NIMROD: Computational Aspects and Challenges

Ping Zhu

University of Wisconsin-Madison with major contribution from C. R. Sovinec (UW-Madison)

> CScADS Summer Workshop Snowbird, UT July 19-22, 2010

> > < □ > < 同 > < 三 > < 三 > < 三 > < ○ < ○ </p>

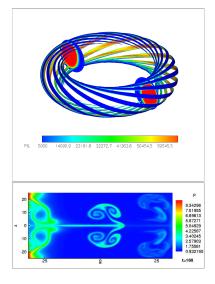
NIMROD: Non-ideal Magnetohydrodynamics with Rotation - Open Discussion

- NIMROD is an extended magnetohydrodynamics (MHD) code [Sovinec et al. 2004].
- NIMROD is a team project
 - Started in 1995-1996, involves team members from multiple institutions.
 - https://nimrodteam.org
- NIMROD is part of the DOE SciDAC centers CEMM (Center for Extended MHD Modeling) and SWIM (Simulation of Wave Interactions with MHD)
 - The other major MHD code in CEMM is M3D
 - Solve similar problems with somewhat different equations and schemes.

NIMROD code simulates macroscopic high temperature plasma dynamics

Laboratory plasmas:

- Magnetic fusion reactors: Tokamak, RFP, etc.
- Laboratory astrophysics experiments: Reconnection, dynamo, etc.
- Space and astrophysical plasma
 - Magnetosphere and substorm
 - Accretion disk and jets



・ロト・西ト・西ト・西ト・日・ シック・

NIMROD code solves the extended MHD equations

Fluid part:

00

$$\frac{d\rho}{dt} = -\rho \nabla \cdot \mathbf{u} + D \nabla^2 \rho \tag{1}$$

$$\rho \frac{d\mathbf{u}}{dt} = -\nabla \boldsymbol{p} + \mathbf{J} \times \mathbf{B} - \nabla \cdot \boldsymbol{\pi}$$
(2)

$$\frac{n}{\gamma-1}\frac{dT}{dt} = -\frac{p}{2}\nabla \cdot \mathbf{u} - \pi : \nabla \mathbf{u} - \nabla \cdot \mathbf{q} + Q \qquad (3)$$

$$\frac{\partial \mathbf{B}}{\partial t} = -\nabla \times \mathbf{E} \tag{4}$$

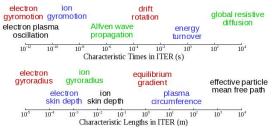
$$\mu_0 \mathbf{J} = \nabla \times \mathbf{B} \tag{5}$$

$$\mathbf{E} = -\mathbf{u} \times \mathbf{B} + \eta \mathbf{J} + \frac{\lambda}{ne} \left(\mathbf{J} \times \mathbf{B} - \nabla p_e \right) \quad (6)$$

 Kinetic part: can couple to kinetic/particle code through moment closures.

Physics challenges for MHD simulations

- General macroscopic processes
 - Global geometry
 - Nonlinearities
- High temperature magnetized plasma specific
 - Stiffness:
 - Multiple temporal and spatial scales:



- Coupling between fluid and kinetic scales
- Anisotropy:
 - Extreme anisotropy imposed by magnetic field: $\kappa_{\parallel}/\kappa_{\perp} \sim 10^8$

◆□▶ ◆□▶ ▲□▶ ▲□▶ ■ ののの

• Magnetic divergence constraint $\nabla \cdot \mathbf{B} = \mathbf{0}$

NIMROD uses mixed discretization schemes

- Spatial
 - High-order elements represent 2D poloidal domain.
 - Uniform collocation Lagrangian polynomials
 - Spectral elements with Gauss-Lobatto Legendre nodes
 - ► Finite Fourier series represents the periodic direction.
 - 3D matrices with inherently dominant diagonal blocks
- Temporal
 - Semi-implicit operator with predictor-corrector advance

(ロ) (同) (三) (三) (三) (三) (○) (○)

- Fully implicit operator with leap-frog advance
- Fully implicit operator with time-centered advance
- Allows large time step advance without numerical dissipation or instability

NIMROD solves large sparse matrices each step

Linear problem: 2D matrix

- Conjugate gradient or GMRES iterative solvers
- Direct solver SuperLU [Li and Demmel, 2003] is used as preconditioner
- Nonlinear problem: 3D matrix
 - Matrix-free conjugate gradient (symm)
 - Matrix-free Krylov space GMRES (non-symm)
 - Fourier component block based preconditioning
 - Diagonal blocks: SuperLU
 - Limited off-diagonal blocks: Jacobi or Gauss-Seidel iteration

(日) (日) (日) (日) (日) (日) (日)

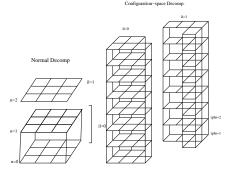
The main computational challenge is to find scalable solver for large ill-conditioned sparse matrix

- System stiffness leads to large ill-conditioned sparse matrix
- Numerically, the solution has been to use 2D and 3D preconditioning
 - SuperLU
 - Jacobi or Gauss-Seidel
- The challenge is to enable these solvers to be scalable in peta-scale computations.
- Efficient parallel computing schemes are also part of the solution.

(ロ) (同) (三) (三) (三) (三) (○) (○)

NIMROD uses distributed memory paradigm and MPI communication

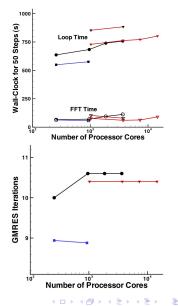
- Domain decompositions
 - Grid-block decomposition uses point-to-point communication
 - Fourier-Layer and configuaration-space decomposition
 - Domain swap between forward/inverse FFT
 - Collective communication
- Parallel communication during preconditioning
 - SuperLU_Dist
 - Jacobi/Gauss-Seidel: point-to-point communication



◆□▶ ◆□▶ ▲□▶ ▲□▶ □ のQ@

Parallel scaling of NIMROD code through 10K processor cores has been achieved [Sovinec 2009]

- Parallelization optimization
 - Overlap asynchronous communication for block Gauss-Seidel iteration with on-processor computation
 - Reorder loop and data allows fewer, larger collective communications
- Weak scaling through 10K processors on Franklin Cray XT-4 achieved



Parallel scaling challenges for peta-scale NIMROD computations

- Scaling of preconditioners
 - Scaling of direct solver (SuperLU) may become bottle-neck for current NIMROD implementation.
 - Threshold-based ILU and new hybrid versions of SuperLU have potential for better scaling.
- FFT and domain swapping
 - Collective communication may be improved by more scalable point-to-point communication?
 - Serial FFT may be improved by parallel FFT?
- Scaling on new generation of platforms
 - Multi-core system: may require mixture of MPI and OpenMP.
 - Cell and GPU systems: may benefit hybrid version with particle closures.

Summary: Challenges for NIMROD to achieve scalable petascale computations

- Scalable numerical algorithms for solving ill-conditioned large sparse matrices
 - 2D and 3D iterative solvers
 - Preconditioners
- Scalable parallel communication schemes
 - Balance between collective and point-to-point communication
 - How to take advantage of new generation of platforms

(日) (日) (日) (日) (日) (日) (日)

- Sparse matrix solver for fluid part
- Hybrid version with particle closure