

THUR A

GPU Computing with CUDA

CScADS Workshop on Automatic Tuning Richard Johnson

Parallel Computing on a GPU **NVIDIA GPU Computing Architecture** is a highly parallel computing platform In laptops, desktops, workstations, servers **GeForce 8800** 8-series GPUs deliver 50 to 200 GFLOPS on compiled parallel C applications Tesla D870 GeForce 8800 has 128 processor cores Driven by the insatiable demands of PC game market, the number of cores double each year **Programmable in C with CUDA tools** Multithreaded SPMD model uses application data parallelism and thread parallelism Tesla R870

NVIDIA GPU Computing Architecture

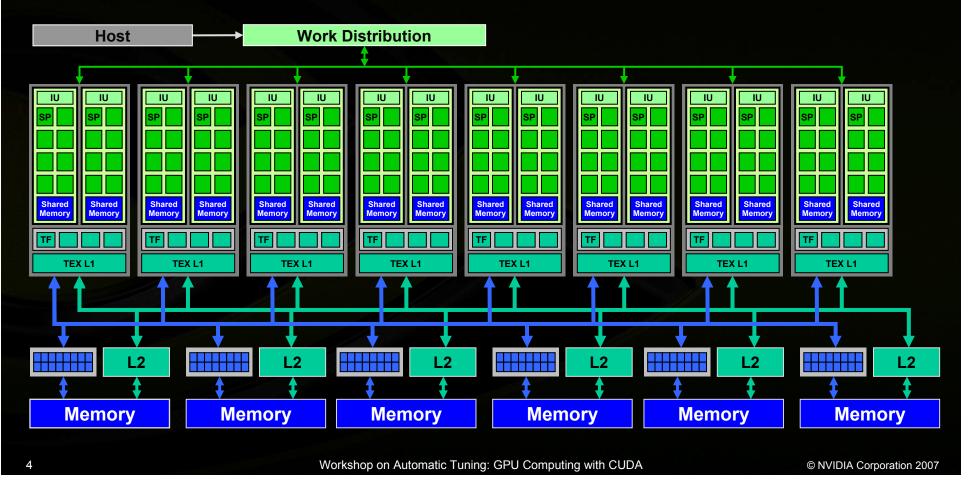
GPU Computing with CUDA

Tuning for Performance

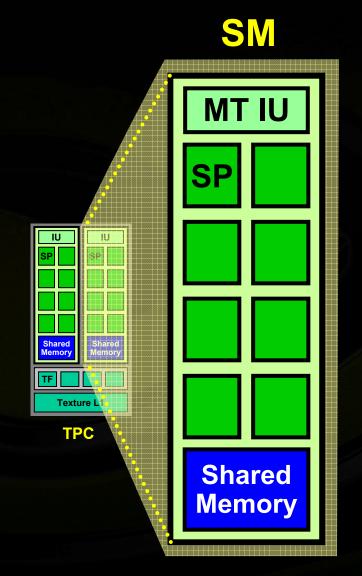
GPU Computing and Cuda: Real-world Experiences

NVIDIA GPU Computing Architecture

- Massively multithreaded parallel computing platform
- 👂 128 💵 Stream Processors at 1.35 GHz, 518 GFLOPS peak
- 12,288 concurrent threads, hardware managed
- **GPU Computing mode enables C on Graphics Processing Unit**



Streaming Multiprocessor



Each SM has 8 Streaming Processors 32 GFLOPS peak at 1.35 GHz **Scalar ISA** load/store architecture **32-bit integer instructions IEEE 754 32-bit floating point** Branch, call, return, predication **Barrier synchronization instruction** 768 Threads, hardware multithreaded 24 SIMD warps of 32 threads Independent MIMD thread execution Hardware thread scheduling **8K registers, distributed among threads 16KB Shared Memory** Concurrent threads share data Very low latency access

Workshop on Automatic Tuning: GPU Computing with CUDA

© NVIDIA Corporation 2007

How to Scale GPU Computing?

GPU parallelism scales widely

- Ranges from 8 to many 100s of cores
- Ranges from 100 to many 1000s of threads
- Graphics performance scales with GPU parallelism
 - Data parallel mapping of pixels to threads
 - Unlimited demand for parallel pixel shader threads and cores

Challenge:

- Scale Computing performance with GPU parallelism
 - Program must be insensitive to the number of cores
 - Write one program for any number of SM cores
 - Program runs on any size GPU without recompiling

Scalability Solution

Programmer uses multi-level data parallel decomposition

- Decomposes problem into a sequence of steps (Grids)
- Decomposes Grid into independent parallel Blocks (thread blocks)
- Decomposes Block into cooperating parallel elements (threads)
- GPU hardware distributes thread blocks to available SM cores
 GPU balances work load across any number of SM cores
 SM core executes program that computes Block
- Each thread block computes independently of others
 - Enables parallel computing of Blocks of a Grid
 - No communication among Blocks of same Grid
 - Scales one program across any number of parallel SM cores
- Programmer writes one program for all GPU sizes
- Program does not know how many cores it uses
- Program executes on GPU with any number of cores

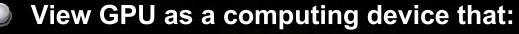
NVIDIA GPU Computing Architecture

GPU Computing with CUDA

Tuning Performance

GPU Computing and Cuda: Real-world Experiences

CUDA Programming Model: Parallel Multithreaded Kernels



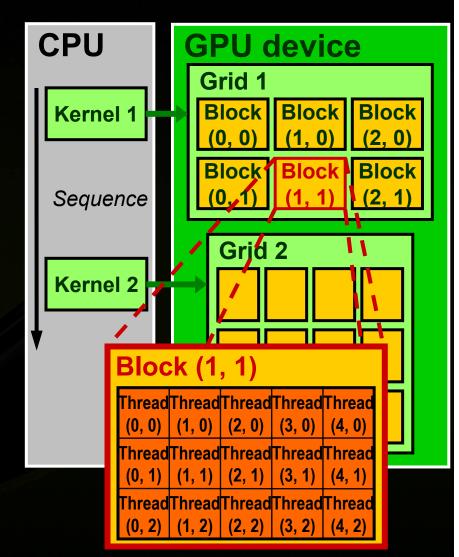
- Acts as a coprocessor to the CPU host
- Has its own memory hierarchy
- Runs many lightweight threads in parallel

Integrated CPU + GPU application C program

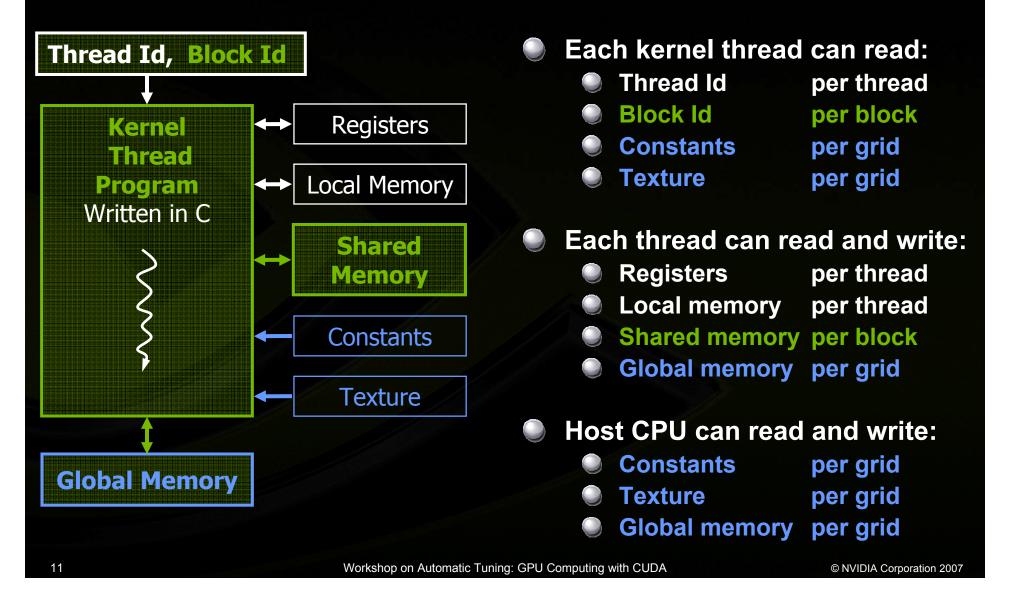
- Partitions problem into a sequence of kernels
- Kernel C code executes on GPU
- Sequential C code executes on CPU
- Kernels execute in parallel using multiple levels of parallelism

CUDA Terminology: Grids, Blocks, and Threads

- Programmer partitions problem into a sequence of kernels.
 - A kernel executes as a grid of thread blocks
 - A thread block is an array of threads that can cooperate
- Threads within the same block synchronize and share data in Shared Memory
- Execute thread blocks on multithreaded multiprocessor SM cores



CUDA Programming Model: Thread Memory Spaces



CUDA: C on the GPU

Single-Program Multiple-Data programming model

- C program for a thread of a thread block in a grid
- Extend C only where necessary
- Simple, explicit language mapping to parallel threads

Declare C kernel functions and variables on GPU:

__global___ void KernelFunc(...); __device___ int GlobalVar; __shared___ int SharedVar;

Call kernel function as Grid of 500 blocks with 128 threads per block: KernelFunc<<< 500, 128 >>>(...);

Explicit GPU memory allocation, CPU-GPU memory transfers

cudaMalloc(), cudaFree()

cudaMemcpy(), cudaMemcpy2D(), ...

CUDA C Example: Add Arrays

{

}

}

C program

13

CUDA C program

```
void addMatrix
  (float *a, float *b, float *c, int N)
ł
  int i, j, idx;
  for (i = 0; i < N; i++) {
     for (j = 0; j < N; j++) {
          idx = i + j*N;
          c[idx] = a[idx] + b[idx];
     }
void main()
{
   addMatrix(a, b, c, N);
}
```

_global___ void addMatrixG (float *a, float *b, float *c, int N)

void main()

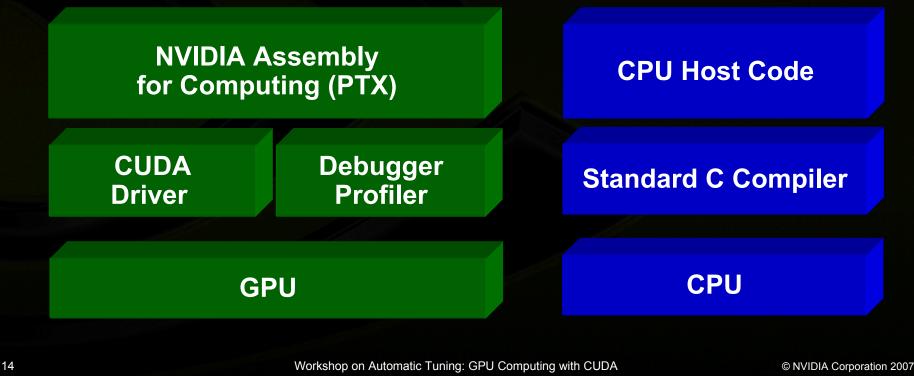
dim3 dimBlock (blocksize, blocksize); dim3 dimGrid (N/dimBlock.x, N/dimBlock.y); addMatrixG<<<dimGrid, dimBlock>>>(a, b, c, N);

© NVIDIA Corporation 2007

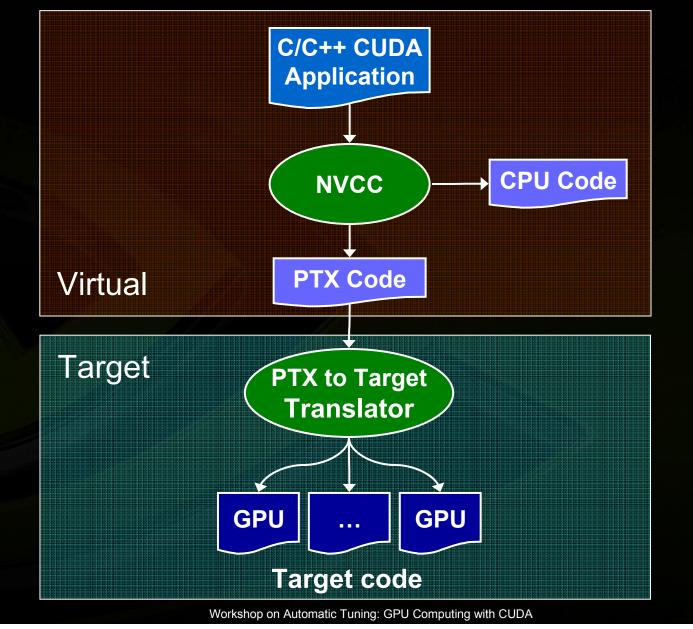
CUDA Software Development Kit

CUDA Optimized Libraries: FFT, BLAS, ... Integrated CPU + GPU C Source Code

NVIDIA C Compiler



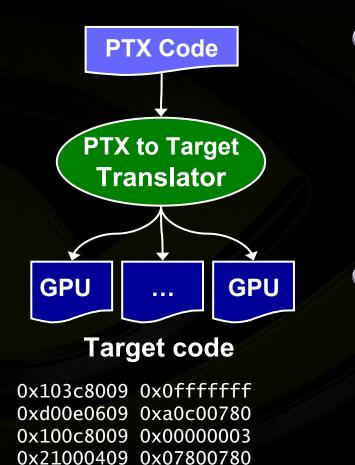
Compiling CUDA



© NVIDIA Corporation 2007

Virtual to Target ISA Translation

ld.global.v4.f32 {\$f1,\$f3,\$f5,\$f7},[\$r9+0]; mad.f32 \$f1,\$f5,\$f3,\$f1;



- Parallel Thread eXecution (PTX)
 - Virtual Machine and ISA
 - Distribution format for applications
 - Install-time translation
 - "fat binary" caches target-specific versions
- Target-specific translation optimizes for:
 - ISA diffences
 - Resource allocation
 - Performance

NVIDIA GPU Computing Architecture

GPU Computing with CUDA

Tuning for Performance

GPU Computing and Cuda: Real-world Experiences

Typical Programming Paradigms

Load; Process; Store; Repeat

- Thread block reads global data into shared memory
- Threads compute using shared memory
- Threads store results in global memory
- Repeat

Big impact when data is used multiple times

Within a grid, blocks execute independently
 Enables manycore scalability

Balancing Resources

- Fully utilizing each SM requires balancing and coordinating resources shared among the SM's threads.
 - Limit on number of threads per SM
 - Limit on number of thread blocks per SM
 - Shared memory
 - Shared register file
 - Coordinating memory accesses to minimize bank conflicts

Parameterize application to allow exploration of trade-offs

- Thread block size degree of thread parallelism
- Data tile size
- Number of results computed by each thread
- Degree of unrolling
- Prefetching

Manual Tuning of Matrix Multiply

Multiply two 4096 x 4096 element matrices Let's consider several versions of the kernel...

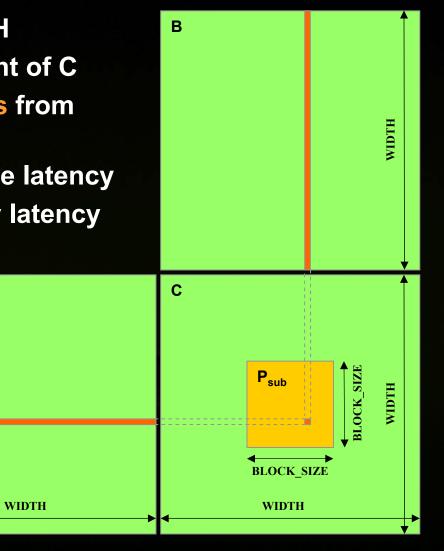
Naïve implementation

- each thread computes one result, no collaboration
- **Tiled implementation**
 - Increase compute-to-load ratio
 - Reuse data in shared memory
- Tiled and unrolled implementation
 - Further increases compute-to-load ratio
 - **Expanded tiled implementation**
 - Each thread computes multiple result values
 - Data tile 4x larger than thread array
 - Further increases compute-to-load ratio, decreases SM utilization

Naïve Implementation

- C = A * B of size WIDTH x WIDTH
- Each thread handles one element of C
- A and B are loaded WIDTH times from global memory
- Thread parallelism hides pipeline latency
- Block parallelism hides memory latency

Α



Naïve Kernel

Tx = threadIdx.x; Ty = threadIdx.y; Bx = blockIdx.x; By = blockIdx.y;

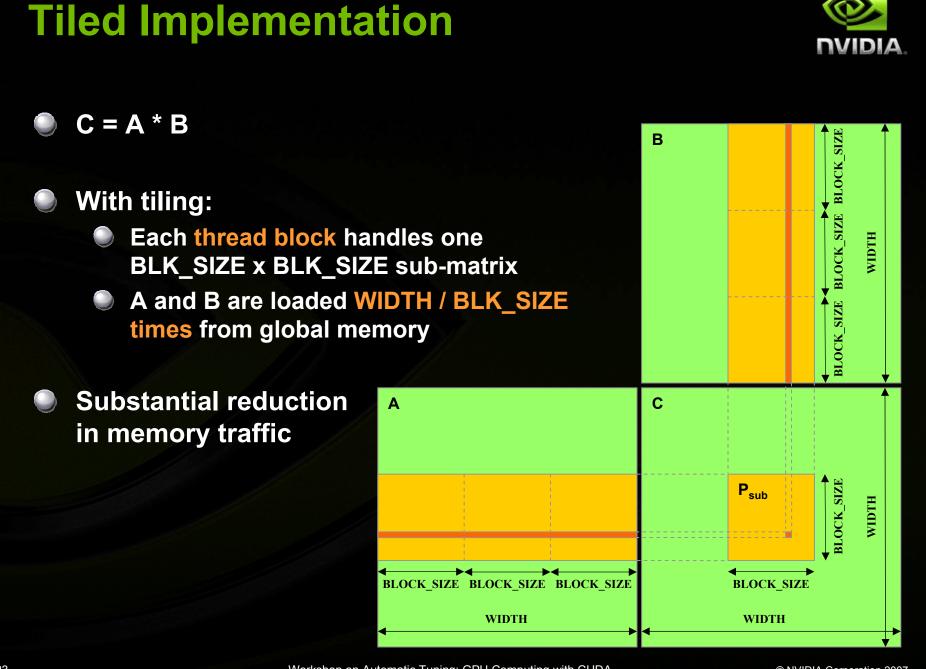
X = Bx * BLOCK_SIZE + Tx; Y = By * BLOCK_SIZE + Ty;

```
idxA = Y * WIDTH; idxB = X;
idxC = Y * WIDTH + X;
```

```
Csub = 0.0;
for (i=0; I < WIDTH; i++) {
    Csub += A[idxA] * B[idxB];
    idxA += 1;
    idxB += WIDTH;
}
C[idxC] = Csub;
```

Inner loop:

- Id; Id; fmad; add; add; add; cmp; bra;
- 1/4 are loads, 1/8 are fmad
- Compute-to-memory ratio is 1:1
- Required bandwidth: 172.8 GB/s 128 * 1.35GHz * 4 bytes/ld * ¼ instr
- Peak available bandwidth: 86.4 GB/s
 only half of required bandwidth
- Measured perf: up to 17.2 GFLOPS
- Performance limited by available memory bandwidth



23

Workshop on Automatic Tuning: GPU Computing with CUDA

© NVIDIA Corporation 2007

Tiled Kernel

_shared__ float As[16][16]; _shared__ float Bs[16][16];

```
for (i=0; i < 16; i++) {
    Csub += As[ty][i] * Bs[i][tx];
}
___syncthreads();</pre>
```

```
C[idxC] = Csub;
```

16x16 block allows 3 blocks/SM

- hides sync latency
- 16 regs/thread limits us to 2 blocks/SM
- Each threads loads 2 values from global mem, uses 32 values from shared mem
- Measured perf: 47.5 GFLOPS
- Performance limited by inner-loop overhead

Tiled and Unrolled Kernel

Csub = 0.0; for (...) { // iterate across blocks As[ty][tx] = A[idxA]; Bs[ty][tx] = B[idxB]; idxA += 16; idxB += 16 * WIDTH; ____syncthreads();

// completely unroll inner loop Csub += As[0][i] * Bs[i][0]; Csub += As[1][i] * Bs[i][1];

```
Csub += As[15][i] * Bs[i][15];
}
```

```
_syncthreads();
```

```
C[idxC] = Csub;
```

. . .

- Inner loop completely unrolled
 - Eliminates loop overhead
 - Address arithmetic optimized
- Measured perf: 85.6 GFLOPS
- Performance again limited by compute-to-memory ratio
- Idea: increase data tile to 32x32
 - Plenty of shared memory
 - Each thread computes four values

Expanded Tiled Kernel

16x16 thread block, with 32x32 data tile

Each thread computes four result values

Maximizes compute-to-memory ratio

- Each thread block uses 4KB of shared memory
- Increased register usage limits us to one block/SM

Unrolling experiments:

- no unrolling: 70.7 GFLOPS
- Fully unrolled: insufficient registers
- Unroll-by-2: 86.1 GFLOPS
- Unroll-by-4: 118.4 GFLOPS

Autotuning Opportunities

Balancing shared resources to maximize performance

- Requires control over compiler optimizations, program parameters
- New GPU applications typically go through multiple revisions to achieve best performance; intuition not always a reliable guide

Blocking in massively parallel applications

- Discovering best tile size for shared memory data reuse
- Discovering best degree of thread-level parallelism
- Discovering best number of results to compute per thread

GPU Onload

Discovering portions of CPU code to "onload" to GPU

Tuning application performance for new generations of GPUs

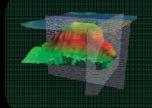
- Current tools allow programs to scale to future GPUs
- But maximum performance requires re-tuning

Outline

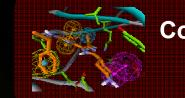
- NVIDIA GPU Computing Architecture
- GPU Computing with CUDA
 - Tuning for Performance

GPU Computing and Cuda: Real-world Experiences

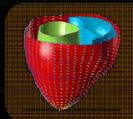
GPU Computing Application Areas



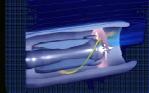
Computational Geoscience



Computational Chemistry

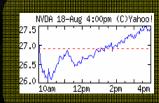


Computational Medicine



Computational Modeling

Computational Science



Computational Finance

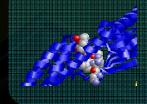


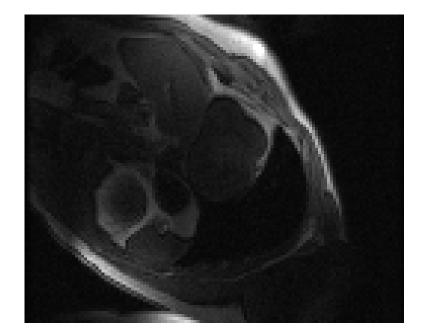
Image Processing

Workshop on Automatic Tuning: GPU Computing with CUDA

© NVIDIA Corporation 2007

Dynamic Real-Time MRI

Bioengineering Institute, University of Auckland, IUPS Physiome Project http://www.bioeng.auckland.ac.nz/movies/database/ cardiovascular system/textured-heart-beat.mpg

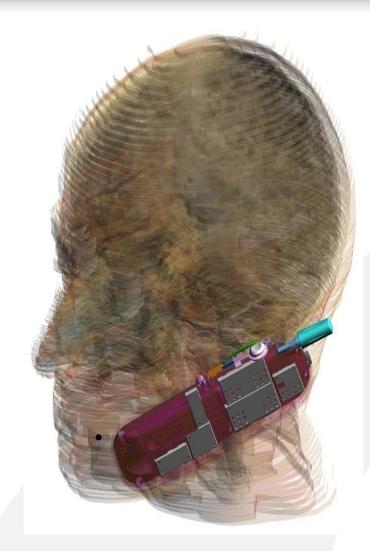


Zhi-Pei Liang's Research Group, Beckman Institute, UIUC Used with permission of Justin Haldar

G80 GPU is 245x CPU

© Haoron Yi and Sam Stone, 2007 ECE 498AL, University of Illinois, Urbana-Champaign

EM: Cell Phone Simulation



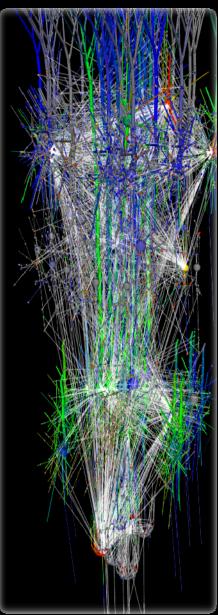
Sony Ericsson

LG

The "Race" OMCells SAM+ Generic Phone.sem - SEMCAD X Edit Yew Grid SEMCAD X Script Optimization Post Processor Tools Help □☞◼▰◍▶▶▶■■◇४७₨४००♥₦₽₽₽₽₽₽₽₽₽₽ Model EM-Simulations Thermo-Simulations Measurements Viewers 🗃 🛃 40.63 MCels, Far Field, 30-FarField(theta,phi), TRP=0.000537753W X=1 0 0 2=0 0 1 at 0.9GHz Input Power=0.002453W Rec Spherical Field Viewer HP xw9400 with 4 core CPU 15 hrs HP xw9400 with 4 NVIDIA GPUs 20 min Overnight becomes over coffee Computer-Aided Optimization • 45X: Supercomputing → Desktop More, for same TCO SENCAD 12.2.12.0 (Mar 16 2007, 14:13:14) [64 bit] Running startup.py Grid lines 30-FarField(theta,phi) in V/m RP=0.000537753W X'=1 0 0 Z'=0 0 0.2453 dB normalized to Sphere Axes Longitude: 1 out 2 V/m Shaded 0.2065 1 Latitude: 1 out 2 Value vof E_tot acceleware

PROCESSING SUPERPOWER

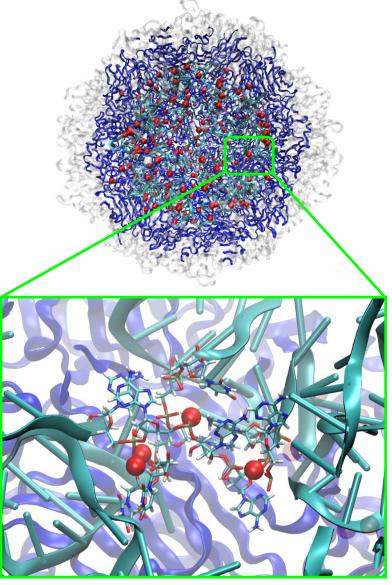
- Computational Neuroscience Simulation
- We already achieve 130x acceleration over current x86 with 1 board of 2 NVIDIA G80 GPUs
- > 1 Tflop / board
- >12 Tflops / rack (4u enclosure)
- 1 rack may soon exceed the Top500 number 19 (which has 4,096 cores)



Preparing Virus for Molecular Simulation

- Key task: placement of ions inside and around the virus
- 110 CPU-hours on SGI Altix Itanium2
- Larger viruses could require thousands of CPU-hours
- 27 GPU-minutes on G80 GPU
- Over 240 times faster ion placement can now be done on a desktop machine!

John Stone Beckman Institute, University of Illinois



Beckman Institute, UIUC

Summary

- GPU architectures have evolved to be well-suited for solving data-parallel problems, and they continue to deliver increasingly higher performance
 - As a simple extension to the C programming language, CUDA provides easy access to high performance GPU computing
 - CUDA and the 8-series GPUs expose a rich environment for automatic tuning of application performance
 - Placement: GPU vs. CPU
 - Hierarchy: memory and processor
 - Blocking: selecting threads per thread block, results per thread
 - Balancing shared resources
 - Target-specific re-tuning for maximum performance