

CScADS Workshop on Performance Tools for Petascale Systems

John Mellor-Crummey

Department of Computer Science

Rice University

DOE SciDAC Program

- Portfolio of coordinated research efforts directed at exploiting the emerging capabilities of terascale and petascale computing
- These research projects respond to
 - the extraordinary difficulties of realizing sustained peak performance for scientific applications that require terascale and petascale capabilities to accomplish their research goals
 - the need for developing collaborative software environments where distributed resources and expertise are combined to address complex questions that no single institution can manage alone

http://www.scidac.org

DOE SciDAC-2 Mission

- Develop comprehensive scientific computing software infrastructure to enable petascale science
- Develop new generation of data management and knowledge discovery tools for large data sets

-DOE SciDAC-2 Program Investments

Enabling technologies

- computer science
- applied math
- visualization and data mgmt.

Science application areas

- physics
- climate
- groundwater
- fusion energy
- life sciences
- materials and chemistry

Participants

- 17 labs
- 55 universities
- 3 companies

Center for Scalable Application Development Software

Partners

Rice University (Kennedy (late), Mellor-Crummey, Cooper)
Argonne National Laboratory (Beckman, Lusk, Gropp)
University of California - Berkeley (Yelick)
University of Wisconsin - Madison (Miller)
University of Tennessee (Dongarra)

Center for Scalable Application Development Software

Scalable Application Development Software?

Software tools that help automate the process of scaling applications in three different dimensions

- scaling from simple high-productivity languages on a laptop to efficient applications on high-end, single-processor workstations
- scaling from small numbers of processors to full processor ensembles consisting of thousands of processors with minimal loss of efficiency
- scaling from a single abstract program representation to tuned implementations for many different high-end machines and heterogeneous processors with minimal programming effort

Center for Scalable Application Development Software

Scope of Activities

- Community outreach and vision building
- Research and development
- Open source software infrastructure
 - compiler infrastructure
 - support high-level source-to-source optimization of programs
 - leverage Open64, Rice's D System compiler infrastructure
 - performance tools infrastructure
 - support binary analysis, instrumentation, data collection, and measurement interpretation
 - leverage Rice's HPCToolkit and Wisconsin's Paradyn & Dyninst tools

CScADS Research Themes

- Rapid construction of high-performance applications
 - compiler technology for scripting languages and component composition
- Scaling to homogeneous parallel systems
 - tools for parallel performance analysis and improvement
 - compiler technology for parallel languages
 - partitioned global address space (PGAS) languages
 - global array languages
 - parallel scripting languages
 - support for multicore platforms
 - decomposing and mapping parallelism to available resources
 - transforming applications to reuse data wherever possible
 - choreographing parallelism and data movement
- Portability and support for heterogeneous platforms
 - automatic tuning to new platforms
 - compiling to heterogeneous platforms

Workshop Technical Focus

Workshop Charge

- Identify important open problems and challenges for performance tools for petascale systems
- Brainstorm on promising approaches to open problems
- Identify infrastructure needs to address key challenges
- Assess available infrastructure
- Identify opportunities for synergy
 - opportunities to
 - consolidate and harden existing infrastructures
 - reuse existing components developed by others
 - refactor and extend existing components to apply them to new challenges
- Collaborate on design of sharable components
- Identify targets of opportunity for further investment of resources
 - strategic investment targets for the DOE Office of Science?

Workshop Structure

- 1.5 days: invited presentations
- Tomorrow afternoon
 - general discussion
 - identify candidates for working groups
 - interests and group membership
 - informal presentations of "hot button" issues
- Late Tuesday, Wednesday morning
 - working groups meet
- Thursday morning
 - working groups meet and prepare summary presentations
- Thursday afternoon
 - presentation of working group results and open discussion

Performance Tools for Petascale Systems

Goal: provide insight into how to improve programs for better performance on petascale systems that are ensembles of multicore microprocessors

Classes of issues

- Understanding executables
- Instrumentation
- Measurement
- Analysis
- Modeling
- Presentation

Understanding Executables

- Support for machine-code based
 - instrumentation
 - measurement
 - analysis
- Understand instruction stream
 - mix
 - dependencies
 - delays
 - memory accesses
 - instantaneous state at arbitrary points in the execution
 - e.g. frame state for asynchronous unwinding
- Support work with stripped code, e.g. 3rd party libraries

Instrumentation

- Goals
 - correctness
 - efficiency
 - portability
- Instrumentation approaches
 - binary rewriting
 - binary patching
 - dynamic compilation
- Open problems?

Measurement Challenges

- Multi-scale parallelism
 - ILP, SIMD units, multi-core processor, intra-node, inter-node
- Understanding processor core activity
 - utilization of functional units
 - utilization of memory hierarchy
 - memory parallelism
 - data reuse: temporal, spatial
 - attributing stalls to causes
- Understanding parallelism
 - overheads
 - communication: latency, bandwidth
 - serialization
 - load imbalance
 - contention
 - cache blocks, network links

Measurement Techniques

Approaches

- tracing
- sampling
 - flavors: node-based vs. communication-based
 - calling context or not

Issues

- must capture meta-data
- completeness
- fidelity
- efficiency
- data volume
- utility

Analysis Challenges 1

- Diagnosing processor utilization inefficiencies
 - instruction mix underutilizes core: improve instruction balance
 - slack instruction schedule
 - memory subsystem inefficiencies
 - too many cache, TLB misses
 - why are we not getting better bandwidth?
 - inadequate memory parallelism?
 - not enough reuse of memory pages?
 - opportunities for reducing bandwidth by improving data reuse?
 - opportunities for hiding latency?
- Diagnosing multithreading deficiencies
 - are the cores/processors underutilized; if so, why?
 - less runnable threads than processors
 - fewer threads than processors or blocked threads?
 - is the system thrashing (time slicing too many active threads)

Analysis Challenges 2

- Diagnosing parallelism deficiencies
 - load imbalance
 - serialization
 - communication overhead
 - communication granularity/frequency
 - exposed data transfer costs
 - strategies for data mining
 - clustering
 - · anomaly detection
- Understanding the performance of hybrid parallelizations

Modeling

Understand potential for improving performance by using alternate

- hardware architectures
- data structures
- computation structures

Presentation

- Textual-based approaches
- Visualization