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The Problem
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Problem size

Discrete Fourier Transform (single precision): 2 x Core2 Extreme 3 GHz
Performance [Gflop/s]

What’s going on?

30x
best code

Numerical Recipes
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Automatic Performance Tuning
Current vicious circle: Whenever a new platform comes out, 
the same functionality needs to be rewritten and reoptimized

Automatic Performance Tuning
BLAS: ATLAS 
Linear algebra: Bebop, Spike, Flame
Sorting 
Fourier transform: FFTW 
Linear transforms: Spiral
…others
New compiler techniques

Proceedings of the IEEE special issue, Feb. 2005
But what about parallelism … ?
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Vision Behind Spiral

Numerical problem

Computing platform

algorithm selection

compilation
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Numerical problem

Computing platform

Current Future

C code a singularity: Compiler has
no access to high level information

Challenge: conquer the high abstraction 
level  for complete automation
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Organization

Spiral overview

Parallelization in Spiral

Results

Concluding remarks
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Spiral
Library generator for linear transforms 
(DFT, DCT, DWT, filters, ….) and recently more …

Wide range of platforms supported: 
scalar, fixed point, vector, parallel, Verilog, GPU

Research Goal: “Teach” computers to write fast libraries
Complete automation of implementation and optimization
Conquer the “high” algorithm level for automation

When a new platform comes out: 
Regenerate a retuned library

When a new platform paradigm comes out (e.g., vector or CMPs):
Update the tool rather than rewriting the library

Intel has started to use Spiral to generate parts of their MKL library
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How Spiral Works

Algorithm Generation
Algorithm Optimization

Implementation
Code Optimization

Compilation
Compiler Optimizations

algorithm

C code

performance

Problem specification (transform)

Fast executable

Se
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ch

controls

controls

Spiral

Spiral: 
Complete automation of the 
implementation and 
optimization task

Basic idea:
Declarative representation 
of algorithms

Rewriting systems to 
generate and optimize 
algorithms
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What is a (Linear) Transform?
Mathematically: Matrix-vector multiplication

Example: Discrete Fourier transform (DFT)

input vector (signal)
output vector (signal) transform = matrix
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Transform Algorithms: Example 4-point FFT
Cooley/Tukey fast Fourier transform (FFT):

Algorithms reduce arithmetic cost O(n2) → O(nlog(n))
Product of structured sparse matrices
Mathematical notation exhibits structure: SPL (signal processing language)

1 1 1 1 1 1 1 1 1 1
1 1 1 1 1 1 1 1
1 1 1 1 1 1 1 1 1 1
1 1 1 1 1 1 1

j j

j j j

⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅⎡ ⎤ ⎡ ⎤ ⎡ ⎤ ⎡ ⎤ ⎡ ⎤
⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥− − ⋅ ⋅ ⋅ ⋅ ⋅ − ⋅ ⋅ ⋅ ⋅ ⋅⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥=
⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥− − ⋅ − ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅
⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥− − ⋅ ⋅ − ⋅ ⋅ ⋅ ⋅ ⋅ − ⋅ ⋅ ⋅⎣ ⎦ ⎣ ⎦ ⎣ ⎦ ⎣ ⎦ ⎣ ⎦

Fourier transform

Identity Permutation

Diagonal matrix (twiddles)

Kronecker product
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Examples: Transforms

Spiral currently contains 55 transforms
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Examples: Breakdown Rules (currently ≈220)

Base case rules

“Teaches” Spiral about existing algorithm knowledge 
(~200 journal papers)

Includes many new ones 
(algebraic theory, Pueschel, Moura, Voronenko)
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SPL to Sequential Code

Example: tensor product
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Program Generation in Spiral (Sketched)
Transform
user specified

C Code:

Fast algorithm
in SPL
many choices

∑-SPL:

Iteration of this process 
to search for the fastest

But that’s not all …

parallelization
vectorization

loop 
optimizations

constant folding
scheduling
……

Optimization at all
abstraction levels
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Organization

Spiral overview

Parallelization in Spiral

Results

Concluding remarks
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SPL to Shared Memory Code: Basic Idea
Governing construct: tensor product

Independent operation, load-balanced

A
A
A
A

x y

Processor 0
Processor 1
Processor 2
Processor 3

Problematic construct: permutations produce false sharing

Task: Rewrite formulas to 
extract tensor product + keep contiguous blocks

x y

[SC 06]



Carnegie Mellon

Step 1: Shared Memory Tags
Identify crucial hardware parameters

Number of processors: p
Cache line size: μ

Introduce them as tags in SPL

This means: formula A is to be optimized for p processors 
and cache line size μ
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Step 2: Identify “Good” Formulas
Load balanced, avoiding false sharing

Tagged operators (no further rewriting necessary)

Definition: A formula is fully optimized if it is one of the above 
or of the form

where A and B are fully optimized.
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Step 3: Identify Rewriting Rules
Goal: Transform formulas into fully optimized formulas

Formulas rewritten, tags propagated
There may be choices
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Simple Rewriting Example

fully optimized

Loop splitting + loop exchange
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Parallelization by Rewriting

Fully optimized (load-balanced, no false sharing) 
in the sense of our definition
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Same Approach for Other Parallel Paradigms
Vectorization: [IPDPS 02, VecPar 06]Message Passing: [ISPA 06]

Cg/OpenGL for GPUs: Verilog for FPGAs: [DAC 05]

MPI

With Bonelli, Lorenz, Ueberhuber, TU Vienna

With Shen, TU Denmark With Milder, Hoe, CMU
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Going Beyond Transforms
Transform = 
linear operator with one vector input and one vector output

Key ideas: 
Generalize to (possibly nonlinear) operators with several inputs and several
outputs
Generalize SPL (including tensor product) to OL (operator language)

Cooley-Tukey FFT in OL:

Viterbi in OL:

Mat-Mat-Mult:
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OL Rewriting Rules
SPL rules reused
Only few OL-specific rules required

New OL rules
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Example: Viterbi Decoder in OL
Viterbi decoder (forward part) as operator

Viterbi kernel (butterfly)

Viterbi algorithm as breakdown rule

First non-transform supported by Spiral 
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Viterbi: Vectorization Through Rewriting

Sufficient to vectorize one input
Vectorized kernel
In-register shuffle operation
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Organization

Spiral overview

Parallelization in Spiral

Results

Concluding remarks
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Benchmarks

platforms

kernels

vector dual/quad core
GPU FPGA

DFT

All Spiral code shown
is “push-button” generated
from scratch

“click”

FPGA+CPU
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DFT (single precision): on 3 GHz 2 x Core 2 Extreme
performance [Gflop/s]

0

5

10

15

20

25

30

256 512 1024 2048 4096 8192 16384 32768 65536 131072 262144

input size

Spiral 5.0 SPMD
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Benchmark: Vector and SMP

2 processors
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2 processors 4 processors

Memory footprint < L1$ of 1 processor

25 Gflop/s!

4-way vectorized +  up to 4-threaded  +  adapted to the memory hierarchy
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Benchmark: Cell (1 processor = SPE)
DFT (single precision) on 3.2 GHz Cell BE (Single SPE)
performance [Gflop/s]
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Generated using the simulator; run at Mercury (thanks to Robert Cooper)

Joint work with Th. Peter (ETH Zurich), S. Chellappa, M. Telgarsky, J. Moura (CMU)
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DCT4, Multiples of 32: 4-way Vectorized
DCT (single precision) 2.66 GHz Core2 (4-way 32-bit SSE)
performance [Gflop/s]
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FFTW 3.1.2 DCT4  (k11)
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novel algorithm (algebraic algorithm theory)
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DFT, 8-way Vectorized: All Sizes Up To 80
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first 8-way DFTs for all sizes
arbitrary vector length /arbitrary DFT sizes in principle solved
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Benchmark: GPU
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Spiral CPU Spiral GPU

Joint work with H. Shen, TU Denmark

CPU + GPU
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Benchmark: FPGA
DFT 256 on Xilinx Virtex 2 Pro FPGA
inverse throughput (gap) [us]
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Xilinx Logicore 3.2

Spiral

better

Joint work with P. Milder, J. Hoe (CMU)

competitive with professional designs
much larger set of performance/area trade-offs

(Pareto-optimal designs)
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Benchmark: Hardware Accelerator (FPGA)
Xilinx Virtex 2 Pro FPGA: 1M gates @ 100 MHz + 2 PowerPC 405 @ 300 MHz

Fixed set of accelerators speed up a whole library

better
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Joint work with P. D’Alberto (Yahoo), A. Sandryhaila, P. Milder, J. Hoe, 
J . M. F. Moura (CMU), J. Johnson (Drexel)

6.5x

native sizes



Carnegie Mellon

Benchmarks

platforms

kernels

vector dual/quad core
GPU FPGA

DFT

filter

GEMM

Viterbi

All Spiral code shown
is “push-button” generated
from scratch

“click”

FPGA+CPU
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Benchmark: Finite Impulse Response Filter
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theoretical peak performance: 74.66 Gflop/s Spiral 8 taps

Spiral 32 taps

IPP 32 taps

IPP 8 taps

FIR filter (double precision) on 2.33 GHz 2x Core 2 Quad (8 threads)
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Beyond Transforms : Viterbi Decoding
Viterbi decoding (8-bit) on 2.66 GHz Core 2 Duo
performance [Gbutterflies/s]
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Spiral 16-way vectorized

Spiral scalar

Karn's Viterbi decoder
(hand-tuned assembly)

1 butterfly 
= ~22 ops

Vectorized using practically the same rules as for DFT

Joint work with S. Chellappa, CMU Karn: http://www.ka9q.net/code/fec/
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First Results: Matrix-Matrix-Multiply

DGEMM on 3 GHz Core 2 Duo (1 thread)
performance [Gflop/s]
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work with F. de Mesmay, CMU
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Conclusions
Automatic generation of very fast and fastest numerical 
kernels is possible and desirable

High level language and approach
Algorithm generation
Algorithm optimization

Same approach for loop optimization, different forms of 
parallelism, SW and HW implementations
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Spiral Web Interface @spiral.net (beta version)

1. Select platform

2. Select functionality

3.
“click”

http://www.spiral.net/
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