
© 2006 Hewlett-Packard Development Company, L.P.
The information contained herein is subject to change without notice

perfmon2: a standard
performance monitoring interface
for Linux
Stéphane Eranian

2 July 17, 2007

Agenda
• PMU-based performance monitoring
• Overview of the interface
• Current status
• Challenges ahead

3 July 17, 2007

What is performance monitoring?
The action of collecting information related to how an

application or system performs

• Information obtained from CPU/chipset
−extract micro-architectural level information
−exploit hardware performance counters
−example: count TLB misses, stall cycles, memory access latency

• Information obtained by instrumenting the code
−extract program-level or system-level information
−statically: compilers (-pg option), explicit code (LTTng, Xenmon)
−dynamically (code rewrite): HP Caliper, Intel PIN tool, Kprobes
−example: count basic-block execution, number of ctxsw/s

4 July 17, 2007

Performance Monitoring Unit (PMU)
• Piece of CPU HW collecting micro-architectural events:

− from pipeline, system bus, caches, ...
• All modern CPU have a PMU

−architected for IA-64, AMD64
−now finally for Intel IA-32 (starting with Core Duo/Solo)

• PMU is highly specific to a CPU implementation

5 July 17, 2007

Diversity of PMU HW
• Dual-core Itanium 2: PMC, PMD, 12 counters (47bits)

−atomic freeze, opcode filters, range restrictions,
−where cache/TLB misses occur, Branch Trace Buffer

• AMD64:MSR registers, 4 counters (40 bits)
− no atomic freeze

• Pentium 4: MSR registers,18 counters (40 bits)
−no atomic freeze
−Precise Event Based Sampling (PEBS)

• Intel Core: MSR registers, 5 counters (31 bits)
−possible atomic freeze
− fixed counters, PEBS

6 July 17, 2007

Diversity of usage models
• Type of measurement:

−counting or sampling
• Scope of measurement:

−system-wide: across all threads running on a CPU
−per-thread: a designated thread (self-monitoring or unmodified)

• Scope of control:
− from user level programs: monitoring tools, compilers, MRE
− from the kernel: SystemTap or VMM

• Scope of processing:
−offline: profile-guided optimization (PGO), manual tuning
−online: dynamic optimization (DPGO)

7 July 17, 2007

Existing monitoring interfaces
• OProfile (John Levon):

− included in mainline kernel and most distributions
−system-wide profiling only, support all major platforms

• Perfctr (Mikael Pettersson)
−separate kernel patch
−provides per-thread, system-wide monitoring
−designed for self-monitoring, basic sampling support
− supports all IA-32, PowerPC

• VTUNE driver (Intel)
−open-source driver specific to VTUNE

no standard and generic interface exists

8 July 17, 2007

Why a standard interface?
• Currrent HW trend makes monitoring capabilities crucial

−SW must evolve to exploit HW (multi-core, multi-thread,NUMA)
• Strong need for tools to understand SW performance

−requires portable, flexible kernel-level infrastructure
• Users need portable tools
• Single interface is attractive for tool developers

− improve code reuse
−broader market for monitoring products

• Easier to get accepted in mainline kernel
−no kernel patching, improved support
−get into commercial distributions

9 July 17, 2007

Goals of the perfmon2 interface
• Provides a generic interface to access the PMU

−designed using a bottom-up approach, no tool in mind
• Be portable across all PMU models/architectures
• Supports per-thread monitoring

−self-monitoring, unmodified binaries, attach/detach
−multi-threaded and multi-process workloads

• Supports system-wide monitoring
• Supports counting and sampling
• No special recompilation
• Builtin, efficient, robust, secure, documented

10 July 17, 2007

Perfmon2 interface (1)
• Core interface allows read/write of PMU registers
• Uses the system call approach (rather than driver)
• Perfmon2 context encapsulates all PMU state

−each context uniquely identified by file descriptor
− file sharing semantic applies for context access

• Leverages existing mechanisms wherever possible
−e.g., file descriptors, signals, mmap(), ptrace()

int pfm_create_context(pfarg_ctx_t *ctx, char *s, void *a, size_t sz)int pfm_stop(int fd);
int pfm_write_pmcs(int fd, pfarg_pmc_t *pmcs, int n); int pfm_restart(int fd);
int pfm_write_pmds(int fd, pfarg_pmd_t *pmcs, int n); int pfm_create_evtsets(int fd, pfarg_setdesc_t *st, int n);
int pfm_read_pmds(int fd, pfarg_pmd_t *pmcs, int n); int pfm_delete_evtsets(int fd, pfarg_setdesc_t *st, int n);
int pfm_load_context(int fd, pfarg_load_t *ld); int pfm_getinfo_evtsets(int fd, pfarg_setinfo_t *it, int n);
int pfm_start(int fd, pfarg_start_t *st); int pfm_unload_context(int fd);

int close(int fd);

11 July 17, 2007

Perfmon2 interface (2)
• Uniformity makes it easier to write portable tools
• Counters are always exported as 64-bit wide

−emulate via counter overflow interrupt capability if needed
• Exports logical view of PMU registers

−PMC: configuration registers, write only
−PMD: data registers (counters, buffers), read-write

• Mapping to actual registers depends on PMU model
−defined by PMU description kernel module
−visible in /sys/kernel/perfmon/pmu_desc

12 July 17, 2007

Perfmon2 interface (3)
• Same ABI between ILP32 and LP64 models

−all exported structures use fixed-size data types
−x86_64, ppc64: 32-bit tools run unmodified on 64-bit kernel

• Vector arguments for read/write of PMU registers
−portable: decoupled PMC/PMD = no dependency knowledge
−extensible: no knowledge of # registers of PMU
−efficient and flexible: can write one or multiple regs per call

PMC PMD
AMD64

PMC PMD

PMC

Pentium 4
PMC PMD

PMD

Intel Core, Itanium 2

13 July 17, 2007

Per-thread session
• Thread = kernel visible thread (task)
• PMU state is saved/restored on context switch

−multiple per-thread sessions can run concurrently
• Support one context per thread
• Thread must be stopped to access PMU state

−except self-monitoring
• No inheritance across fork/pthread_create

−ptrace()options (PTRACE_O_TRACE*)
−aggregation done by the tool, if needed

14 July 17, 2007

System-wide session
• Monitors across all threads running on one CPU

−same programming sequence as per-thread
− type selected when context is created
−monitored CPU is current CPU in pfm_load_context()

• System-wide SMP built as union of CPU-wide sessions
− flexibility: measure different metrics on different CPUs
−scalability: strong affinity (processor, cache)
− ready for HW buffer: Intel PEBS

• Mutual exclusion with per-thread session

0

Tool

1 2 3

15 July 17, 2007

Support for sampling
• Supports Event-Based Sampling (EBS)

−period p expressed as 264-p occurrences of an event
− number of sampling periods = number of counters

• Can request notification when 64-bit counter overflows
−notification = message, extracted via read()
−support for select/poll,SIGIO

• Optional support for kernel level sampling buffer
−amortize cost by notifying only when buffer full
−buffer remapped read-only to user with mmap(): zero copy
−periods can be randomized to avoid biased samples
−per-counter list of PMDs to record/reset on overflow

16 July 17, 2007

Sampling buffer formats
• No single format can satisfy all needs

−must keep complexity low and extensibility high
• Export kernel interface for plug-in formats

−port existing tools/infrastructure: OProfile
−support HW features: Intel PEBS, BTS buffers

• Each format provides at least:
− string for identification (passed on context creation)
−counter overflow handler

• Each format controls:
−where and how samples are stored
−what gets recorded, how the samples are exported
−when a user notification must be sent to user

17 July 17, 2007

Existing sampling formats
• Default format (builtin):

− linear buffer, fixed header followed by optional PMDs values
• OProfile format (IA-64, X86)

−10 lines of C, reuse all generic code, small user level changes
• N-way sampling format (released separately):

− implements split buffer (up to 8-way)
−parsing in one part while storing in another: fewer blind spots

• Kernel call stack format (experimental, IA-64):
−records kernel call stacks (unwinder) on counter overflow

• Precise Event Based Sampling (P4, Intel Core 2 Duo)
−100 lines of C, first interface to provide access to feature!

18 July 17, 2007

Event sets and multiplexing (1)
• What is the problem?

−number of counters is often limited (4 on Itanium®2 PMU)
−some events cannot be measured together

• Solution:
−create sets of up to m events when PMU has m counters
−multiplex sets on actual PMU HW
−global counts approximated by simple scaling calculation
−higher switch rate smaller blind spots higher overhead

• Kernel support needed to minimize overhead
−switching always occur in context of the monitored thread

19 July 17, 2007

Event sets and multiplexing (2)
• Each set encapsulates the full PMU state

−unique identifier: 0-65535
−sets placed in ordered list

• Switching mode determined per set
• Timeout-based switching

−granularity depends on kernel timer tick (HZ)
−actual vs. requested timeout is reported to user

• Overflow-based switching
−after threshold of n overflows of a counter
− threshold specified per counter and per set

• Works with counting and sampling

20 July 17, 2007

PMU description module
• Logical actual PMU register mappings
• PMC and PMD mapping description tables

− type, logical name, default value, reserved bit fields
• Implemented by kernel module:

−auto-loading on first context creation
−easier for: support of new HW, maintenance
$ cd /sys/kernel/perfmon/pmu_desc/pmc0; ls; cat *
addr dfl_val name rsvd_msk
0x186
0x100000
PERFEVTSEL0
0xffffffff00300000

21 July 17, 2007

Security
• Cannot assume tools/users are well-behaved
• Vector arguments, sampling buffers have max. size

− tuneable via /sys
• Per-thread and system-wide contexts

−can only attach to thread owned by caller
−each type can be limited to a users group (via /sys)

• Reading of PMU registers
−direct access (some arch):limited to self-monitoring
− interface access: can only read registers declared used

• PMU interrupt flooding
−need to add interrupt throttling mechanism

22 July 17, 2007

Perfmon2 architecture summary

PMU Hardware

PMU
description

user level

kernel level

default

n-way

PEBS

kernel-call-stack

OProfile

perfmon
core

sysfs syscalls

intr

sets

smpl
fmtpmu

res

ctxsw

file

perfmon arch-specific

23 July 17, 2007

Supported Processors
• Intel Itanium: all processors (HP)
• Intel X86:

−PIII, Pentium M, Core Duo/Solo, Core 2 Duo (HP)
−Pentium 4, Xeon (incl. HT) (Intel)

• AMD:
− family 0x0f (HP)
− family 0x10 (AMD), incl. Instruction-Based-Sampling (IBS)

• IBM:
−Power 5 (IBM),
−Cell (IBM, Sony, Toshiba)

• MIPS: various models (Phil Mucci, Broadcom)
• Cray: BlackWidow (Cray)

24 July 17, 2007

Kernel integration status
• Won support from top Linux kernel people

−with help from performance monitoring community
• Code reviewed 2006 & now by top-level maintainers

−about 700KB reviewed line by line
−dozens of changes, improvements

• Why is it taking so long?
−kernel is a moving target
−update/fix general kernel infrastructure (ctxsw, NMI, Oprofile)
−new hardware support, bug fixing, X86 Oprofile co-existence

• target: 26.24 in -mm
• once in mainline, will appear in distros

25 July 17, 2007

Current Challenges

26 July 17, 2007

Challenges for perfmon2
• Sharing the PMU resource

−between different subsystems: watchdog, Oprofile, perfmon2
−between conflicting users: per-thread and system-wide
−mutual-exclusion is too restrictive, especially on large systems
−workaround via affinity restriction is invalid

• PMU access in virtualized environments
−PMU usage is never for correctness but for performance
−usage model evolving: from development to always on
−used by monitoring, tools, managed runtimes, OS kernels

27 July 17, 2007

PMU sharing: what?
• PMU state to share:

−data/config registers (dependencies)
− interrupt vector (unique)
−possibly start/stop controls

• Sharing consequences:
−symmetrical register functionalities
− independent start/stop, freeze
− tools must be prepared to use partial PMU

config
data

P4PPC
Itanium2
Core 2

AMD64

0

0

1

1 2

2 3

3

28 July 17, 2007

PMU sharing: example

PMU register allocator

perfmon2 NMI watchdog
E1,all CPUs

ke
rn

el
us

er

perfmon2, CPUs=0,1
perfmon2, CPUs=all perfmon2, CPUs=all

NMI, CPUs=all

config
data

0

0

1

1

2

2

3

3

E1
 CPUs=0,1

sys

E1
 all CPUs

sys

E2
 my thread

thread

29 July 17, 2007

Usage models in virtual environments
• Ensure continuity of service: PMU virtualization

−OS, applications using PMU must continue to work
−Performance must be maintained: JVM with DPGO
−must provide PMU access to guest
−no visibility into VMM execution

• Assessment global performance: system-wide
−measure across hypervisor (VMM) and guest environments

• Must deal with multiple virtual machines
−work with VT-*/AMD-V and para-virtualization
−Xen (para): XenOprofile
−KVM, lguest

30 July 17, 2007

Perfmon & petaflops computing
• How do you know effective FLOPS?

−guess by looking at the code?
− instrumentation does now work: must use HW counters

• PMU Metrics for scientific code:
−Flops
−Cache behavior
−Bus bandwidth utilization
−profiles to identify key loops

• Some metrics unavailable or unreliable
−e.g.: no FLOPS on AMD64

• Need to identify key metrics to influence future HW

31 July 17, 2007

Summary
• Monitoring key to achieve world-class performance

−current HW trend makes this critical
• Perfmon2 is a very advanced monitoring interface

−supports all major processor architecture
• Perfmon2 to become the Linux monitoring interface

−strong community of users/developers
• Need to solve sharing/virtualization challenges
• Call to action: try it out!

−start porting/developing performance tools
−visit http://perfmon2.sf.net

32 July 17, 2007

33 July 17, 2007

Basic self-monitoring per-thread session
pfarg_ctx_t ctx; int fd;
pfarg_load_t load;
pfarg_pmd_t pd[1]; pfarg_pmc_t pc[1];
pfmlib_input_param_t inp;
pfmlib_output_param_t outp;...
pfm_find_event(“CPU_CYCLES”, &inp.pfp_events[0]);
inp.pfp_plm = PFM_PLM3; inp.pfp_count = 1;
pfm_dispatch_events(&inp, NULL, &outp);
pd[0].reg_num = out.pfp_pd[0].reg_num;
pc[0].reg_num = outp.pfp_pc[0].reg_num;
fd = pfm_create_context(&ctx, NULL, 0, 0);
pfm_write_pmcs(fd, pc, 1);
pfm_write_pmds(fd, pd, 1);
load.load_pid = getpid();
pfm_load_context(fd, &load);
pfm_start(fd, NULL);
/* run code to measure */
pfm_stop(fd);
pfm_read_pmds(fd, pd, 1);
printf(“total cycles %”PRIu64”\n”, pd[0].reg_value);
close(fd);

