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Summary

» Poor register allocation = poor kernel performance.

» Kernel generators must do register allocation one way or the
other.

» Register allocation can be factored into two subproblems:

» Scheduling.
» Register allocation of straight-line code.

» Ordinary compilers can register-allocate straight-line code.

» Compilers cannot schedule properly. Kernel generators are
responsible for the schedule.

» FFTW uses a fixed “cache oblivious” schedule. Although
independent of the processor, this schedule seems to be hard
to beat.

» Other problems may require more sophistication.
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Impact of inefficient register allocation

32-point complex FFT in FFTW, PowerPC 7447

add/sub fma load store code size cycles
C source:
236 136 64 64  ~ 600 lines
Output of gce-3.4 -02:
236 136 484 285 5620 bytes = 1550
Output of gcc-3.4 -02 -fno-schedule-insns:
236 136 134 125 2868 bytes =~ 640

» Twice as many instructions (all register spills).

» 2.5x slowdown.
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Register allocation in gcc -02

Assume 4 complex registers and “butterfly” instruction.
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Register allocation in gcc -02

keep going for a while...
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Why the gcc -02 strategy cannot work

Theorem
If

» you compute the FFT level by level; and
» n>> number of registers
then

» any register allocation policy incurs ©(nlog n) register spills.

Corollary
O(1) spills/flop no matter how many registers the machine has.
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Better strategy: blocking
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Analysis of the blocking schedule

Theorem (Upper bound)
With R registers,
» a schedule exists such that
» a register allocation exists such that

» the execution incurs O(nlogn/log R) register spills.

Proof.
Block for R registers. Loading R inputs allows you to compute
log R levels without spilling, i.e., log R flops per spill. O

Theorem (Lower bound, Hong and Kung ’81)
Any execution of the butterfly graph with R registers incurs
Q(nlogn/log R) register spills.
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Complexity of register allocation

Theorem (Motwani et al., 1995)

Given dag, find schedule of the dag and register assignment that
minimizes the number of register spills: NP-hard.

Theorem (Belady 1966)

Given a schedule of the dag, find register assignment that
minimizes the number of register spills: ~ linear time.

Corollary

» You are responsible for the schedule.

» You don't have worry about the register assignment. The
compiler can do it.
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Belady’s algorithm

» Traverse the schedule in execution order.

» If an instruction needs a value not in a register, obtain a
register and load the value.

» If you need to evict a value from a register, evict the one used
furthest in the future.
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Register allocation in FFTW

» The FFTW “codelet” generator produces C.
» The generator schedules the C code.
» The scheduling algorithm is FFT-specific.
» This is scheduling for register allocation, not “instruction
scheduling” for pipelining purposes.
» We assume (i.e., hope) that the C compiler implements the
optimal register allocation for the given schedule.
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Ordinary compilers handle straight-line code well

Cycle counts on Pentium Ill, circa 2002

y FFT(8) FFT(16) FFT(32) FFT(64) |

Belady 150 350 838 2055
gee-2.95 -02 165 372 913 2254
gec-2.95 -0 151 354 845 2091
gee-3.2 -02 152 390 892 2236
gee-3.2 -0 148 356 910 2278
icc-6.0 -03 166 397 946 2291
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Cycle counts on PowerPC 7400, circa 2002

FFT(8) FFT(16) FFT(32) FFT(64)‘

Belady 112 272 688 1648
gcc-2.95 -02 112 368 1168 2896
gcc-2.95 -02 -fno-schedule-insns

112 320 784 1840
gcc-3.1 -02 112 432 1312 3120
gcc—3.1 -02 -fno-schedule-insns

112 288 768 1712
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Number of spills on PowerPC 7400

FFT(8) FFT(16) FFT(32) FFT(64)
Loads:
Belady 5 21 75 146
gcc-3.1 6 26 107 251
Stores:
Belady 5 21 64 133
gcc-3.1 6 23 73 155

(gcc-3.1 -mcpu=750 -02 -fno-schedule-insns)
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How does FFTW produce the schedule?

Blocking:
Could generate a different program for each R. (But we don't.)

Cache oblivious:
It turns out that a universal schedule works well for all R.
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Cache oblivious FFT

Cooley-Tukey with p = g = \/n [Vitter and Shriver]
If n>1:

1. Recursively compute \/n FFTs of size v/n.

2. Multiply O(n) elements by the twiddle factors.

3. Recursively compute v/n FFTs of size y/n.

Analysis:

R = # of registers.

S(n) = # of spills in optimal register allocation.
S(n) {O(n) if n<O(R) ;

2y/nS(y/n)+ O(n) ifn>0(R).
S(n) < Of(nlogn/logR) . Optimal.
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Cache oblivious schedule
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Machine-specific code does not seem to help
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[Xiong et al., PLDI 2001]
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Does this technique apply to other problems?

Anecdotal evidence

» FFT, RFFT, DCT, FFT+SIMD:
» Butterfly-like graphs, O(nlog n) time, O(nlogn/log R)
register spills.
» Cache oblivious works.
» 1D stencils, 1D convolutions, Gauss-Seidel, probably LCS-style
“1D" dynamic programming:
» O(n?) time, O(n?/R) register spills.
» Cache oblivious works.
» 2D stencils, GEMM /BLAS3, simple “2D" dynamic
programming:
» O(n®) time, O(n®/V/R) register spills.
» Cache oblivious alone not sufficient. Other effects become
significant.
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Matrix multiplication kernels

Machine % peak performance | % peak performance
cache oblivious iterative

Power5 58 98

UltraSPARC Illi 53 98

[tanium Il 93 94

[Yotov et al., 2007]
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What are these “other effects”?

» Asymptotic theory applied to small n and R.
» Asymmetry of loads and stores.
» Belady does not account for the latency of spills.

» Cache oblivious does not account for the pipeline latency.
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Asymmetry of loads and stores

Power5:
» 2 fma/cycle.
» 2 L1 loads/cycle, in parallel with FPU.

» 1 L1 store/cycle, consumes one FPU cycle.

Impact on n x k by k x n matrix multiplication kernel:

» 2nk + n? loads, n? stores.

» If cost of load is 1, cost of store is 'y, then optimal aspect
ratio of the kernel is nonsquare:

k/n=1+1v.

» Must modify the cache oblivious algorithm to account for y.

» Still cache oblivious, but not y-oblivious.
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Belady and loads/stores

Theorem (Belady 1966)

Given a schedule of the dag, find register assignment that
minimizes the number of loads: ~ linear time.

Theorem (Farach and Liberatore 1997)

Given a schedule of the dag, find register assignment that
minimizes the number of stores: NP-hard.

Theorem (Farach and Liberatore 1997)

Heuristic for the number of stores that is within a small constant
factor of optimal: = linear time. Works in practice.

CILK
ARTS



Latency of reloads

Powerb:

» FP load latency: 5 cycles.

» Must schedule 10 flops before using the loaded value.

Problem:

» Belady knows nothing about load latencies.

Belady with lookahead:

» At time t, schedule spills/reloads for instruction at
time t 4 load latency.

» Current compilers don't seem to do it.
» Optimal?
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FPU latency

Powerb:

» FPU latency: 6 cycles.
» 12 independent flops in flight to keep FPU busy.

Problem:

» Cache oblivious schedule ignores latencies.

Possible solutions:

» Do nothing, hope that out-of-order execution will save you.
» Attack the problem using [Blelloch and Gibbons, 2005].
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Register allocation with latencies

Theorem (Blelloch and Gibbons, SPAA 2005)
Given:

» A machine with R registers;

» A dag of critical path T,

» A schedule of the dag that incurs Q1 spills with Belady.
Then

» A schedule of the dag exists that incurs Q1 spills with at
most LT, stalls on a machine with R + LT, registers and
maximum latency L.

» The schedule is easy to compute.
» Exact result, not asymptotic.
» Optimal?
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Cache oblivious DGEMM with all tricks

Power5 (peak 6.6 Gflop/s).
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Conclusions

This page may contain forward-looking statements that are based on management’s
expectations, estimates, projections and assumptions.

» When they work, as in FFTW, universal cache oblivious
kernels are attractive.
» If the “other effects” become significant, then the
cache-oblivious approach is much less attractive.
» Belady/lookahead and [Blelloch and Gibbons] are
kernel-independent techniques.
» Perhaps an autotuner can be structured as
» Universal kernel-specific schedule, followed by
» Sophisticated kernel-independent register allocator
parametrized by the latencies.
» Such an autotuner would reduce the search space
w.r.t. current systems.
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