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Outline
• Background

– Simulation of nano materials and devicesSimulation of nano materials and devices
– Challenges of future architectures

• Electronic structure calculations
– Density Functional Theory (DFT)
– Potentials, Basis selection, etc 

• CS/Math Challenges
– Iterative eigensolvers
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g
– Preconditioners

– Kernels optimization
– Research on new or improved algorithms

• Conclusions

Electronic properties of 
nano-structures

• Semiconductor Quantum dots (QDs)Semiconductor Quantum dots (QDs)
– Tiny crystals ranging from a few hundred to  

few thousand atoms in size; made by humans
At these small sizes electronic properties 

critically depend on shape and size
⇒ electronic properties can be tuned

⇒ enables remarkable applications
The dependence is quantum mechanical
i d b d ll d

Total electron charge density of 
a quantum dot of gallium arsenide, 
containing just 465 atoms. 
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in nature and can be modelled
- can not be done on macroscopic scales
- has to be at atomic and subatomic level (nanoscale)

• Quantum wires (QWs) and devices
– their conducting properties are affected by build-in nano-materials

Quantum dots of the same material 
but different sizes have different band 
gaps and emit different colors
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Nano Materials Simulations
• Many-body quantum mechanical (QM) first-principles  approaches 

pred

(e.g. Quantum Monte Carlo)                                                    30-200 atoms

• Single particle first-principles (Density Functional Theory)    103

• Empirical and Semiempirical methods                                      106

• Continuum methods                                                                   107

atom
s

dictive pow
er

Method classification based on: Use of empirically or experimentally derived results
YES empirical or semi-empirical methods
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NO ab initio (very accurate; most predictive power; but scales as O(N3 7))
Major petascale computing challenges:

Algorithms with reduced scaling; architecture aware (next ...)
Highly parallelizable (100s of 1,000s of cores)
- typical basis functions here (plane-wave basis) have global support 

Challenges of Future Architectures
• Parallel computing – not just for HPC architectures but for simple desktops

I f d kt t d t h 32 lti hi d– In a few years desktops expected to have 32  cores per multicore processor chip and 
128 hardware threads per chip

• Gap between processor and memory speed continue to grow (exponentially)

– Processor speed improves 59%, memory bandwidth 23%, latency 5.5%
Many familiar and widely used algorithms and libraries have to be rewritten 
to be able to exploit the power of these new generation architectures 

• Petaflop by 2010: DARPA's HPCS program in phase 3 supporting
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Petaflop by 2010: DARPA s HPCS program in phase 3, supporting

– Cray with the Cascade system (with Chapel HPL) / adaptive supercomputing

• parallelism trough various processor technologies: scalar, vector, 
multithreading and hardware accelerators (FPGA or ClearSpeed co-processors)

– IBM with PERCS system (with X10 HPL)  / larger SMPs with more memory
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Electronic structure calculations
• Density functional theory

Many-body Schrödinger equation (exact but exponential scaling)y y g q ( p g)
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Kohn Sham Equation: The many body problem of interacting 
electrons is reduced to non-interacting electrons (single particle 
problem) with the same electron density and a different effective 
potential  (cubic scaling).

• Nuclei fixed, generating external potential 
(system dependent, non-trivial)

• N is number of electrons
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• VXC represents effects of the Coulomb interactions
between electrons

• is the density (of the original many-body system)

VXC is not known except special cases use approximation, e.g. Local Density Approximation (LDA)
where VXC depends only on 

Selfconsistent calculation
1 N electrons)()()},(
2
1{ 2 rErrV iii ψψρ =+∇−

Nii ,..,1}{ =ψ
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N electrons
N wave functions
lowest N 
eigenfunctions

Requires diagonalization and/or orthogonalization
Scales as O(N3) and may be prohibitively high
Work on new algorithms with reduced scaling
(the need to know more physics and interact with physicists)
Th f l O(N) l ith t fi d di tl
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There are for example O(N) algorithms to find directly
the total energy
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Computational framework

* Interior eigenvalue problem
* subspace diagonalization:

linear combination  of 
bulk states (LCBB)
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* diagonalization of CI Hamiltonian
for low excited states

* Generalized Poisson Equation (for
electric field needed in CI for the many-body problem  

Basis selection
• Plane-waves, grid functions, or Gaussian orbitals

• Plane-waves:
– Good approximation properties

– Can be preconditioned easily (and efficiently) as the kinetic energy (the laplacian) is diagonal in 
Fourier space, the potential is diagonal in real space

– Usually codes are in Fourier space and go back and forth to real with FFTs

– Concern may be scalability of FFT on 100s of 1,000s of processors as it requires global 
communication
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• Grid functions: e.g. finite elements, grids, or wavelets
– Domain decomposition techniques can guarantee scalability for large enough problems

– Interesting as they enable algebraically based preconditioners as well

– Including multigrid/multiscale 

• e.g.  real-space multigrid methods (RMG) by J. Bernholc et al (NCSU)
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Libraries
• Use state-of-the-art libraries whenever possible, extend if our particular 

problems present opportunities for improvement

• We use the Nanoscience Problem Solving Environment (NanoPSE) package

– Integrate various nano-codes (developed over ~12 years)

– Its design goal: provide a software context for collaboration
– Features easy install; runs on many platforms, etc.

• LAPACK, ScaLAPACK, BLAS
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• PRIMME package (A. Stathopoulos and J. McCombs)

• P_ARPACK (R. Lehoucq, K. Maschhoff, D. Sorensen, C. Yang)

FFT
Jacquard 
(O t ) NEC ES (SX6*) NEC SX8ORNLCray  (X1)Thunder 

(It i 2)NERSC (Power3)

21%
45%

%peak

0.95
1.98

Gflops/P
(Opteron)

3.6
4.4
5.0
5.1

Gflops/P

C S (S 6 )

46%
55%
62%
64%

%peak

44%2.449%0.73512
32%1.840%0.601024

43%6.824%3.047%2.657%0.85256
488 Atom

CdSe
Quantum

Dot

Problem

47%7.525%3.251%2.862%0.93128
Gflops/P

C S 8

%peak%peakGflops/P

O C ay ( )

Gflops/P
(Itanium2)

Gflops/P

SC ( o e 3)

%peak%peak
P

– * Load Balance Sphere by giving columns to different procs.
* 3D FFT done via 3 sets of 1D FFTs and 2 transposes 
* Flops/Comms ~  logN   
* Many FFTs done at the same time to avoid latency issues
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 Many FFTs done at the same time to avoid latency issues  
* Only non-zero elements communicated/calculated
* Much faster than vendor supplied 3D-FFT

(from A. Canning (LBNL), work on PARATEC)
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Interior Eigenvalue Problem Formulation

• Solve a single particle Schrödinger-type equationg p g yp q

(E)             H  Ψi [-0.5 Δ + V] Ψi = εi Ψi

with periodic boundary conditions
• Physical interpretation

– The Hamiltonian H represents the total energy
• Laplacian Δ corresponds to kinetic energy of the electrons

V i h i l d ib h i fi i f h
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• V is the potential energy; describes the atomic configuration of the systems; 
precomputed or from experiment

– Real eigenvalue εi is discrete energy level of electron (occupied or not)
– Complex eigenvector Ψi is probability distribution for spacial location of electron

Interior Eigenvalue Problem Formulation

• Basis functions (Bloch theorem about the eigenstates of 
H il i H i h i di i l V)Hamiltonian H with periodic potential V)

• Leads to a discrete eigenvalue problem
H Ψi = Ei Ψi ,   where H is Hermitian

• Properties of H
– Complex Hermitian indefinite
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– Implicitly defined by M-V product (uses 3D FFT)
– Eigenvalues with higher multiplicities (to be expected of up to 4)

• Find a few (4-10) interior eigenvalues closest to a given point Eref
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Iterative eigensolvers
• Based on local projections, e.g.

Solving Ax = x in Rn  iteratively: 
* at iteration i extract an approximate xi from a subspace V = span[v1, ..., vm] of 

Rn                          * impose Galerkin constraints:
x – Ax subspace W = span[w1,...,wm] of Rn, i.e.

w*  A xi =  w* xi,        for w W= span[w1,...,wm]

• This procedure is also known as Rayleigh-Ritz

• In Matrix notations: Let  V = [v1, ..., vm],  W = [w1,...,wm]
* Find y Rm s t x = V y solves
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* Find y Rm s.t.      xi = V y solves
WTA V y =  WT Vy   (with LAPACK)

• The choice for V and W is crucial and determines various methods

– Setting various parameters is non trivial

Need special attention on petascale
architectures as it has “sequential” part

Spectral transformations

• Shift and invert• Folded spectrum

Slide 16 / 30

• Convergence of ith smallest eigenstate of CG depends on the ratio

• Shift and invert
Ax = λx   →   

(A-ErefI)-1 x = μ x,  Eref ≠ λ

need to invert (inner iteration)

• Folded spectrum
Ax = λx   →   

(A-ErefI)2 x = μ x

clustering of eigenvalues

Convergence stagnation comp.  
the valence band on a 
1,523 atoms CdSe QD 
(with folded spectrum)

minmax

1

xx
xx ii

−
−+
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Iterative eigensolvers
• We studied several eigensolvers on our problemsg p

– Preconditioned conjugate gradient  (PCG) from PESCAN, part of NanoPSE
– Block PCG (BEPCG)

– Implicitly restarted Arnoldi/Lanczos from P_ARPACK
– Generalized Davidson (GD) with restart and Jacobi-Davidson with QMR as inner solver 

(JDQMR) from PRIMME
– Locally optimal block preconditioned conjugate gradient (LOBPCG); own implementation
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PCG eigensolver
• Have been successfully used in the field

• PCG extended to a subspace method

– Band-by-band inner-outer iteration

do i=1,niter
[X]     = state by state CG-type minimization of the 

Rayleigh functional (with deflation)
[X, λ] = Rayleigh-Ritz on span{X}

enddo
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Blocking
• PCG extended to a subspace method

– Band-by-band inner-outer iteration

• Of concern here is that the band-by-band computation uses only a fraction of the peak 
performance of current computer architectures

– It is possible instead of the band-by-band updates for the eigenstates to organize the 
computation so that a block of eigenstates is 'simultaneously' updated (next)

• Results in performing Rayleigh-Ritz (RR) on larger subspaces

– Can be implemented in terms of BLAS 3 operations
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p p

– Can block communications and reduce latency overhead in distributed 
computing

– Larger subspaces lead to accelerated convergence (in terms of RR iterations)

Block PCG: BEPCG and LOBPCG
Band-by-band PCG BEPCG

LOBPCG
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do i=1,niter
[R] = P (AX - λX)
[X, λ] = Rayleigh-Ritz on span{X, Xi-1, R}

Enddo
Of interest is
* if the 3rd vector in LOBPCG improve convergence

vs using 2 (current approximate and search direction) as in BEPCG
* if not, will BEPCG yield improved reliability and performance



8/9/2007

11

Some results/conclusions on eigensolvers

• GD+k (Olsen) turned to be very reliable and at the same time up to 5 times faster than 
the commonly used PCG

• PCG still useful as it requires very small amount of memory and is robust

• LOBPCG wasn't competitive with the preconditioner used (competitive without 
preconditioning)

• IRL was very fast for some problems but in general unreliable when used with 
memory comparable with the others (improved filtering may help, blocking); 
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does not support multiple start vectors and preconditioning

• Need to explore other spectral transformations, e.g. Harmonic Ritz values

• For more substantial speedups, improved reliability, and robustness we need better 
preconditioners

A bulk band (BB) preconditioner
• A preconditioner based on physical intuitionA preconditioner based on physical intuition, 

example of collaboration with physicists

• Use a subset of the eigenstates of the crystal Hamiltonian 
(denoted as bulk band space SBB)

• A numerical motivation:
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• A numerical motivation: 

Angle                          is small (≈ 2° – 3°)

⊥

+= BBBB S
i

S
ii ψψψ
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8/9/2007

12

The space SBB

• Subset of the eigenstates of the crystal• Subset of the eigenstates of the crystal 
Hamiltonian

• Subspace of the basis functions ψnk(r) space
(i.e. sparse in the plane wave basis)

• Of relatively small dimension
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Of relatively small dimension 
(“inexpensive” to  compute)

The operator HBB

• H ≡ the Hamiltonian stemming from the• HBB ≡ the Hamiltonian stemming from the 
bulk problem

• The eigenvectors (in SBB) and corresponding 
eigenvalues are “easy” to compute 

=> H-1
BB can be applied efficiently on ψ∈SBB
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BB pp y ψ BB

• Prolongation/restriction between spaces S/SBB 
can be efficiently implemented



8/9/2007

13

BB preconditioner
• Let Q the prolongation (basis embedding) from SBB to S andQ p g ( g) BB

QT the corresponding restriction (projection) from S to SBB

• The BB preconditioner
P R  ≡ w Q HBB

-1 QT R + D-1 R

w = λmax
-1 (QHBB

-1 QT H)
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(qi is diagonal term for the Laplacian, V0 the average 
potential, and Ek the average kinetic energy of ψi)

22
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Numerical results
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Real space methods
• Grid functions: e.g. finite elements, grids, or wavelets

– Domain decomposition techniques can guarantee scalability for large enough problems

– Interesting as they enable algebraically based preconditioners as well

– Including multigrid/multiscale 
• e.g.  real-space multigrid methods (RMG) by J. Bernholc et al (NCSU)

Concerns/challenges regarding scalability on petascale machines
• Tuning  'coarse' level operations as they have reduced computation-to-communication ratio

* in multiscale methods and in additive Schwarz type preconditioners
L d b l i i ddi i S h di i
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• Load balancing in additive Schwarz type preconditioners

Mixed precision iterative refinement

xi+1 = xi + P  (b-Axi)
• We have demonstrated (in a couple of papers) computational speedup in solving Ax = b (with DP accuracy) by

Computed and applied in SP,

where P can be the triangular inverses of the LU factorization of A or
another iterative solver (e.g. GMRES)

p pp ,
the rest in DP
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A random dense                                                       Matrix market, sparse              Elasticity, adaptive, K(A) = 103 .. 105

O(105)                                         O(109) 

Dongarra / Buttari / Kurzak / Luszczek / Langou / Langou / Tomov
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Mixed precision iterative refinement

xi+1 = xi + P  (b-Axi)
• We have demonstrated (in a couple of papers) computational speedup in solving Ax = b (with DP accuracy) by

Computed and applied in SP,

where P can be the triangular inverses of the LU factorization of A or
another iterative solver (e.g. GMRES)

• Efficiency of the technique depends on k(A)

• Exploit that subdomain/coarse level matrices are of reduced condition number (compared to global matrix) to
efficiently apply the mixed precision technique 

p pp ,
the rest in DP
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Conclusions
• Nano-technology simulations truly need petascale computinggy y p p g

• Development of efficient tools need multidisciplinary team

• Close collaboration with physicists
– e.g. for input on developing application specific preconditioners
– Algorithms of reduced scaling

• Challenges of petascale computing and nano-technology
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– Complex problems (no single tool can offer complete solution)
– We are deeply involved in several initiatives that aim to address them

• Iterative linear solvers, eigensolvers, and preconditioners
• Kernels optimization
• Use of accelerators such as FPGAs, GPU, Cell


