Implement the new algorithms on distributed memory 

architectures (J. Langou and J. Demmel) 
Implement the new algorithms on the Cell processor
Explore automatic exploitation of parallelism through 

graph driven programming environments
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CellSuperScalar and SMPSuperScalarCellSuperScalar and SMPSuperScalar

http://www.bsc.es/cellsuperscalar

uses source to source translation to determineuses source-to-source translation to determine 
dependencies among tasks
scheduling of tasks is performed automatically by 

means of the features provided by a library
it is easily possible to explore different scheduling 

policies
all of this is obtained by instructing the code with y g

pragmas and, thus, is transparent to other compilers

for (i = 0; i < DIM; i++) {
for (j= 0; j< i-1; j++){

for (k = 0; k < j-1; k++) {
sgemm_tile( A[i][k], A[j][k], A[i][j] );

}

CellSuperScalar and SMPSuperScalarCellSuperScalar and SMPSuperScalar

}
strsm_tile( A[j][j], A[i][j] );

}
for (j = 0; j < i-1; j++) {

ssyrk_tile( A[i][j], A[i][i] );
}
spotrf_tile( A[i][i] );

}

void sgemm tile(float *A float *B float *C)void sgemm_tile(float *A, float *B, float *C)

void strsm_tile(float *T, float *B) 

void ssyrk_tile(float *A, float *C) 
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for (i = 0; i < DIM; i++) {
for (j= 0; j< i-1; j++){

for (k = 0; k < j-1; k++) {
sgemm_tile( A[i][k], A[j][k], A[i][j] );

}

CellSuperScalar and SMPSuperScalarCellSuperScalar and SMPSuperScalar

}
strsm_tile( A[j][j], A[i][j] );

}
for (j = 0; j < i-1; j++) {

ssyrk_tile( A[i][j], A[i][i] );
}
spotrf_tile( A[i][i] );

}

#pragma css task input(A[64][64], B[64][64]) inout(C[64][64]) 
void sgemm tile(float *A float *B float *C)void sgemm_tile(float *A, float *B, float *C)

#pragma css task input (T[64][64]) inout(B[64][64]) 
void strsm_tile(float *T, float *B) 

#pragma css task input(A[64][64], B[64][64]) inout(C[64][64]) 
void ssyrk_tile(float *A, float *C) 

ConclusionsConclusions

Fine granularity and loose synchronism are key features 
for multicore-friendly algorithms
Is it worth paying the cost of higher opcounts for the sake 
of scalability?of scalability?

YES
parallel tiled algorithms
OSKI
low latency iterative solvers
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Th kTh kThank youThank you

http://icl.cs.utk.edu
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Parallel tiled QR factorizationParallel tiled QR factorization

Parallel tiled QR factorizationParallel tiled QR factorization
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Parallel tiled QR factorizationParallel tiled QR factorization

Parallel tiled QR factorizationParallel tiled QR factorization
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Parallel tiled QR factorizationParallel tiled QR factorization

Parallel tiled QR factorizationParallel tiled QR factorization
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Parallel tiled QR factorizationParallel tiled QR factorization

Parallel tiled QR factorizationParallel tiled QR factorization
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Parallel tiled QR factorizationParallel tiled QR factorization

Parallel tiled QR factorizationParallel tiled QR factorization


