Register Allocation in Kernel Generators

Matteo Frigo
Cilk Arts

July 9, 2007

CILK
ARTS

Summary

» Poor register allocation = poor kernel performance.

» Kernel generators must do register allocation one way or the
other.

» Register allocation can be factored into two subproblems:

» Scheduling.
» Register allocation of straight-line code.

» Ordinary compilers can register-allocate straight-line code.

» Compilers cannot schedule properly. Kernel generators are
responsible for the schedule.

» FFTW uses a fixed “cache oblivious” schedule. Although
independent of the processor, this schedule seems to be hard
to beat.

» Other problems may require more sophistication.

CILK
ARTS

Impact of inefficient register allocation

32-point complex FFT in FFTW, PowerPC 7447

add/sub fma load store code size cycles
C source:
236 136 64 64 ~ 600 lines
Output of gce-3.4 -02:
236 136 484 285 5620 bytes = 1550
Output of gcc-3.4 -02 -fno-schedule-insns:
236 136 134 125 2868 bytes =~ 640

» Twice as many instructions (all register spills).

» 2.5x slowdown.

CILK
ARTS

Register allocation in gcc -02

Assume 4 complex registers and “butterfly” instruction.

CILK
ARTS

Register allocation in gcc -02

Assume 4 complex registers and “butterfly” instruction.

CILK
ARTS

Register allocation in gcc -02

Assume 4 complex registers and “butterfly” instruction.

CILK
ARTS

Register allocation in gcc -02

Assume 4 complex registers and “butterfly” instruction.

CILK
ARTS

Register allocation in gcc -02

Assume 4 complex registers and “butterfly” instruction.

CILK
ARTS

Register allocation in gcc -02

Assume 4 complex registers and “butterfly” instruction.

CILK
ARTS

Register allocation in gcc -02

Assume 4 complex registers and “butterfly” instruction.

CILK
ARTS

Register allocation in gcc -02

Assume 4 complex registers and “butterfly” instruction.

CILK
ARTS

Register allocation in gcc -02

keep going for a while...

CILK
ARTS

Register allocation in gcc -02

Assume 4 complex registers and “butterfly” instruction.

CILK
ARTS

Register allocation in gcc -02

Assume 4 complex registers and “butterfly” instruction.

CILK
ARTS

Register allocation in gcc -02

Assume 4 complex registers and “butterfly” instruction.

CILK
ARTS

Why the gcc -02 strategy cannot work

Theorem
If

» you compute the FFT level by level; and
» n>> number of registers
then

» any register allocation policy incurs ©(nlog n) register spills.

Corollary
O(1) spills/flop no matter how many registers the machine has.

CILK
ARTS

Better strategy: blocking

CILK
ARTS

Better strategy: blocking

CILK
ARTS

Better strategy: blocking

CILK
ARTS

Better strategy: blocking

CILK
ARTS

Better strategy: blocking

CILK
ARTS

Better strategy: blocking

CILK
ARTS

Better strategy: blocking

CILK
ARTS

Better strategy: blocking

CILK
ARTS

Better strategy: blocking

CILK
ARTS

Better strategy: blocking

CILK
ARTS

Analysis of the blocking schedule

Theorem (Upper bound)
With R registers,
» a schedule exists such that
» a register allocation exists such that

» the execution incurs O(nlogn/log R) register spills.

Proof.
Block for R registers. Loading R inputs allows you to compute
log R levels without spilling, i.e., log R flops per spill. O

Theorem (Lower bound, Hong and Kung ’81)
Any execution of the butterfly graph with R registers incurs
Q(nlogn/log R) register spills.

CILK
ARTS

Complexity of register allocation

Theorem (Motwani et al., 1995)

Given dag, find schedule of the dag and register assignment that
minimizes the number of register spills: NP-hard.

Theorem (Belady 1966)

Given a schedule of the dag, find register assignment that
minimizes the number of register spills: ~ linear time.

Corollary

» You are responsible for the schedule.

» You don't have worry about the register assignment. The
compiler can do it.

CILK
ARTS

Belady’s algorithm

» Traverse the schedule in execution order.

» If an instruction needs a value not in a register, obtain a
register and load the value.

» If you need to evict a value from a register, evict the one used
furthest in the future.

CILK

ARTS

Register allocation in FFTW

» The FFTW “codelet” generator produces C.
» The generator schedules the C code.
» The scheduling algorithm is FFT-specific.
» This is scheduling for register allocation, not “instruction
scheduling” for pipelining purposes.
» We assume (i.e., hope) that the C compiler implements the
optimal register allocation for the given schedule.

CILK
ARTS

Ordinary compilers handle straight-line code well

Cycle counts on Pentium Ill, circa 2002

y FFT(8) FFT(16) FFT(32) FFT(64) |

Belady 150 350 838 2055
gee-2.95 -02 165 372 913 2254
gec-2.95 -0 151 354 845 2091
gee-3.2 -02 152 390 892 2236
gee-3.2 -0 148 356 910 2278
icc-6.0 -03 166 397 946 2291

CILK
ARTS

Cycle counts on PowerPC 7400, circa 2002

FFT(8) FFT(16) FFT(32) FFT(64)‘

Belady 112 272 688 1648
gcc-2.95 -02 112 368 1168 2896
gcc-2.95 -02 -fno-schedule-insns

112 320 784 1840
gcc-3.1 -02 112 432 1312 3120
gcc—3.1 -02 -fno-schedule-insns

112 288 768 1712

CILK
ARTS

Number of spills on PowerPC 7400

FFT(8) FFT(16) FFT(32) FFT(64)
Loads:
Belady 5 21 75 146
gcc-3.1 6 26 107 251
Stores:
Belady 5 21 64 133
gcc-3.1 6 23 73 155

(gcc-3.1 -mcpu=750 -02 -fno-schedule-insns)

CILK
ARTS

How does FFTW produce the schedule?

Blocking:
Could generate a different program for each R. (But we don't.)

Cache oblivious:
It turns out that a universal schedule works well for all R.

CILK
ARTS

Cache oblivious FFT

Cooley-Tukey with p = g = \/n [Vitter and Shriver]
If n>1:

1. Recursively compute \/n FFTs of size v/n.

2. Multiply O(n) elements by the twiddle factors.

3. Recursively compute v/n FFTs of size y/n.

Analysis:

R = # of registers.

S(n) = # of spills in optimal register allocation.
S(n) {O(n) if n<O(R) ;

2y/nS(y/n)+ O(n) ifn>0(R).
S(n) < Of(nlogn/logR) . Optimal.

CILK
ARTS

Cache oblivious schedule

CILK
ARTS

Cache oblivious schedule

CILK
ARTS

Cache oblivious schedule

CILK
ARTS

IIIII
ARTS

Machine-specific code does not seem to help

600 — « ® o FFTW SPARC @
P SPIRAL SPARC @
s FFTW PIl O
SPIRAL PIl O
0 5 FFTW MIPS
& 400— 8 SPIRAL MIPS W
O
z 4 8 8
s ° [] |
m
[|]
200 —
|
| | | | | |
2 4 8 16 32 64

Transform size

[Xiong et al., PLDI 2001]

CILK
ARTS

Does this technique apply to other problems?

Anecdotal evidence

» FFT, RFFT, DCT, FFT+SIMD:
» Butterfly-like graphs, O(nlog n) time, O(nlogn/log R)
register spills.
» Cache oblivious works.
» 1D stencils, 1D convolutions, Gauss-Seidel, probably LCS-style
“1D" dynamic programming:
» O(n?) time, O(n?/R) register spills.
» Cache oblivious works.
» 2D stencils, GEMM /BLAS3, simple “2D" dynamic
programming:
» O(n®) time, O(n®/V/R) register spills.
» Cache oblivious alone not sufficient. Other effects become
significant.

CILK
ARTS

Matrix multiplication kernels

Machine % peak performance | % peak performance
cache oblivious iterative

Power5 58 98

UltraSPARC Illi 53 98

[tanium Il 93 94

[Yotov et al., 2007]

CILK
ARTS

What are these “other effects”?

» Asymptotic theory applied to small n and R.
» Asymmetry of loads and stores.
» Belady does not account for the latency of spills.

» Cache oblivious does not account for the pipeline latency.

CILK
ARTS

Asymmetry of loads and stores

Power5:
» 2 fma/cycle.
» 2 L1 loads/cycle, in parallel with FPU.

» 1 L1 store/cycle, consumes one FPU cycle.

Impact on n x k by k x n matrix multiplication kernel:

» 2nk + n? loads, n? stores.

» If cost of load is 1, cost of store is 'y, then optimal aspect
ratio of the kernel is nonsquare:

k/n=1+1v.

» Must modify the cache oblivious algorithm to account for y.

» Still cache oblivious, but not y-oblivious.

CILK
ARTS

Belady and loads/stores

Theorem (Belady 1966)

Given a schedule of the dag, find register assignment that
minimizes the number of loads: ~ linear time.

Theorem (Farach and Liberatore 1997)

Given a schedule of the dag, find register assignment that
minimizes the number of stores: NP-hard.

Theorem (Farach and Liberatore 1997)

Heuristic for the number of stores that is within a small constant
factor of optimal: = linear time. Works in practice.

CILK
ARTS

Latency of reloads

Powerb:

» FP load latency: 5 cycles.

» Must schedule 10 flops before using the loaded value.

Problem:

» Belady knows nothing about load latencies.

Belady with lookahead:

» At time t, schedule spills/reloads for instruction at
time t 4 load latency.

» Current compilers don't seem to do it.
» Optimal?
CILK

ARTS

FPU latency

Powerb:

» FPU latency: 6 cycles.
» 12 independent flops in flight to keep FPU busy.

Problem:

» Cache oblivious schedule ignores latencies.

Possible solutions:

» Do nothing, hope that out-of-order execution will save you.
» Attack the problem using [Blelloch and Gibbons, 2005].

CILK
ARTS

Register allocation with latencies

Theorem (Blelloch and Gibbons, SPAA 2005)
Given:

» A machine with R registers;

» A dag of critical path T,

» A schedule of the dag that incurs Q1 spills with Belady.
Then

» A schedule of the dag exists that incurs Q1 spills with at
most LT, stalls on a machine with R + LT, registers and
maximum latency L.

» The schedule is easy to compute.
» Exact result, not asymptotic.
» Optimal?

CILK
ARTS

Cache oblivious DGEMM with all tricks

Power5 (peak 6.6 Gflop/s).
(N,N) x (N,N) = (N,N) YN e{l,...,5000).

6 |—
et
o 4
~
= |
= 3F
(@)
2 |-
1 |-
0 1 1 1 1 J
0 1000 2000 3000 4000 5000

N

CILK
ARTS

Conclusions

This page may contain forward-looking statements that are based on management’s
expectations, estimates, projections and assumptions.

» When they work, as in FFTW, universal cache oblivious
kernels are attractive.
» If the “other effects” become significant, then the
cache-oblivious approach is much less attractive.
» Belady/lookahead and [Blelloch and Gibbons] are
kernel-independent techniques.
» Perhaps an autotuner can be structured as
» Universal kernel-specific schedule, followed by
» Sophisticated kernel-independent register allocator
parametrized by the latencies.
» Such an autotuner would reduce the search space
w.r.t. current systems.

CILK
ARTS

