
1

Winning with High-K 45nm Technology
High Value, High Volume, High Preference

Performance Analysis and
SW optimization for HPC on
Intel® Core™ i7, Xeon™ 5500 and 5600
family Processors*

Presenter: David Levinthal
Principal Engineer

Business Group, Division: DPD, SSG

* Intel, the Intel logo, Intel Core and Xeon are trademarks of Intel Corporation in the U.S. and other countries.

Version 1.1.2

July 28, 2010

2

Winning with High-K 45nm Technology
High Value, High Volume, High Preference

Legal Disclaimer
 INFORMATION IN THIS DOCUMENT IS PROVIDED IN CONNECTION WITH INTEL PRODUCTS. NO LICENSE, EXPRESS

OR IMPLIED, BY ESTOPPEL OR OTHERWISE, TO ANY INTELLECTUAL PROPERTY RIGHTS IS GRANTED BY THIS
DOCUMENT. EXCEPT AS PROVIDED IN INTEL'S TERMS AND CONDITIONS OF SALE FOR SUCH PRODUCTS, INTEL
ASSUMES NO LIABILITY WHATSOEVER AND INTEL DISCLAIMS ANY EXPRESS OR IMPLIED WARRANTY, RELATING TO
SALE AND/OR USE OF INTEL PRODUCTS INCLUDING LIABILITY OR WARRANTIES RELATING TO FITNESS FOR A
PARTICULAR PURPOSE, MERCHANTABILITY, OR INFRINGEMENT OF ANY PATENT, COPYRIGHT OR OTHER
INTELLECTUAL PROPERTY RIGHT.

UNLESS OTHERWISE AGREED IN WRITING BY INTEL, THE INTEL PRODUCTS ARE NOT DESIGNED NOR INTENDED
FOR ANY APPLICATION IN WHICH THE FAILURE OF THE INTEL PRODUCT COULD CREATE A SITUATION WHERE
PERSONAL INJURY OR DEATH MAY OCCUR.

Intel may make changes to specifications and product descriptions at any time, without notice. Designers must not rely on the
absence or characteristics of any features or instructions marked "reserved" or "undefined." Intel reserves these for future
definition and shall have no responsibility whatsoever for conflicts or incompatibilities arising from future changes to them. The
information here is subject to change without notice. Do not finalize a design with this information.

The products described in this document may contain design defects or errors known as errata which may cause the product to
deviate from published specifications. Current characterized errata are available on request.

Contact your local Intel sales office or your distributor to obtain the latest specifications and before placing your product order.

 All products, computer systems, dates, and figures specified are preliminary based on current expectations, and are subject to
change without notice.

 Customers, licensees, and other third parties are not authorized by Intel to use Intel code names in advertising, promotion or
marketing of any product or service.

 Performance tests and ratings are measured using specific computer systems and/or components and reflect the approximate
performance of Intel products as measured by those tests. Any difference in system hardware or software design or
configuration may affect actual performance. Buyers should consult other sources of information to evaluate the performance of
systems or components they are considering purchasing. For more information on performance tests and on the performance
of Intel products, visit Intel Performance Benchmark Limitations

 Copyright © 2010, Intel Corporation. All rights reserved.

2

http://www.intel.com/performance/resources/limits.htm

3

Winning with High-K 45nm Technology
High Value, High Volume, High Preference

Risk Factors
The above statements and any others in this document that refer to plans and expectations for the first quarter, the year and the
future are forward-looking statements that involve a number of risks and uncertainties. Many factors could affect Intel’s actual
results, and variances from Intel’s current expectations regarding such factors could cause actual results to differ materially from
those expressed in these forward-looking statements. Intel presently considers the following to be the important factors that
could cause actual results to differ materially from the corporation’s expectations. Current uncertainty in global economic
conditions pose a risk to the overall economy as consumers and businesses may defer purchases in response to tighter credit
and negative financial news, which could negatively affect product demand and other related matters. Consequently, demand
could be different from Intel's expectations due to factors including changes in business and economic conditions, including
conditions in the credit market that could affect consumer confidence; customer acceptance of Intel’s and competitors’ products;
changes in customer order patterns including order cancellations; and changes in the level of inventory at customers. Intel
operates in intensely competitive industries that are characterized by a high percentage of costs that are fixed or difficult to
reduce in the short term and product demand that is highly variable and difficult to forecast. Revenue and the gross margin
percentage are affected by the timing of new Intel product introductions and the demand for and market acceptance of Intel's
products; actions taken by Intel's competitors, including product offerings and introductions, marketing programs and pricing
pressures and Intel’s response to such actions; Intel’s ability to respond quickly to technological developments and to
incorporate new features into its products; and the availability of sufficient supply of components from suppliers to meet
demand. The gross margin percentage could vary significantly from expectations based on changes in revenue levels; capacity
utilization; excess or obsolete inventory; product mix and pricing; variations in inventory valuation, including variations related
to the timing of qualifying products for sale; manufacturing yields; changes in unit costs; impairments of long-lived assets,
including manufacturing, assembly/test and intangible assets; and the timing and execution of the manufacturing ramp and
associated costs, including start-up costs. Expenses, particularly certain marketing and compensation expenses, as well as
restructuring and asset impairment charges, vary depending on the level of demand for Intel's products and the level of revenue
and profits. The recent financial crisis affecting the banking system and financial markets and the going concern threats to
investment banks and other financial institutions have resulted in a tightening in the credit markets, a reduced level of liquidity
in many financial markets, and extreme volatility in fixed income, credit and equity markets. There could be a number of follow-
on effects from the credit crisis on Intel’s business, including insolvency of key suppliers resulting in product delays; inability of
customers to obtain credit to finance purchases of our products and/or customer insolvencies; counterparty failures negatively
impacting our treasury operations; increased expense or inability to obtain short-term financing of Intel’s operations from the
issuance of commercial paper; and increased impairments from the inability of investee companies to obtain financing. Intel's
results could be impacted by adverse economic, social, political and physical/infrastructure conditions in the countries in which
Intel, its customers or its suppliers operate, including military conflict and other security risks, natural disasters, infrastructure
disruptions, health concerns and fluctuations in currency exchange rates. Intel's results could be affected by adverse effects
associated with product defects and errata (deviations from published specifications), and by litigation or regulatory matters
involving intellectual property, stockholder, consumer, antitrust and other issues, such as the litigation and regulatory matters
described in Intel's SEC reports.

3

4

Winning with High-K 45nm Technology
High Value, High Volume, High Preference

Performance Analysis Methodology
for HPC

Measure application performance

–Time or rate of work

–Compare to other platforms

Analyze the contributions to
performance bottlenecks methodically

–Top Down

4

5

Winning with High-K 45nm Technology
High Value, High Volume, High Preference

Performance Analysis Methodology
for HPC

Two possible objectives
– Influence future silicon design

– Intel personnel do lots of this

–Modify build and/or source
to improve performance
–The sole focus of this presentation

The central objective is to identify
performance bottlenecks and estimate
the potential gain for fixing them

–Without an accurate estimate of the gain a
great deal of effort can be wasted

5

6

Winning with High-K 45nm Technology
High Value, High Volume, High Preference

Structure of this presentation

What would the author do with:

–A brand new machine

–A tar ball of 100 million source lines

–Documented, working build procedure

–Data set and instructions to run the app

–And one commandment:

6

Make Go Fast
but get the same answer

7

Winning with High-K 45nm Technology
High Value, High Volume, High Preference

Presentation Agenda
Optimization workflow overview

Event based sampling

–Why so complicated

–How the nuts and bolts work

HPC/Scientific computing overview

Compiler problems/tuning compiler usage

 Identifying and removing stalls

 Identifying and removing resource saturation

 Identifying and removing non scaling

PTU features and data interpretation

Glossary in backup7

8

Winning with High-K 45nm Technology
High Value, High Volume, High Preference

Performance Analysis Methodology
 The steps

– 1. make sure the platform is correct

– It should be – some thought went into the specifications

– But don’t take this for granted

– 2. Use the correct compiler (Intel® Compiler)

– And invoke it correctly

– This should also have already been done…but..

– 3. Analyze interaction of SW and micro architecture and
tune code/compiler usage

– Intel® VTune™ Analyzer* or better, Intel® Performance
Tuning Utility (PTU)

– Iterative process

– 4. Parallelize the execution as appropriate

– Batch queue / Intel® MPI Library

– OpenMP** product, Intel® Threading Building Blocks
(Intel® TBB), Intel® CILK™ Plus, explicit threading

 Iterate on 3 and 4

*Vtune and CILK are trademarks of Intel Corporation in the U.S. and other countries.

**Other names and brands may be claimed as the property of others.
8

9

Winning with High-K 45nm Technology
High Value, High Volume, High Preference

Platform Optimization: Step 1
 1. Make sure the platform is correct

– Enough memory

– Page faults (Perfmon*, vmstat*)
– rates of >100 /sec is cause for investigation

– Make sure DIMMs are in identical sets of 6 for DP machines

– 3 channel memory controller

– Best performance with completely uniform dimms

– Make sure SATA Bios setting is AHCI, not IDE setting

– Use RAID or SSD if disk speed is critical

– Prefetcher BIOS Settings correct for the app: ON

– Intel® 11.0 compiler can generate SW prefetch

– NUMA BIOS setting correct: ON

– Intel® Hyper-Threading Technology BIOS option set correctly
for the application
– HT does not always help HPC

– Probably makes little difference

* Other names and brands may be claimed as the property of others.

9

Disable C states to ensure machine stability when using

event based sampling on Corei7/Xeon 5500

10

Winning with High-K 45nm Technology
High Value, High Volume, High Preference

Compiler Usage Optimization: Step 2

2. Optimize the time consuming
functions

–Profile functions, and check compiler
options

–Intel® VTune™ Analyzer and Intel® PTU
have source file granularities

–Data grouped per source file to identify hot
files

–Do not assume this has been done

–Build environments are complex

10

11

Winning with High-K 45nm Technology
High Value, High Volume, High Preference

Micro architectural Optimization:
Step 3

 3. Identify & Optimize the time-consuming
functions

 Use performance events methodically to
identify performance limitations
– Intel® PTU, Intel® VTune™ Analyzer, etc.

 Confirm that compiler really did produce good
code (visual inspection of ASM)
– For the components of the code using the cycles

 Go after largest, easy things first
– Accurate estimate of potential gain is critical!

 Documentation for Intel® Core™ i7 processor
Performance Monitoring Unit (PMU) is
available

11

12

Winning with High-K 45nm Technology
High Value, High Volume, High Preference

Parallelization for HPC : Step 4

4. Use as many cores and machines as
possible

–Parallel processing by batch queue is OK

–Trivial parallelism

–Hard to beat the throughput

12

13

Winning with High-K 45nm Technology
High Value, High Volume, High Preference

Parallelization for HPC : Step 4

4. Use as many cores and machines as
possible

–Figure out clean data decomposition

–Intel® MPI Library for process parallel
execution

–Minimal shared elements

–Maximal address separation

–OpenMP*, Intel® TBB, CILK, explicit
threading for shared memory

–Can reduce all to all MPI API costs

* Other names and brands may be claimed as the property of others.
13

14

Winning with High-K 45nm Technology
High Value, High Volume, High Preference

DP Platform

Discrete

Gfx

DDR3DDR3

8M LLC

QPI

C0 C1 C2 C3

QPI

8M LLC

QPI IMC

C0 C1 C2 C3

QPI

I/O Hub

IMC

14

15

Winning with High-K 45nm Technology
High Value, High Volume, High Preference

Event Based Sampling Analysis

Code profiling with performance events
can identify where the interaction of
the code and data with the
microarchitecture is sub optimal
–Ex: What code execution results in load

driven cache misses?

–Event_count*Penalty ~ potential gain

–A well defined penalty is essential

Such profiling also provides an
execution weighted display of the
generated instructions

–Vectorized code was generated but is it
being executed?

But There are THOUSANDS of Events,

Which Ones Matter?15

16

Winning with High-K 45nm Technology
High Value, High Volume, High Preference

Which Events you need depends on
what problem you wish to study and

what you want to accomplish
Example: Last Level Cache Misses

What you mean by an LLC miss depends on the
exact nature of the question you are asking

 Are you asking about Bandwidth consumption?

– Due to reads?, RFOs?, HW Prefetch, NT stores? Total?,
Code?, SW prefetch?, Cacheable Writebacks?

– Location of the bandwidth consumption?

– Source of the data provided?

 Or about Latency/Pipeline stalls

– Different architectures stall on different things

• Intel® IA-32/Intel64 Processors’ memory access stalls are mostly

due to loads

Events needed to measure bandwidth and

memory stalls are COMPLETELY different16

17

Winning with High-K 45nm Technology
High Value, High Volume, High Preference

Intel® Xeon™ 5500 load Penalties

L1D_HIT

Secondary

Miss

L2

Hit

LLC Hit

No

Snoop

LLC Hit

Clean

Snoop

LLC Hit

Snoop

=HITM

Local

Dram

Remote

Dram

Remote

Cache

local

home

Fwd

Remote

Cache

Remote

Home

FWD

Remote

Cache

Local

Home

HITM

Remote

Cache

Remote

home

HITM

Mem_load_retired

.L1d_hit

0
(By Def)

Mem_load_retired

.Hit_LFB

0->Max

Val

Mem_load_retired

.L2_hit 6

Mem_load_retired

.LLC_Unshared_hit ~35

Mem_load_retired

.other_core_l2

_hit_hitm ~60 ~75

Mem_load_retired

.LLC_Miss ~200 ~350 ~180 ~180

~225

-250 ~370

Mem_uncore_retired

.Other_core_l2_hitm ~75

Mem_uncore_retired

.Local_Dram ~200

~225

-250

Mem_uncore_retired

.Remote_dram ~350 ~370

Mem_uncore_retired.

Remote_cache_

local_home_hit ~180

The Important Penalties Vary by a Factor of TEN
17

Depend on frequency, dimms, bios, etc

Note: All latencies and memory access penalties shown are merely illustrative. Actual latencies will depend on (among other things) processor model, core and

uncore frequencies, type, number and positioning of DIMMS, platform model, bios version and settings. Consult the platform manufacturer for optimal setting for

any individual system. Then measure the actual properties of that system by running well established benchmarks.

18

Winning with High-K 45nm Technology
High Value, High Volume, High Preference

Intel® PTU uses profiles to manage
complexity

18

19

Winning with High-K 45nm Technology
High Value, High Volume, High Preference

Intel® PTU predefined collections
 Cycles and Uops

– Cycle usage and uop flow through the pipeline

 Branch Analysis
– Branch execution analysis for loop tripcounts and call counts

 General Exploration
– Cycles, instructions, stalls, branches, basic memory access

 Memory Access
– Detailed breakdown of off-core memory access (w/wo address

profiling)

 Working Set
– Precise loads and stores enabling address space analysis

 FrontEnd (FE) Investigation
– Detailed instruction starvation analysis

 Contested lines
– Precise HITM and Store events

 Loop Analysis
– 32 events for HPC type codes, w/wo call sites , i.e. including LBR

capture

 Client Analysis
– 54 events for client type codes, w/wo call sites , i.e. including LBR

capture

Many Possible Issues -> Many Different Events19

20

Winning with High-K 45nm Technology
High Value, High Volume, High Preference

Controlling collection

20

21

Winning with High-K 45nm Technology
High Value, High Volume, High Preference

Performance Monitoring Unit

 The Performance Monitoring Unit (PMU)
consists of a set of counters that can be
programmed to count user-selected signals of
microprocessor activity

– Cpu_clk_unhalted, inst_retired, LLC_miss, etc..

 Counting the number of events that occur in a
fixed time period allows workload
characterization

– Using a spectrum of events allows a decomposition
of the applications activity with respect to the
microarchitecture components

– Particularly useful for studying the architecture’s
strengths and weaknesses running an application

21

22

Winning with High-K 45nm Technology
High Value, High Volume, High Preference

Performance Monitoring Unit

 The PMU can be programmed to generate
interrupts on counter overflow

– Allows periodic sampling of program counter for any
user-chosen event

– Initialize count to (overflow – periodic rate)

– Interrupt Vector Table is programmed with the
address of the interrupt handler

– Intel® VTune™ Analyzer driver is invoked by HW on
counter overflows and given a program counter where
the interrupt (i.e. counter overflow) happened

 Identify statistically where events
occur in the program

–Application profiling by event

22

23

Winning with High-K 45nm Technology
High Value, High Volume, High Preference

SKID:
IP of causal instruction vs IP of PMI

23

BPU

Fetch IP+N

Q

Q

decode

decode

Q

Q

Q

RAT

RS

RS

RS

RS IP+3

exec IP+2

exec IP+1

Retire IP

L1_ifetch_miss

LLC_ifetch_miss

Time

IP +m

delay

PMI occurs at IP +

propagation delays

overflow

overflow

Event associated with IP +N

24

Winning with High-K 45nm Technology
High Value, High Volume, High Preference

Analyzing HPC Applications

Overview

Loop analysis

–Tripcounts

–Vectorization

Memory access dominated

–Latency dominated

–Bandwidth dominated

Execution dominated

24

25

Winning with High-K 45nm Technology
High Value, High Volume, High Preference

Overview
Performance Breakdown/cycle
accounting can be applied to any scale
of a program

–Multiple interacting applications->
single apps-> single modules->

source files/functions->
basic blocks

Methodology does not change

–But can inherit conclusions from higher levels
based on importance/cycle cost

At all stages in the process look for
poorly written, actively executing code
that can be improved

25

26

Winning with High-K 45nm Technology
High Value, High Volume, High Preference

HPC Applications

 Dominated by loops

 Rarely have pipeline front end problems

– Except for very large binaries (ifetch latency)

 Large data sets

– Not cache resident

– Ex: Weather simulation, Oil Reservoir

– Frequently DRAM bandwidth limited

– Or DRAM Latency limited

 Occasionally HPC apps are uop flow limited

– Data blocked

– Ex: oil exploration, FFTs

26

27

Winning with High-K 45nm Technology
High Value, High Volume, High Preference

What matters when optimizing a
loop?

1. The Trip Count

2. The Trip Count

3.The TRIP COUNT!
4. Variations in the tripcount

5. And some other things

BUT..what you do about them depends on

THE TRIP COUNT

And of course there are virtually no tools to assist you in
determining this..other than printf

(you can use PIN..)

This Will be Discussed Later
27

28

Winning with High-K 45nm Technology
High Value, High Volume, High Preference

HPC Loops and Memory Access

Calculations require data as input and
the most severe limitations in a
computer are on data access

–CPU speed and efficiency have increased
much faster than memory speeds and
bandwidth.

Load operations are almost always
scheduled almost immediately before
consumption (adds, multiplies etc)

Lack of availability will quickly lead to
execution stalls

–OOO execution can buy only a few cycles.

28

29

Winning with High-K 45nm Technology
High Value, High Volume, High Preference

Event Classes: High Level View
1. Execution flow events

– Cycles, Branches, stalls, uops/inst_retired

– Guide compiler usage

2. Penalty events

– Ex: load requiring access to dram

– Modify code/build to reduce penalties

3. Resource saturation events

– Bandwidth, load/store buffers, dispatch ports

– No well defined cost

– Change data layout/access patterns

4. Architectural characterization

– Cache accesses, MESI states, snoops

– Used to improve silicon design, not application performance

5. Instruction mix

– Do not measure what you think, extremely difficult to validate

29

30

Winning with High-K 45nm Technology
High Value, High Volume, High Preference

Event Classes

1. Execution flow events:
Guide Compiler Usage

– Cycles, Branches, stalls, uops/inst_retired

2. Penalty events

– Ex: load requiring access to dram

3. Resource saturation events

– Bandwidth, load/store buffers, dispatch ports

– No well defined cost

4. Architectural characterization

– Cache accesses, MESI states, snoops

5. Instruction mix
30

31

Winning with High-K 45nm Technology
High Value, High Volume, High Preference

Cycles: Multiple time domains

 There are actually 4 cycle events on a modern
microprocessor
– Core unhalted cycles

– Reference frequency unhalted cycles

– Core halted cycles

– Reference Frequency halted cycles

 Core frequency needed for perf issues entirely in the core
– Penalties (ie pipeline stalls) in core cycles

 Reference frequency needed for:
– Evaluation of variable frequency effects (Turbo/Power Management)

– Wall clock time utilization

– Ex: Network server applications

– Bandwidth/memory latency

 Unhalted events are required for counting modes to work
at all

 Halted.ref = TSC change – cpu_clk_unhalted.ref

31

32

Winning with High-K 45nm Technology
High Value, High Volume, High Preference

Cycle Accounting and Uop Flow

 Cycles =
Cycles dispatching to execution units +
Cycles not dispatching (stalls)

– A trivial truism

 Uops dispatched = uops retired +
speculative uops that are not retired

– Non-retired uops due to mispredicted branches

– Uops_issued.any – uops_retired.slots

 Optimization Reduces Total Cycles by

– Reducing stalls

– Reducing retired uops (better code generation)

– Reducing non retired uops (reducing mispredictions)

32

33

Winning with High-K 45nm Technology
High Value, High Volume, High Preference

(Simplified) Execution in an OOO Engine

Two asynchronous components
connected by buffering

–Front End provides instructions

–Back End gets data and executes
instructions

–Back End trumps Front End

– If BE issues occur, fixing FE issues
accomplishes nothing

RS Execution
Units

dispatch

ROB:
Reorder
Buffer

Retirement/Writeback

Decoder

Inst Fetch
Br Predict

Resource
Allocation

Front End

FE
Back End

BE
33

Reservation

Station

34

Winning with High-K 45nm Technology
High Value, High Volume, High Preference

Identifying Front End Stalls

Uop issue

–Uops have been allocated resources

–No downstream blockage (resource_stalls)

–FE Stalls = an instruction delivery problem
= Uops_issued.stall_cycles – Resource_stalls

RS Execution
Units

dispatch

ROB

Retirement/Writeback

Decoder

Inst Fetch
Br Predict

Resource
Allocation

Uops_issued

Uops_issued.stall_cycles

Uops_issued.core_stall_cycles

Resource_stalls

34

35

Winning with High-K 45nm Technology
High Value, High Volume, High Preference

(Simplified) Execution in an OOO Engine

Design optimizes Dispatch to Execution

–Uops wait in RS until inputs are available

–Keeping the Execution Units occupied
matters

RS Execution
Units

dispatch

ROB

Retirement/Writeback

Decoder
Inst Fetch
Br Predict

Resource
Allocation

35

36

Winning with High-K 45nm Technology
High Value, High Volume, High Preference

Uop Flow Monitors Execution

Uop Execute

–Uops have inputs ?

–No downstream blockage (DIV/SQRT)

–No execution = no progress

RS Execution
Units

dispatch

ROB

Retirement/Writeback

Decoder
Inst Fetch
Br Predict

Resource
Allocation

Uops_executed.portX

Uops_executed.core_stall_cycles

Only non HT events in the core

36

37

Winning with High-K 45nm Technology
High Value, High Volume, High Preference

Uop Flow Monitors Execution

Uop Retire

–All older instructions retired ?

–No retirement = ? (out of order execution?)

RS Execution
Units

dispatch

ROB

Retirement/Writeback

Decoder
Inst Fetch
Br Predict

Resource
Allocation

Uops_retired

Uops_retired. stall_cycles

Precise retirement stall identifies

“push out”

37

38

Winning with High-K 45nm Technology
High Value, High Volume, High Preference

Branch Target
Buffer

Microcode
Sequencer

Register Allocation
Table (RAT)

32 KB
Instruction Cache

Next IP

Instruction
Decode

(4 issue)

Fetch / Decode

Retire

Re-Order Buffer
(ROB) – 128 entry

IA Register Set

To Uncore

P
o

r
t

P
o

r
t

P
o

r
t

P
o

r
t

MLC

R
e
s
e
r
v
a
ti

o
n

 S
ta

ti
o

n
s
 (

R
S

)
3

6
 e

n
tr

y

S
c
h

e
d

u
le

r
 /

 D
is

p
a
tc

h
 P

o
r
ts

32 KB
Data Cache

Execute

P
o

r
t

FP
Add

SIMDInteger
Arithmetic

Memory
Order
Buffer
(MOB)

Load

Store
Addr

FP
Div/MulInteger

Shift/Rotate
SIMD

SIMD

Integer
Arithmetic

Integer
Arithmetic

P
o

r
t

Store
Data

Uop Flow
MEU

Uops_Issued

Inst_written_to_iq

Uops_executed

Uops_retiredQualitative: Artistic License employed

38

39

Winning with High-K 45nm Technology
High Value, High Volume, High Preference

PEBS Basic Events

 Mechanism:

– counter overflow arms
PEBS

– Next event gets
captured and raises
PMI

– PEBS mechanism
captures architectural
state information at
completion of critical
instruction

 Including EIP (+1),
even when OS defers
PMI

instr_retired

itlb_miss_retired

uops_retired

br_instr_retired

mem_instr_retired.loads

mem_instr_retired.stores

39

For memory events, EIP (+1) is always next instruction

40

Winning with High-K 45nm Technology
High Value, High Volume, High Preference

Branch Events

 Measure Control flow through the program

 Can be used for

– loop trip counts

– Reconstructing (multi function) execution paths

– Driving inlining, IPO, PGO compilations

 Used in conjunction with Last Branch Record
(LBR) even more can be done

– Basic block execution counts

– Instruction mix

– Call counts per source

– etc

40

41

Winning with High-K 45nm Technology
High Value, High Volume, High Preference

Basic Branch Analysis
 Vastly improved precise branch monitoring

capabilities

– Branches retired

– 16 deep LBR
– LBR can be filtered by branch type and privilege level

– One per SMT

• Not merged when SMT disabled

– Only taken branches are captured

 Precise BR retired by branch type

– Calls, conditional and all branches

– Coupled with LBR capture yields
– Call counts

– “HW call graph”

– Basic block execution counts

41

42

Winning with High-K 45nm Technology
High Value, High Volume, High Preference

Branch Analysis

Precise branch events on NHM enable
– Function call counts

– Function arguments (em64T only)

– Taken fraction/branch

 Mispredicted Branches must be counted with
Non-PEBS events BR_MISP_EXEC.* and
BR_INST_EXEC.* on Corei7/Xeon 5500

 Br_misp_retired.* on Xeon 5600 (PEBS)

42

43

Winning with High-K 45nm Technology
High Value, High Volume, High Preference

Branch Analysis: Call Counts

Call counts require sampling on calls
–Sampling on anything else introduces a

“trigger bias” that cannot be corrected for

Requires PEBS buffer to identify which
branch caused the event

–EIP+1 results in capturing call target

Requires LBR to identify source and
target

–Matching PEBS EIP with LBR target

43

44

Winning with High-K 45nm Technology
High Value, High Volume, High Preference

Precise Conditional Branch Retired

Counted loops that actually use the
induction variable will frequently keep
the tripcount in a register for the
termination test

–E.g. heavily optimized triad with the Intel
compiler has
Addq $0x8, %rcx
Cmpq %rax, %rcx
Jnge triad+0x27

Average value of RAX is the tripcount

44

45

Winning with High-K 45nm Technology
High Value, High Volume, High Preference

Branch Analysis: Function Arguments
(Intel64 only)

Functions with “few” (<6?) arguments
use registers for argument values

Capturing full PEBS buffer + LBR on
calls_retired event allows
measurement of distribution of
argument values per calling site

–E.g. length of memcpy,memset

45

46

Winning with High-K 45nm Technology
High Value, High Volume, High Preference

Processing LBRs

Branch_0 Target_0

Branch_1 Target_1

•All instructions between Target_0 and Branch_1 are retired 1 time

•All Basic Blocks between Target_0 and Branch_1 are executed 1 time

•All Branch Instructions between Target_0 and Branch_1 are not taken

So it would all Seem Very Straight Forward

47

Winning with High-K 45nm Technology
High Value, High Volume, High Preference

Shadowing and Precise Data Collection

The time between the counter overflow
and the PEBS arming creates a
“shadow”, during which events cannot
be collected

~8 cycles?

Ex: conditional branches retired
–Sequence of short BBs (< 3 cycles in duration)

– If branch into first overflows counter, Pebs
event cannot occur until branch at end of 4th BB

– Intervening branches will never be sampled

48

Winning with High-K 45nm Technology
High Value, High Volume, High Preference

Shadowing

20

20

2

2

2

2

20

20

O

P

C O

P

C O

P

C

O

P

C

O

P

C

O

P

C

O

P
C

N

N

0

0

0

0

5N
O means counter overflow

P means PEBS enabled

C means interupt occurs

Assume 10 cycle shadow for this example

49

Winning with High-K 45nm Technology
High Value, High Volume, High Preference

Reducing Shadowing Impact

Some “events” will never occur!

–Falling into shadowed window

Use LBR to extend range of the single
sample

Count the number of objects in LBR and
increment count for all of them by 1/15

–Since you have only one sample

50

Winning with High-K 45nm Technology
High Value, High Volume, High Preference

Minimizing Shadowing Impact on BB
Execution Count

20

20

2

2

2

2

20

20

O

P

C O

P

C O

P

C

O

P

C

O

P

C

O

P

C

O

P
C

5N

0

0

0

0

N

N

Cycles/branch taken
Pebs Samples taken

Many more with 20

Cycles/branch taken

Many more with N

samples taken

19N

18N

17N

16N

15N

15N

15N

15N

Number of LBR entries

Many more with 15 N

LBR Entries

In this example there

are always 15 BB’s

covered in the LBR.

Incrementing the BB

execution count for

each BB detected in

the LBR, by 1/15 seen

in the LBR path will

greatly reduce the

effect of shadowing

51

Winning with High-K 45nm Technology
High Value, High Volume, High Preference

Branch Filtering

LBR Filter Bit Name Bit Description bit

CPL_EQ_0 Exclude ring 0 0

CPL_NEQ_0 Exclude ring3 1

JCC
Exclude taken conditional

branches 2

NEAR_REL_CALL Exclude near relative calls 3

NEAR_INDIRECT_CALL Exclude near indirect calls 4

NEAR_RET Exclude near returns 5

NEAR_INDIRECT_JMP
Exclude near unconditional near

branches 6

NEAR_REL_JMP
Exclude near unconditional

relative branches 7

FAR_BRANCH Exclude far branches 8

51

52

Winning with High-K 45nm Technology
High Value, High Volume, High Preference

Branch Filtering

 User near calls only

– Tracking back from OS critical sections to user
function that caused the problem

– Lack of returns may be an issue in some cases
– But not for HPC 

– Use static call analysis to clean up chains

 User and OS near calls only

– Profiling OS call stacks

– Eliminating leaf functions may be complicated by
lack of returns

– Don’t remove returns if this is a problem

– Use BTS to capture deeper stack

– Issue: cannot exclude unconditional jumps without
excluding calls

52

53

Winning with High-K 45nm Technology
High Value, High Volume, High Preference

Precise cycles can be constructed
from any PEBS event

Allow profiling code sections screened
with STI/CLI semantics

–Ring 0 OS critical sections

PEBS sampling mechanism may loose
interrupts during halted state

– Instruction retirement required to generate
performance monitoring interrupts (PMI)

Counts will not occur without PEBS being invoked

53

54

Winning with High-K 45nm Technology
High Value, High Volume, High Preference

Using cycles to optimize the
optimizations

 Profile the application for cycle usage and uop flow.

– Identify hot functions

– Check asm of FP intensive code for correct instruction mix

– X87 is slower than SSE

– Intel® Compiler has FP-model flags and many pragmas

 Vectorize long tripcount loops

– -SSE4.2 uses unaligned loads more aggressively

– Align data whenever possible

– Check loop tripcounts with br events and register values
(described later)

– Interchange loop orders to get long loops as inner loop
– Change multi dimensional array layout as needed

– Completely unroll short tripcount (<~7) inner loops

– Split/merge loops depending on code size

– Predicate hoist constant condition if’s out of loops

– Etc, etc , etc…I could write a book
54

55

Winning with High-K 45nm Technology
High Value, High Volume, High Preference

Using cycles to optimize the
optimizations

 C++ and large binaries: Only optimize what uses cycles

– Use call counts to drive compiler inlining

– Compiler needs to evaluate a large enough scope to do its
best work

– Particularly functions/methods invoked inside loops

– Size vs Speed

– Extremely large binaries need to minimize size
– -Os (linux) –O1 (windows)

– Conditional Branch Mispredictions

– HW prediction is shockingly good
– Cost is unretired uop flow (uops_issued.any – uops_retired.slots)

– Optimize case statement order, lowers uops_retired

 Use Intel Compiler LIBM,MKL, tbbmalloc, tbbmalloc_proxy
– Intel linker with LD_PRELOAD env variable

– -L/path/to/intel/libs –limf etc

– http://software.intel.com/en-us/articles/optimizing-without-
breaking-a-sweat/

55

56

Winning with High-K 45nm Technology
High Value, High Volume, High Preference

Thoughts on optimizing large OOP
code bases

Classic OOP will result in code bases of
small functions integrated together to
invoke the algorithm

Signatures

–Low instruction_retired/call_retired

–High call_retired/branch_retired

–High indirect_call/call_retired

–High uops_issued.core_stall_cycles –
resource_stalls.any

–High ∑latency(source)*ifetch_miss(source)

56

57

Winning with High-K 45nm Technology
High Value, High Volume, High Preference

How big are the CERN programs

57

Cacheline access frequency evaluated by sorting cachelines by

their accesses

Thus a binary working set size measurement

58

Winning with High-K 45nm Technology
High Value, High Volume, High Preference

Optimizing large Object Oriented
Code

 Inlining is the advice of choice but things are
more complicated.

 Inlining increases binary size and can make
ifetch misses more costly and code slows down

– Even if fewer in overall number

 Ifetch miss events have among the largest IP
skids of all events

– They can show up in the wrong function

 Large codes built of many small methods can
result in flat cycle profiles

– It can take thousands of functions to account for 80%
of the clock cycle samples

– Thus thousands of functions must be optimized to
achieve a significant performance improvement

58

59

Winning with High-K 45nm Technology
High Value, High Volume, High Preference

Optimizing large Object Oriented
Code

 The author knows of no proven methodology to
correct the cost of excessive taken branches
and the resulting flat cycle profile.

– Need fewer calls,

– instructions required for calling conventions

– Larger functions to allow the compiler to see the whole
calculation and do a better job

– Larger shared objects to allow greater effect from IPO

– Create shared objects using just the hot methods to avoid
excessive inlining

This has to be applied to enough
methods to account for 80->95% of the
cycles

59

Mostly this is about reducing the total

instruction count

60

Winning with High-K 45nm Technology
High Value, High Volume, High Preference

Thoughts on optimizing large OOP
code bases

 Function calls result in added instructions

– Call and return

– Trampolines required for position independent code/
shared object cross invocations

– Indirect branches can be more costly

– Freeing & restoring registers for local use

– Mostly an ia32 issue

– Setting and reading function arguments

– Larger on ia32 due to required use of stack

 Virtual function calls (function pointers)
increase indirect call instructions and
associated pointer loads

60

61

Winning with High-K 45nm Technology
High Value, High Volume, High Preference

Thoughts on optimizing large OOP
code bases

Does a call graph help?

–Unlikely

–Provides the direct path back to main

–Usually sampled on time

–Does not provide call counts in most cases

–Does not identify clusters of active
(excessive) call activity

61

62

Winning with High-K 45nm Technology
High Value, High Volume, High Preference

Thoughts on optimizing large OOP
code bases

A modest proposal:

Use LBRs and static analysis to
evaluate frequency and cost of function
calls

–the call count

–count taken branches between call and
arrival in function

–Get count of indirect branches invoked

–Add cost for function arguments

–Add a cost for push/pop of registers

62

63

Winning with High-K 45nm Technology
High Value, High Volume, High Preference

Thoughts on optimizing large OOP
code bases

 A modest proposal:

 Use social network analysis/network theory
to identify clusters of active, costly function
call activity

– Web search on Social networking/social networking
analysis

 Order clusters by total time and/or total
“cost”

– Split time of functions shared between clusters by
call counts

– Calls have a direction

– Utility functions must not be viewed as bridges

63

64

Winning with High-K 45nm Technology
High Value, High Volume, High Preference

Thoughts on optimizing large OOP
code bases

A modest proposal:

Manually reduce function count in hot
clusters by explicit code inlining

–Prioritize work by call overhead cost to be
gained

–Duplicate code as needed

–Reduce cross shared object call counts

64

65

Winning with High-K 45nm Technology
High Value, High Volume, High Preference

Using cycles to optimize the
optimizations

 PEBS near call event + LBRs to get call counts/source
– Selecting source files to compile with enhanced inlining

– IPO can be enahnced when used with PGO

 PEBS near call event + registers (em64T) to get
function arguments
– Fix memset/memcpy calls with short lengths

– Excessive calls to malloc/free due to constructor/destructor?

– Identify small malloc’s/free’s

– Let the compiler allocate small structures statically rather than malloc
and free them excessively

65

66

Winning with High-K 45nm Technology
High Value, High Volume, High Preference

Using cycles to optimize the
optimizations

Optimize only functions that use
significant cycles

–Reduces build time

–Minimize fighting the compiler

–Changing optimizations or compilers in large
builds can be problematic

Move gcc/icc and create script called
gcc/icc

#!/bin/sh

if echo $@ | grep -f /tmp/sourcefilelist.txt > /dev/null ;

then /opt/intel/Compiler/11.0/083/bin/intel64/icc.ori –g -fast $@;

else gcc.ori -g -O2 $@;

fi

66

67

Winning with High-K 45nm Technology
High Value, High Volume, High Preference

Using cycles to optimize the
optimizations

 PTU sometimes shows *.h files as source

 Generate a list of c/cpp files as follows:

– Export list of functions from Intel® PTU

– Create script grepf.sh to grep for defined symbols:
#!/bin/sh
if nm --defined-only --demangle $1 | grep -f $2 >
/dev/null ; then echo `basename $1 .o`.cpp; fi

– Find hot object files and remember cpp files:
find -name "*.o" -exec grepf.sh '{}'
/tmp/functionlist.txt \; > /tmp/sourcefilelist.txt

 This will produce sourcefilelist that only
includes targets of compiler

67

68

Winning with High-K 45nm Technology
High Value, High Volume, High Preference

Event Classes

1. Execution flow events

– Cycles, Branches, stalls, uops/inst_retired

2. Penalty events
Change code to remove the penalty

– Ex: load requiring access to dram

3. Resource saturation events

– Bandwidth, load/store buffers, dispatch ports

– No well defined cost

4. Architectural characterization

– Cache accesses, MESI states, snoops

5. Instruction mix
68

69

Winning with High-K 45nm Technology
High Value, High Volume, High Preference

Memory Access

 Load instruction uses virtual address to
access memory space

 HW translates that to physical address to
access caches

– DTLB does this

 Access is hierarchical

– Check L1D first

– If (miss) check if Line Fill Buffer (LFB) allocated

– If(LFB miss) allocate LFB, escalate miss to L2

– If(miss L2) get Super Queue (SQ) slot, escalate to
uncore

69

70

Winning with High-K 45nm Technology
High Value, High Volume, High Preference

Memory Access Penalties

Load misses cause execution stalls

–In most cases store misses will not stall
execution

–Data to be stored is held in store buffer until
desired line is in L1d, thus execution
continues

Loads that hit LFBs overlap in time with
original line request

–If the original request was a load, the
original miss accounts for the entire penalty

–If there are multiple load request to the LFB
the least costly would be the penalty

–Not all load misses are equally costly
70

71

Winning with High-K 45nm Technology
High Value, High Volume, High Preference

Stall Decomposition on Intel®
Core™ i7 Processors

 Same basic methodology as on Intel® Core™2
processors*

 Basic strategy is to identify the largest
penalty event contributions first

– Work your way down to smaller contributors

 FE starvation can now be measured

– And no branch misprediction flush penalty

 Only both_threads_stalled can be measured
at execution

– SMT will make Σeventsi*penaltiesi >
both_thread_stalled

– ALU_only stalls can be measured per thread
– Ports 0,1 and 5

* Intel, the Intel logo, Intel Core and Core Inside are trademarks of Intel Corporation in the U.S. and
other countries.71

72

Winning with High-K 45nm Technology
High Value, High Volume, High Preference

Stall Decomposition: Σeventsi*penaltiesi

The Elephants
 LLC, L2, and DTLB misses are the large penalty,

common events

 LLC activity must be measured at L2 for it to have core,
PID, TID context

– Uncore has no ability to track core, PID or ThreadID

– Uncore event collection not yet supported

 Figure of merit: Events*Penalty/cycles
– Samples_ev*SAV(ev)*Penalty(ev)/

(Samples_cyc*SAV(cyc))

– If SAV(ev) = SAV(cyc)/Penalty(ev)

– FOM = Samples_ev/Samples_cyc

– This is ~ how the default SAVs are set

– Minimizes required screen area in the data display

72

73

Winning with High-K 45nm Technology
High Value, High Volume, High Preference

Stall Decomposition: Σeventsi*penaltiesi

The Elephants
 Figure of merit: Events*Penalty/cycles

 Overcounts when there are temporally
overlapping penalties

 Compilers can hoist loads. So make sure
there are stalls as well
– PEBS event uops_retired.stall_cycles should pile up

very close to instructions suffering large penalties

 The combination provides the answer
to the critical question:

Is the fix worth the effort?

73

74

Winning with High-K 45nm Technology
High Value, High Volume, High Preference

Penalty Events: Memory Access

 Intel® Core™ i7 processor memory access
events are “per source”

– How many times cacheline came from “here”

Unique sources have unique Penalties
– DP system has ~10 sources outside a core

– Large number of performance events

 Memory access events are precise

– HW captures IP and register values

– Sample + Disassembly => Reconstruct Address

 Latency Event captures IP, load latency, data
source and address

– Similar to Itanium® Processor Family* Data Ear

* Itanium is a trademark or registered trademark of Intel Corporation or its subsidiaries in the United

States and other countries.74

75

Winning with High-K 45nm Technology
High Value, High Volume, High Preference

Offcore Response Latencies

 LLC Hit that does not need snooping

– LLC latency ~ 35-40 cycles

 LLC Hit requiring snoop, clean response ~65

 LLC Hit requiring snoop, dirty response ~75

 LLC Miss from remote LLC ~ 200 cycles

 LLC Miss from local Dram ~60 ns

 LLC Miss from remote Dram ~100 ns

75

Note: All latencies and memory access penalties shown are merely illustrative. Actual latencies will depend on (among other things) processor model, core and

uncore frequencies, type, number and positioning of DIMMS, platform model, bios version and settings. Consult the platform manufacturer for optimal setting for

any individual system. Then measure the actual properties of that system by running well established benchmarks.

76

Winning with High-K 45nm Technology
High Value, High Volume, High Preference

Memory Access PEBS Events
Identify LLC and DTLB load miss

– Precise load events do not include DCU prefetch/ L2 prefetch

Name Penalty Umask Umask_name

mem_load_retired 0 0x1 L1D_HIT

6 0x2 L2_HIT

~35 0x4 LLC_HIT_UNSHARED*

~75 0x8 OTHER_CORE_L2_HIT_HITM*

depends 0x10 LLC_MISS

depends 0x40 HIT_LFB

0x80 DTLB_MISS*

LLC_HIT_UNSHARED should be LLC_HIT_NO_SNOOP

OTHER_CORE_L2_HIT_HITM should be LLC_HIT_SNOOP

DTLB_MISS counts primary and secondary DTLB misses on CoreI7

Only counts primary on Xeon™ 5600 Family Processors

Penalty for DTLB miss is not a constant

Also use Dtlb_load_misses.walk_cycles on Xeon™ 5600 Family Processors

76

Note: All latencies and memory access penalties shown are merely illustrative. Actual latencies will depend on (among other things) processor model, core and

uncore frequencies, type, number and positioning of DIMMS, platform model, bios version and settings. Consult the platform manufacturer for optimal setting for

any individual system. Then measure the actual properties of that system by running well established benchmarks.

77

Winning with High-K 45nm Technology
High Value, High Volume, High Preference

Precise Uncore Response
Xeon™ 5500 Family Processors

Load response from LLC, another core,
local DRAM, remote socket, remote
DRAM and IO

Name Penalty Umask Umask_name

mem_uncore_retired ~85 0x2 OTHER_CORE_L2_HITM

~185 0x8
REMOTE_CACHE_

LOCAL_HOME_HIT

~200 0x20 LOCAL_DRAM

~350 0x40 REMOTE_DRAM

0x80 IO

Remote socket HITM are counted as Local or

Remote DRAM

OTHER_CORE_L2_HITM should be LOCAL_HITM

77

Note: All latencies and memory access penalties shown are merely illustrative. Actual latencies will depend on (among other things) processor model, core and

uncore frequencies, type, number and positioning of DIMMS, platform model, bios version and settings. Consult the platform manufacturer for optimal setting for

any individual system. Then measure the actual properties of that system by running well established benchmarks.

78

Winning with High-K 45nm Technology
High Value, High Volume, High Preference

Precise Uncore Response
Xeon™ 5600 Family Processors

Load response from LLC, another core,
local DRAM, remote socket, remote
DRAM and IO

Name Penalty Umask Umask_name

mem_uncore_retired ~85 0x2 LOCAL_HITM

~375 0x4 REMOTE_HITM

~220 0x8
LOCAL_DRAM_AND_

REMOTE_CACHE_HIT

~375 0x10 REMOTE_DRAM

0x80 UNCACHEABLE

Remote socket HITM are counted as Local or

Remote DRAM

78

Note: All latencies and memory access penalties shown are merely illustrative. Actual latencies will depend on (among other things) processor model, core and

uncore frequencies, type, number and positioning of DIMMS, platform model, bios version and settings. Consult the platform manufacturer for optimal setting for

any individual system. Then measure the actual properties of that system by running well established benchmarks.

79

Winning with High-K 45nm Technology
High Value, High Volume, High Preference

Precise Store DTLB miss

Name Event Umask Umask_name

mem_store_retired 0x0c 0x1 DTLB_MISS*

0x2 dropped events

DTLB_MISS counts primary and secondary DTLB misses on CoreI7

Only counts primary on Xeon™ 5600 Family Processors

79

80

Winning with High-K 45nm Technology
High Value, High Volume, High Preference

Overlapping Memory access penalties
Xeon 5600 family:

Offcore_request_outstanding

80

Event Name umask
cmask,
inv

OFFCORE_REQUESTS_OUTSTANDING.ANY.READ 0x8

OFFCORE_REQUESTS_OUTSTANDING.ANY.READ_NOT_EMPTY 0x8 1,0

OFFCORE_REQUESTS_OUTSTANDING.DEMAND.READ_CODE 0x2

OFFCORE_REQUESTS_OUTSTANDING.DEMAND.READ_CODE_NOT_EMPTY 0x2 1,0

OFFCORE_REQUESTS_OUTSTANDING.DEMAND.READ_DATA 0x1

OFFCORE_REQUESTS_OUTSTANDING.DEMAND.READ_DATA_NOT_EMPTY 0x1 1,0

OFFCORE_REQUESTS_OUTSTANDING.DEMAND.RFO 0x4

OFFCORE_REQUESTS_OUTSTANDING.DEMAND.RFO_NOT_EMPTY 0x4 1,0

Offcore_requests_outstanding.demand.read_data_not_empty = cycles there is

at least one request from L1d that had to be satisfied by escalation to uncore

Includes L1d HW prefetch, loads and SW_prefetch

Defines upper limit of memory access penalties due to L2 miss

81

Winning with High-K 45nm Technology
High Value, High Volume, High Preference

So what do you do?
 Load driven misses resulting in pipeline stalls can be

fixed by

– Use longest tripcount loop to drive strategy

– Change loop order/data layout to give HW prefetcher a
chance

– Divide large structures by usage (See MILC)

– Structures of arrays rather than arrays of structures

– Make sure buffer initialization is consistent with usage

– Make remote_dram misses local dram misses & cut latency in half

 DTLB misses: use large pages

81

82

Winning with High-K 45nm Technology
High Value, High Volume, High Preference

So what do you do?
 Load driven misses resulting in pipeline stalls can be fixed by

 SW prefetch _mm_prefetch(addr, hint)
<ia32intrin.h>

– Use LOAD_HIT_PRE to identify when prefetch distance is too
small

– Min prefetch dist (iter) ~ 200/(uops_per_iteration/3)

– For local dram

– Will change as latency changes

– long inner loop-> prefetch ahead in inner loop

– Short inner loop-> prefetch 1,2 iterations ahead on outer

– Reused linked list -> create indirect address array

– #pragma openmp for (guided)
will cause havoc

– Volume 2 of that book

– SW prefetches will not help a BW limited application

82

83

Winning with High-K 45nm Technology
High Value, High Volume, High Preference

Other Penalties
 Divides and SQRT (Arith.Cycles_div_active)

– Vectorize

– Save reciprocals that are reused

– Merge with bandwidth limited loops

 Store Forwarding (Load_Block.overlap_store)

– Event only on Xeon™ 5600

– Use Intel Compiler

– Be careful with data type sizes (keep consistent)

 FP exceptions (uops_decoded.ms)

– Use Intel compiler (no x87, FTZ)

– Uninitialized values in simd registers

 No ability to measure stalls associated with
chained long latency instructions

– Sum = a+b+c+d+e…evaluated left to right83

84

Winning with High-K 45nm Technology
High Value, High Volume, High Preference

Instruction Starvation

 Lots of calls to small functions can lead to
starving the pipeline of instructions

–Only L2 prefetchers prefetch instructions

Uops_issued.core_stall_cycles –
resource_stalls.any = cycles BE wants
instructions, but does not get them

–This is more accurate with HT off

Can be cross checked on Xeon™ 5600
processor with
offcore_requests_outstanding.demand.read
_code_not_empty (for L2 miss)

84

85

Winning with High-K 45nm Technology
High Value, High Volume, High Preference

Decomposing instruction starvation

85

Event Penalty

l2_rqsts.ifetch_hit ~6

offcore_response_0.demand_ifetch.local_cache ~35

offcore_response_0.demand_ifetch.local_dram ~200

offcore_response_0.demand_ifetch.remote_dram ~350

Ifetch miss events have among the largest IP skids of all performance

events. The IP can easily have been on in a previously executing

function at the time the ifetch miss occurred. See slide 23

Uncertainties are also larger, due to the many buffers in the pipeline

Instruction starvation does not occur unless the buffers drain
Note: All latencies and memory access penalties shown are merely illustrative. Actual latencies will depend on (among other things) processor model, core and

uncore frequencies, type, number and positioning of DIMMS, platform model, bios version and settings. Consult the platform manufacturer for optimal setting for

any individual system. Then measure the actual properties of that system by running well established benchmarks.

86

Winning with High-K 45nm Technology
High Value, High Volume, High Preference

Instruction Access Penalties

 Demand Ifetch: offcore_response.demand_ifetch.*

– Usually associated with function calls followed by taken
branches in LARGE binaries

– IPO, force inlining

– PGO to reduce taken branches

– shrink sizes of other functions

– Change order of link command

– Offcore_response.demand_ifetch.local_dram

– Sw_prefetch(&foo(),1); ?????

– Offcore_response.demand_ifetch.remote_dram

– Run 1 copy of binary per socket

– Must have two complete copies on the disk

– Offcore_response.demand_ifetch.llc_hit_no_other_core

– Sw prefetch?, PGO, IPO

 ITLB misses: use large Itlb pages

86

87

Winning with High-K 45nm Technology
High Value, High Volume, High Preference

Reducing calls and *.so

Use linker and a control list to identify
internal and external functions in *.so to
reduce the use of trampolines

–icpc -Wl,-z,defs -L/External -L/Linker -Wl,-
version-script,export.tmp

$ cat export.tmp

{

global:

_Foo1;

_Foo2;

local:

_Bar1;

_Bar2;
};

87

88

Winning with High-K 45nm Technology
High Value, High Volume, High Preference

Reducing calls and *.so

 Identifying the internal functions is not
simple

Use LBRs, and sfdump5 (see backup) to
identify call chains between *.so

Merge source files into fewer *.so

–This will improve effectiveness of PGO/IPO

Use global/local file of previous slide to
reduce trampolines

NOTE: Author has never personally done
this, so he does not know if it really works,
or if the syntax is really correct.

88

89

Winning with High-K 45nm Technology
High Value, High Volume, High Preference

Event Classes

1. Execution flow events

– Cycles, Branches, stalls, uops/inst_retired

2. Penalty events

– Ex: load requiring access to dram

3. Resource saturation events

– Bandwidth, ld/st buffers, dispatch ports

– No well defined cost

4. Architectural characterization

– Cache accesses, MESI states, snoops

5. Instruction mix

89

90

Winning with High-K 45nm Technology
High Value, High Volume, High Preference

Resource Limitation Events

 Resource limitation is usually only a problem
when the resource is saturated

– There is ~no cost* for bandwidth until the bandwidth
is close to saturated

– *Latency depends weakly on BW on Corei7

 Lost cycles due to resource saturation can be
hard to measure

 Only way to determine bandwidth limit is to
measure it

– Count cachelines transferred/cycle for triad

– (w/wo SSE NT stores)

– Depends on the number of triad threads

 Resource saturation results in no gain from HT

90

91

Winning with High-K 45nm Technology
High Value, High Volume, High Preference

Resource Limitation: Memory
Bandwidth

 Usually needs HW (or SW) prefetch

– Load latencies will restrict execution otherwise

– Exception: for(i=0;i<len;i++)a[i] = b[addr[i]];

 Limit depends on
– number and location of concurrent threads consuming large

numbers of lines

– For asynchronous execution this becomes ~impossible to know

– core and uncore frequencies

– type, number, size, location of dimms

– bios version and settings

– Motherboard

 Measured in cycles/cacheline transferred

– Triad with/wo RFO result in ~ same limit!

– All “BW” events discussed here count cachelines
transferred

91

92

Winning with High-K 45nm Technology
High Value, High Volume, High Preference

Triad bandwidth vs thread count

92

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

0 1 2 3 4 5 6 7 8 9

Series1

Open MP triad on machine with unmatched dimms

NUMA = ON

Socket 0 only

Socket 0 full,

adding threads

on socket 1

Note: All latencies and memory access penalties shown are merely illustrative. Actual latencies will depend on (among other things) processor model, core and

uncore frequencies, type, number and positioning of DIMMS, platform model, bios version and settings. Consult the platform manufacturer for optimal setting for

any individual system. Then measure the actual properties of that system by running well established benchmarks.

93

Winning with High-K 45nm Technology
High Value, High Volume, High Preference

Latency stalls vs Bandwith
saturation

A latency stalled program has a small
number of outstanding data cachelines in
flight simultaneously

i=0;
While(mystruc->next !=0){

mystruc=mystruc->next;
a[i] = mystruc->b_val;
i++;

}

Only one (possibly 2) loads in flight at a time

Clearly a triad with prefetchers enabled in
BW limited

93

94

Winning with High-K 45nm Technology
High Value, High Volume, High Preference

Gather, OOO execution and
Bandwidth saturation

94

Consider:

For(i=0;i<len;i++)A[i] = B[ADDR[i]];

A data collection might show something like 1000 cycle samples, 200

instruction retired samples and 5000 mem_uncore_retired.local_dram

samples

The mem_uncore SAV is 10K, the cycle SAV is 2 million

This absorbs the 200 cycle penalty..so the ratio of the samples is the ratio

of the cycles…

Clearly, there are more cycles in dram access than cycles executed.

95

Winning with High-K 45nm Technology
High Value, High Volume, High Preference

Gather, OOO execution and
Bandwidth saturation

95

In a gather loop the RS acts as a prefetcher.

There are 6 uops/iteration -> ~5 iterations in the RS?

except the loads go out immediately..

there is no dependency so the 2 loads can be executed,

the incr, cmp and branch can execute, again as there are no dependencies

so only the stores pile up

This would suggest ~30 iterations in flight at a time

the number of load buffers might be what blocks FE uop issue

there are 48 and 2/iteration are needed

The loads of ADDR[i] are sequential and thus HW prefetched.

All the stalls are on the load of B[ADDR[I]]

Thus the events fall on the next instruction.

The mem_uncore_retired.local_dram events are all overlapped..

Thus events*penalties overcounts by a huge factor

96

Winning with High-K 45nm Technology
High Value, High Volume, High Preference

Bandwidth per core

Much more complicated than on Intel®
Core™2 processors

–Bandwidth limit depends on number of
threads using maximum BW and core
position of those threads

–CAN ONLY BE MEASURED

–No single event counts total cachelines
in+out to memory /core

–Cacheable writebacks are written to LLC and
written to memory at a later time

–Offcore_response.data_ifetch.all_dram

– However, WB ->dram makes no sense

–Local vs remote memory

–NT SSE Stored cachelines are problematic
96

97

Winning with High-K 45nm Technology
High Value, High Volume, High Preference

Offcore_Response: Breaking Down
Off-core Memory Access

 Matrix type event

– Request type X Response type

– 65025 possible real combinations (65535 – 2 X 255)

– Request and Response programmed in MSRs

– OR(Request bits true) .AND. OR(Response bits true)

– Ex: all LLC misses = set bits
0,1,2,3,4,5,6,11,12,13,14

– 787F

 Solves problem of averaging over widely
differing penalties

 Only one version of the event (b7/msr 1a6)

– offcore_response_0

97

98

Winning with High-K 45nm Technology
High Value, High Volume, High Preference

Memory Access: Off-core Access
 Offcore_Response_0

– “umasks” set with MSRs 1a6

– Two versions on XEON 5600 processor family

– Programming a little different
Bit position Description

Request 0
Demand Data Rd = DCU reads (includes partials, DCU

Prefetch)

Type 1 Demand RFO = DCU RFOs

2 Demand Ifetch = IFU Fetches

3 Writeback = MLC_EVICT/DCUWB

4 PF Data Rd = MPL Reads

5 PF RFO = MPL RFOs

6 PF Ifetch = MPL Fetches

7 OTHER

Response 8 LLC_HIT_UNCORE_HIT

Type 9 LLC_HIT_OTHER_CORE_HIT_SNP

10 LLC_HIT_OTHER_CORE_HITM

11 LLC_MISS_REMOTE_HIT_SCRUB

12 LLC_MISS_REMOTE_FWD

13 LLC_MISS_REMOTE_DRAM

14 LLC_MISS_LOCAL_DRAM

15 IO_CSR_MMIO
98

99

Winning with High-K 45nm Technology
High Value, High Volume, High Preference

Offcore_response Reasonable Combinations

Request Type
MSR
Encoding

ANY_DATA xx11

ANY_IFETCH xx44

ANY_REQUEST xxFF

ANY_RFO xx22

COREWB xx08

DATA_IFETCH xx77

DATA_IN xx33

DEMAND_DATA xx03

DEMAND_DATA_RD xx01

DEMAND_IFETCH xx04

DEMAND_RFO xx02

OTHER xx80

PF_DATA xx30

PF_DATA_RD xx10

PF_IFETCH xx40

PF_RFO xx20

PREFETCH xx70

Response Type
MSR
Encoding

ANY_CACHE_DRAM 7Fxx

ANY_DRAM 60xx

ANY_LLC_MISS F8xx

ANY_LOCATION FFxx

IO_CSR_MMIO 80xx

LLC_HIT_NO_OTHER_CORE 01xx

LLC_OTHER_CORE_HIT 02xx

LLC_OTHER_CORE_HITM 04xx

LCOAL_CACHE 07xx

LOCAL_CACHE_DRAM 47xx

LOCAL_DRAM 40xx

REMOTE_CACHE 18xx

REMOTE_CACHE_DRAM 38xx

REMOTE_CACHE_HIT 10xx

REMOTE_CACHE_HITM 08xx

REMOTE_DRAM 20xx

NT local stores counted by 0200 not 4000

99 A bit different on Xeon 5600 Processor Family

100

Winning with High-K 45nm Technology
High Value, High Volume, High Preference

Total Memory Bandwidth

 Delivered + Speculative Traffic to local memory

–Reads and Writes Per Source
– UNC_QHL_REQUESTS.IOH_READS

– UNC_QHL_REQUESTS.IOH_WRITES

– UNC_QHL_REQUESTS.REMOTE_READS (includes RFO and NT store)

– UNC_QHL_REQUESTS.REMOTE_WRITES (includes NT Stores)

– UNC_QHL_REQUESTS.LOCAL_READS (includes RFO and NT Store)

– UNC_QHL_REQUESTS.LOCAL_WRITES (no NT stores)

 Precise totals can be measured in IMC
– But cannot be broken down per source

– UNC_IMC_NORMAL_READS.ANY (or by channel, includes RFO)

– UNC_IMC_WRITES.FULL.ANY (or by channel, includes NT stores)

100

101

Winning with High-K 45nm Technology
High Value, High Volume, High Preference

A few particularly useful events for
measuring BW

 Offcore_response.data_in.local_dram

– Read BW (per core) from local dram

 Offcore_response.data_in.remote_dram

– Read BW (per core) from remote dram

– Indicates NUMA locality problem

 Uncore events get totals but only in counting mode with no
data/core

– Unc_imc_normal_reads.any

– Total read cachelines from this mem controller

– Unc_imc_writes.full.any

– Total written cachelines to this mem controller

101

102

Winning with High-K 45nm Technology
High Value, High Volume, High Preference

Latency vs Bandwidth

On Xeon™ 5600 processors the average
occupancy of the super queue can be
evaluated as
offcore_requests_outstanding.any.reads/

cpu_clk_unhalted.thread

 If this is large then the loop is likely BW
limited

 If it is small and the event counts indicate a
memory access problem due to loads then it
is likely to be a latency issue

102

103

Winning with High-K 45nm Technology
High Value, High Volume, High Preference

Triad bandwidth vs thread count

103

0

0.5

1

1.5

2

2.5

0 2 4 6 8 10 12 14

Note: All latencies and memory access penalties shown are merely illustrative. Actual latencies will depend on (among other things) processor model, core and

uncore frequencies, type, number and positioning of DIMMS, platform model, bios version and settings. Consult the platform manufacturer for optimal setting for

any individual system. Then measure the actual properties of that system by running well established benchmarks.

Socket 0 only

Socket 0 full,

adding threads

on socket 1

Open MP triad on machine with matched dimms

NUMA = ON

104

Winning with High-K 45nm Technology
High Value, High Volume, High Preference

Average super queue occupancy

104

0

2

4

6

8

10

12

14

0 2 4 6 8 10 12 14

socket0

socket1

Note: All latencies and memory access penalties shown are merely illustrative. Actual latencies will depend on (among other things) processor model, core and

uncore frequencies, type, number and positioning of DIMMS, platform model, bios version and settings. Consult the platform manufacturer for optimal setting for

any individual system. Then measure the actual properties of that system by running well established benchmarks.

Variation per core is ~ 20%

Many temporally overlapping requests identifies

bandwidth saturation

Socket 0 only

Socket 0 full,

adding threads

on socket 1

105

Winning with High-K 45nm Technology
High Value, High Volume, High Preference

Average super queue occupancy

105

Note: All latencies and memory access penalties shown are merely illustrative. Actual latencies will depend on (among other things) processor model, core and

uncore frequencies, type, number and positioning of DIMMS, platform model, bios version and settings. Consult the platform manufacturer for optimal setting for

any individual system. Then measure the actual properties of that system by running well established benchmarks.

Evaluated with no knowledge of thread count

Socket 0 only

Socket 0 full,

adding threads

on socket 1

0

2

4

6

8

10

12

14

0 2 4 6 8 10 12 14

total

total

106

Winning with High-K 45nm Technology
High Value, High Volume, High Preference

Identifying bandwidth saturation

 Identifying BW saturation by measuring
bytes/time is complicated by the BW limit
changing with the number of threads
consuming BW (slide 90)

Non concurrent execution, with some
threads consuming large BW, while others
consume little, can make identifying
saturation extremely difficult

106

107

Winning with High-K 45nm Technology
High Value, High Volume, High Preference

Average SQ occupancy limit varies less with
thread count/concurrency

 It does not distinguish between LLC hits and
LLC misses

Recipe:

–Identify problematic functions with <SQ occup>

–Use offcore_response events to determine the
fraction associated with LLC hits vs misses

107

Identifying bandwidth saturation

108

Winning with High-K 45nm Technology
High Value, High Volume, High Preference

But what is the potential gain?
 None of this measures what is needed!

– It does not tell us if the fix is worth the effort!

 The fix is to reduce the number of lines
transferred

– Consume more data per line transferred

 Gain

– BW_time = total_lines/BW_limit

– Exec_time = time to execute instructions

– Memory latency of ~0

– Time = MAX(BW_time, Exec_time)

– Completely BW limited ~ change_in_total_lines/BW_limit

108

Problem: cannot measure exec time,

BW limit is absurdly complex in general

(must assume synchronous execution)

109

Winning with High-K 45nm Technology
High Value, High Volume, High Preference

An example

109

Double *a, *b;

For(i=0; i<len; i+=8)a[i] = sqrt(b[i]);

We might be able to compress a and b to

transfer fewer lines

Double *ap, *bp;

For(i=0; i<len/8; i++)ap[i] = sqrt(bp[i]);

But would it actually go any faster?

No, The SQRT latency ~ matches the BW limit

110

Winning with High-K 45nm Technology
High Value, High Volume, High Preference

Estimating the gain

 Exec time ~ uops_retired.slots/`3’+
arith.cycles_div_active

– Undercounts cycles associated with chained long latency
uops

 Optimized BW time = Adjusted_lines/Max_bw

 Gain ~ Cpu_clk_unhalted.thread –
MAX(Optimized BW time, Exec Time)

 Many Uncertainties, but better than nothing

– Assumptions about concurrency of high BW usage

– Assumptions about cycles associated with chained long
latency uops

– Is uops/3 realistic?

110

111

Winning with High-K 45nm Technology
High Value, High Volume, High Preference

What do you do about Bandwidth?
 Data layout change is usually best

– Fix buffer initialization to make remote_dram small

– Fix order of structure elements (big to small)

– Eliminate unused structure elements

– Divide structures into parallel structures by use

– Measure data consumed/cacheline in

– Sum load/store in loops (ignore stack pointer, +=)

– Multiply by total tripcount & divide by
64*offcore_response.data_in.local_dram

– Fix nested loop order

 Measure data_in with prefetchers on & off

– If difference is large

– Change data layout to help HW prefetcher or

– Consider sw prefetching everything and disabling HW
prefetchers

111

112

Winning with High-K 45nm Technology
High Value, High Volume, High Preference

OOO resource Saturation

 Load buffer saturation (resource_stalls.ld)

– In HPC, frequently due to bandwidth saturation

 Store buffer saturation (resource_stalls.st)

– This will cause stores to stop the pipeline

– Usually associated with stores missing l1d/l2 etc

– SW prefetch, change layout to help HW prefetch

 Port saturation (uops_executed.portX/cycles)

– Most common for load port (2)

– Avoid loop distribution (F90)

– Merge loops to reuse data while available

– Align data and vectorize

112

113

Winning with High-K 45nm Technology
High Value, High Volume, High Preference

Less than ideal multi core scaling

Perfect scaling results in the number of perf
events (summed over cores) being constant

Difference of event counts can identify
locality using cycles and some reasons for
non scaling behavior

–Cacheline access contention can cause non scaling

–Load-hitm and store address analysis identifies this

Most non scaling due to resource saturation
and evaluated as a ratio: events/wall_cycles

–Wall_cycles ~ cycles/active cores
or Cpu_clk_unhalted.thread max(ICPU)

–Cannot be seen in difference display
113

114

Winning with High-K 45nm Technology
High Value, High Volume, High Preference

Sources/signatures of non scaling
Turbo

–Having this on results in large drop from 1->2

Smaller share of LLC

–Decrease in LLC hits, increase in LLC miss

 Increase in page faults

–More threads require more memory

Asymmetry associated with core 0

–OS induced imbalance

Context switching

–OS’s love to move things around, being the boss!

–Don’t know about logical cores & double up on one
physical core, while other phys cores are idle

114

115

Winning with High-K 45nm Technology
High Value, High Volume, High Preference

Sources/signatures of non scaling

Saturating a resource

–Ex: Bandwidth

–Code optimization increases resource saturation

Shared memory application specific

–Serial execution

–Overly contested lock access

–False sharing (non overlapping access to a line)

NUMA based non scaling

–Increase in *.remote_dram

HT can be viewed as a way to recover scaling

115

116

Winning with High-K 45nm Technology
High Value, High Volume, High Preference

More sources of non scaling

 Load imbalance

–Increase in halted cycles

MPI global operations

– increase in time associates with MPI global APIs

–Ex: allreduce

Synchronous message passing

–“Intrinsically” non scaling

116

117

Winning with High-K 45nm Technology
High Value, High Volume, High Preference

Resolving non scaling issues
 Disable turbo while doing measurements

 Disable HT while doing measurements

 Pin all affinities

– OS’s love to move things

– Old OS’s will schedule 2 threads on a physical core while
leaving other physical cores idle. This increases with thread
count

 Make sure there is enough memory

– /proc/meminfo->Active (?)

 Do 1 thread baseline on a core other than 0

 Increased LLC miss

– Usual approaches to fixing these, see previous

117

118

Winning with High-K 45nm Technology
High Value, High Volume, High Preference

Resolving non scaling issues

Bandwidth issues

–Check data decomposition for sepparation

–Improve data layout to reduce cacheline usage

–See previous section on BW issues

Excessive lock contention

–Use finer grained locking

–Use faster locking APIs

–Make sure the global update is really needed

–Can you continue working with local copy

 False sharing

–Put 64 bytes between data elements
118

119

Winning with High-K 45nm Technology
High Value, High Volume, High Preference

Resolving non scaling issues

NUMA related non scaling

–Remote dram data access

– Improve buffer initialization for local access

–Make multiple copies for each socket

–Remote dram ifetch access

–Make two binaries on the disk and affinity pin per
socket

MPI global operations

–Use openMP within a box to reduce MPI nodes

–Use good MPI library

119

120

Winning with High-K 45nm Technology
High Value, High Volume, High Preference

Resolving non scaling issues

 Load imbalance

–Seen as halted cycles
– TSC difference for successive cpu_clk_unhalted.ref != SAV

–Work queue approach dynamically restores
balance

–At a cost

– NUMA locality can be lost

– SW prefetching can become unpredictable within a thread

–Estimate work during data decomposition to
create balanced work rather than balanced
iteration count

–Save some iterations for final work queue
balancing

120

121

Winning with High-K 45nm Technology
High Value, High Volume, High Preference

Graphical tool needed to organize
data viewing

 Workflow of event based performance
analysis is extremely complicated

– Requires an enormous number of features/options
to enable all possible tasks

– Automation is very difficult

 To do a lot of things requires a lot of options

– Many docking windows, menus, buttons

– Easier to make a tool for a knowledgable user

 The data collection is the easy part

Interpreting the data and
determining the correct action

is the hard part
121

122

Winning with High-K 45nm Technology
High Value, High Volume, High Preference

Tool Requirements
Maximize data density

–Required quantity of data is enormous

 Integrated source/asm display

Ability to restart sessions later

Difference utility to monitor changes

Minimize mouse clicks

Predefined event lists

Predefined penalty file

–Cycle accounting

–dynamic column layout

122

123

Winning with High-K 45nm Technology
High Value, High Volume, High Preference

Primary display shows offending
events and even call counts

123

124

Winning with High-K 45nm Technology
High Value, High Volume, High Preference

Set the Granularity to LOOPS

124

125

Winning with High-K 45nm Technology
High Value, High Volume, High Preference 12

5

Get Tuning Advice for the Selected Event/Ratio:
Highlighting the Event Row Enables Explanation

126

Winning with High-K 45nm Technology
High Value, High Volume, High Preference 12

6

Get Tuning Advice for the Selected Event/Ratio:
Highlighting the Event Row Enables Explanation

127

Winning with High-K 45nm Technology
High Value, High Volume, High Preference 12

7

Differences of EBS Measurments

 Intel® PTU supports an analysis of differences of experiments

 This requires

– Event names must be the ~same

– Load Modules have the same names

– They can be the same, with data taken on different machines

– They can be different but built from the same source

– Allowing differences to be analyzed down to source view

– They can be completely different (sources and binaries)

– PTU will compare functions with the same names for modules with the same names

 Identify compiler differences/regressions

 Multi core scaling

For perfect scaling and identical work,

total event counts, summed over cores,

will be equal

128

Winning with High-K 45nm Technology
High Value, High Volume, High Preference 12

8

Data blocked 2X2 unrolled Matrix Multiply
compiled at -O2 (Binary = o2\matrix_blk2.exe)

Cycle_Usage Profile

129

Winning with High-K 45nm Technology
High Value, High Volume, High Preference

12

9

Data blocked 2X2 unrolled Matrix Multiply
compiled at -O3 –QxT (Binary =

xt\matrix_blk2.exe)
Cycle_Usage Profile

130

Winning with High-K 45nm Technology
High Value, High Volume, High Preference 13

0

Only Significant Difference is Cycle Count
Create Difference Display

 Control click to select 2 experiments

 Right click to select “Compare Experiments”

131

Winning with High-K 45nm Technology
High Value, High Volume, High Preference 13

1

Differences of Samples
Differences in Cycles Shown in msec to Correct for
Comparison of Machines at Different Frequencies

Scaling Analysis: Sort by Time and see what causes non

scaling

132

Winning with High-K 45nm Technology
High Value, High Volume, High Preference

Drill down by Double Click on
Function to Source in difference

view
 It is likely to ask where to find the source
file

132

133

Winning with High-K 45nm Technology
High Value, High Volume, High Preference 13

3

Same Source can Display
Difference per Source Line

134

Winning with High-K 45nm Technology
High Value, High Volume, High Preference

13

4

Shift Right click to Highlight a
Region and Display Subtotal at the

Bottom

135

Winning with High-K 45nm Technology
High Value, High Volume, High Preference 13

5

Select “Assembly (1st Exp.)”
Only Contributing Basic Blocks are Displayed

136

Winning with High-K 45nm Technology
High Value, High Volume, High Preference 13

6

Select “Assembly (2nd Exp.)”
Only Contributing Basic Blocks are Displayed

Now for BOTH Binaries

137

Winning with High-K 45nm Technology
High Value, High Volume, High Preference 13

7

Export Selected Source and the Contributing Basic
Blocks from Both Binaries to a Single CSV Spread

Sheet
Instant Compiler Regression Bug Report

138

Winning with High-K 45nm Technology
High Value, High Volume, High Preference

Measuring non parallel execution

With turbo enabled, non parallel execution
will result in a frequency boost to the core
executing the serial code

The serial functions can be identified using
the filtering capability of the over time
display

138

139

Winning with High-K 45nm Technology
High Value, High Volume, High Preference

Single threaded execution with
turbo boost enabled

139

140

Winning with High-K 45nm Technology
High Value, High Volume, High Preference

Zoom in on frequency multiplier
select range and filter up

140

141

Winning with High-K 45nm Technology
High Value, High Volume, High Preference

Source View Shows what is
Executed

This is Vectorized141

142

Winning with High-K 45nm Technology
High Value, High Volume, High Preference 14

2

Cmp in Blk 15 Controls Loop,
Comparing R8 and R11. R8

increments by 48 (30H)

143

Winning with High-K 45nm Technology
High Value, High Volume, High Preference

14

3

Register Values Collected with Precise Event
Br_inst_retired.all_branches in Blk 11 Yield Values

for R11 (14 samples)

144

Winning with High-K 45nm Technology
High Value, High Volume, High Preference 14

4

Select the Asm Line, Right Click and
Show Register Statistics

145

Winning with High-K 45nm Technology
High Value, High Volume, High Preference 14

5

Tripcount is constant (min=max=avg, rms=0)
and Equals 786432/48 = 16384

Which is the 4-Dim Lattice size for this Problem

146

Winning with High-K 45nm Technology
High Value, High Volume, High Preference 14

6

Source/Asm View Text Search
Utility

147

Winning with High-K 45nm Technology
High Value, High Volume, High Preference

Data Address Profiling
and False Sharing Detection

Each Sample now
described by IP and
Data address (plus

other characteristics)

– Sorting –
repositioning
segments of the
axes

– Applying
granularity –
changing scale of
the axis

– Filtering -
projecting slices
onto another
dimension

Filtering by cachelines
marked as “falsely-shared”

isolate the
causing instructions
And the data objects

Data Mining in 2 Dimensional Model

147

148

Winning with High-K 45nm Technology
High Value, High Volume, High Preference

Data Address Profiling
and False Sharing Detection

This foil is best viewed in animation mode

Sampling during
app execution

Symbolization &
Data Address
reconstruction

Aggregation

Binary

ebs.tb5
Sample record:
IP, process, module,
threadID..

PEBS record:
IP, rax, rbx, rcx

Precise Event Sampling:  
events associated with
memory operations, e.g. 
MEM_INST_RETIRED.LOADS,
MEM_INST_RETIRED.STORES…

Using the binary,
identify the instruction
that overflowed event
counter -> IP-1

IP

Reconstruct data
address used by IP-1
instruction and
register values in PEBS
record

Decode it and its
operands (registers)

IP-1

Iterate over Samples
and PEBS records in
ebs.tb5

Sample: IP, data address, threadID..

To aggregate addresses into cachelines:

Same cacheline accessed
by different threads
at different offsets

True and False Sharing
Next foils Illustrate GUI

Navigation

Pin threads affinity

148

149

Winning with High-K 45nm Technology
High Value, High Volume, High Preference

Use Cacheline Access Count to
Measure Working Set Size

Performance comparison difference may be due to Cache Size
149

150

Winning with High-K 45nm Technology
High Value, High Volume, High Preference

NEW – Exact latency / Latency
Histogram

– Exact latency in CPU cycles for loads collected with
Latency events

– Intel® PTU offers a latency histogram

– Can be filtered by selected hotspots

– IP and address spreadsheets, and memory
histogram can be filtered by latency region
(shown below)

150

151

Winning with High-K 45nm Technology
High Value, High Volume, High Preference

Array of Structures
(address-base)% struct_size

Most structure elements never accessed

151

152

Winning with High-K 45nm Technology
High Value, High Volume, High Preference

Filtering to a Single Thread
Displays the Data Decomposition

152

153

Winning with High-K 45nm Technology
High Value, High Volume, High Preference

A Different Thread

153

154

Winning with High-K 45nm Technology
High Value, High Volume, High Preference

Example: False Sharing
What is it and why is it a Problem

– Cache coherency protocols require that all cores use
the most current version of every cacheline

– Shared lines can be modified by any thread

– Causing lines to be renewed regularly, if any
thread writes to any byte in the line

– (replace an invalid state copy with new valid copy)

– Line renewal can cause a cache miss by other
threads

– and a 40-300 cycle execution stall
– Depending on cacheline location

– False sharing is when different threads access non-
overlapping regions of a cacheline

False Sharing Causes Avoidable 40-300 Cycle Stalls
For Every Read Following a Write by Another Thread

154

155

Winning with High-K 45nm Technology
High Value, High Volume, High Preference

Synthetic Example: Heavy Contention on this Line --
Multiple Threads Accessing Different Offsets Indicate

False Sharing (Identified by Rose Highlighting)

155

156

Winning with High-K 45nm Technology
High Value, High Volume, High Preference

Expanding the “arrow” we see the 2
threads access the line at Different

Offsets…This is False Sharing

156

157

Winning with High-K 45nm Technology
High Value, High Volume, High Preference

Select the falsely shared cacheline (now blue)
and Filter the Hotspot view to only Display

Accesses to that Line (multiple lines also work)

157

158

Winning with High-K 45nm Technology
High Value, High Volume, High Preference

Only Events Referencing the Selected
Line(s) are now in the Hotspot View

Double Click to reach source/ASM view

158

159

Winning with High-K 45nm Technology
High Value, High Volume, High Preference

The Pointer “sum” is Causing the
False Sharing

159

160

Winning with High-K 45nm Technology
High Value, High Volume, High Preference

NUMA cacheline access

160

161

Winning with High-K 45nm Technology
High Value, High Volume, High Preference

Socket 1 Socket 2

Uncore

Cores

L

L

C

GQ

QHLIMC

Q

PI

Uncore

Cores

QHL

GQ

L

L

C

IMC

Q

P

I

A NHM Socket is a Caching Agent and a

Home Agent

Caching

Agent
Caching

Agent

Home AgentHome Agent

161

162

Winning with High-K 45nm Technology
High Value, High Volume, High Preference

Simple Data Read

I I

CA-B CA-C
H

Request Phase

RspI

MR

DATA

MC

RdData

DataC_E_Cmp

I E

CA-A

I

RspI

Time

162

163

Winning with High-K 45nm Technology
High Value, High Volume, High Preference

Socket 1
Socket 2

Uncore

Cores

L

L

C

GQ

QHLQMC

Q

PI

Uncore

Cores

QHL

GQ

L

L

C

QMC

Q

P

I

DRd

[Sending Req to

Local Home

(socket 2 owns

this address)]

SnpData

[Send

Snoop

to LLC]

SnpData
Cache

Lookup

Cache

Miss

Speculative

memory Rd

Data

[Fill complete to

Socket2]

RspI

RdData request after LLC Miss to Local

Home (Clean Rsp)

R
d

D
a

ta

[Broadcast

snoops to all

other caching

agents)]

D
a
ta

C
_
E

_
C

M
P

163

164

Winning with High-K 45nm Technology
High Value, High Volume, High Preference

Socket 1
Socket 2

Uncore

Cores

L

L

C

GQ

QHLQMC

Q

PI

Uncore

Cores

QHL

GQ

L

L

C

QMC

Q

P

I

DRd

[Sending Req to

Local Home

(socket 2 owns

this address)]

SnpData

[Send

Snoop

to LLC]

SnpData
Cache

Lookup

Speculative

mem Rd

Data

[Send complete to

Socket2]

RspIWb

WbIData

RdData request after LLC Miss to Local

Home (Hitm Response)

R
d

D
a

ta

[Broadcast

snoops to all

other caching

agents)]

[Data written back to

Remote Home. RspIWb is

a NDR response. Hint to

home that wb data

follows shortly which is

WbIData]

D
a
ta

C
_
E

_
C

m
p

WB

164

165

Winning with High-K 45nm Technology
High Value, High Volume, High Preference

Uncore Opcode Match events
 Match address, opcode using an MSR

– 37 bit address match

– 8 bit opcode match

 Local Home data read, remote LLC hit

– Ev=35, umask = 2, opcode = RspFwdS = 0001 1010, opcode only

 Local Home data read, remote LLC hitm

– Ev=35, umask = 2, opcode = RspIWb = 0001 1101, opcode only

 RFO and perhaps other cases also (E->E problematic)

Event Event
code Umask

UNC_ADDR_OPCODE_MATCH.IOH_REQUEST_TRACKER 35 01

UNC_ADDR_OPCODE_MATCH.REMOTE_CORES_REQUEST_TRACKER 35 02

UNC_ADDR_OPCODE_MATCH.LOCAL_CORES_REQUEST_TRACKER 35 04

16

5

166

Winning with High-K 45nm Technology
High Value, High Volume, High Preference

Summary

Event based sampling performance analysis
is extremely powerful on Intel® Core™ i7,
XEON™ 5500 and 5600 Processor Families

Correct methodology is essential

Correct usage of events is essential

 Intel® PTU simplifies task

166

167

Winning with High-K 45nm Technology
High Value, High Volume, High Preference

backup

167

168

Winning with High-K 45nm Technology
High Value, High Volume, High Preference

Low level utilities

PTU low level utilities can be invoked from
the command line by adding the PTU bin
directory to the path

 Low level PMU collector is SEP

–Invoked by vtsarun

–Data is stored in file called tbsXXXYYYY.tb5

–sep –start –ex 16 –ec
“CPU_CLK_UNHALTED.THREAD:sa=2000000,UOPS
_RETIRED.ANY,UOPS_RETIRED.STALL_CYCLES” –
app ./myapp –args “ arg1 arg2”

– :sa=VAL explicitly sets SAV value for the event
preceding it

– -ex 16 causes sep to add PEBS buffer to event record

– Selecting data profile does the same thing
168

169

Winning with High-K 45nm Technology
High Value, High Volume, High Preference

Low level utilities

 sep –start –ex 16 –ec
“CPU_CLK_UNHALTED.THREAD:sa=2000000,UOPS
_RETIRED.ANY,UOPS_RETIRED.STALL_CYCLES,BR_
INST_RETIRED.NEAR_CALL:lbr=2” –app ./myapp –
args “ arg1 arg2”

 Event names must be upper case

 :lbr=VAL turns on LBR capture with filter value
determined by VAL

 Filter values can be determined with profile editor and show

command button

169

LBR Value Filter Result

1 All Branches

2 All Calls
3 User Calls

4 All Calls & Ret
5 User Calls & Ret

170

Winning with High-K 45nm Technology
High Value, High Volume, High Preference

Low level utilities

 sfdump5 creates test output based on data
in tb5 file

 sfdump5 tbsXXXZZZ.tb5 –modules >
modules.txt

–Summary of data

–Total number of samples and events=samples*SAV

– Events ordered by “event number”

–Total number of samples/module/event_type

170

171

Winning with High-K 45nm Technology
High Value, High Volume, High Preference

Example sfdump5 output

Event Summary

CPU_CLK_UNHALTED.THREAD

2396 = Samples collected due to this event

2000000 = Sample after value used during collection

4792000000 = Total events (samples*SAV)

INST_RETIRED.ANY

1327 = Samples collected due to this event

2000000 = Sample after value used during collection

2654000000 = Total events (samples*SAV)

Module View (all values in decimal)

Module Process

Event Events% Samples Events Module Path

triad triad

CPU_CLK_UNHALTED.THREAD 90.40% 2166 4332000000 /home/vtune/snb3/triad_src/triad

INST_RETIRED.ANY 89.98% 1194 2388000000

vmlinux triad

CPU_CLK_UNHALTED.THREAD 4.47% 107 214000000 vmlinux

INST_RETIRED.ANY 4.97% 66 132000000

 Thus CPU_CLK_UNHALTED.THREAD is event 0 “ei-00”

 Thus Inst_RETIRED.ANY is event 1 “ei-01”

171

172

Winning with High-K 45nm Technology
High Value, High Volume, High Preference

Low level utilities

Sfdump5 tbsXXXZZZ.tb5 /dumpsamples >
samples.txt

–Text dump of all samples

–All sample records in a given file are same length

–Length = SUM of all required fields for all events

– If PEBS record is collected for PEBS events, the
corresponding fields exist for non PEBS event but
are zero filled

–Events with LBR collection are only collected with
other events that have SAME LBR filter value

– 33 X 64 bits are added

172

173

Winning with High-K 45nm Technology
High Value, High Volume, High Preference

/dumpsamples example output

00000208 64--0033:0x0000000000400DF9-0 p-0x0000231C c-00 t-0x0000231C sgno-
0x00000001 ei-00 tsc-0x0003C06F0CF15DD4 triad

173

•00000208 is the record number

•64--0033:0x0000000000400DF9-0 tells you this is a 64 bit binary and the IP of

the interupt was 0x0000000000400DF9

•p-0x0000231C gives the process ID

•c-00 the core number of the interupt in this case 0

•t-0x0000231C the thread ID

•ei-00 the event number

•thus this is an record triggered by CPU_CLK_UNHALTED.THREAD

•See –modules output to determine event numbers for a particular collection

•tsc-0x0003C06F0CF15DD4 the Time Stamp Counter

•Triad the load module name

174

Winning with High-K 45nm Technology
High Value, High Volume, High Preference

/dumpsamples example output
LBRs

00000091 64--0033:0x0000000000400694-0 p-0x00000A0A c-00 t-0x00000A0A sgno-
0x00000001 ei-00 tsc-0x000000C43DECAFB1 extra_00-0x0000000000000006 extra_01-
0x0000000000400A2C extra_02-0x00000000004009C4 extra_03-0x000000000040095C extra_04-
0x00000000004008E6 extra_05-0x000000000040086E extra_06-0x0000000000400806 extra_07-
0x000000000040074A extra_08-0x00000000004006E2 extra_09-0x0000000000401061 extra_10-
0x0000000000400D7F extra_11-0x0000000000400D97 extra_12-0x0000000000400C52 extra_13-
0x0000000000400BEC extra_14-0x0000000000400B84 extra_15-0x0000000000400AFC extra_16-
0x0000000000400A94 extra_17-0x0000000000400976 extra_18-0x000000000040090E extra_19-
0x0000000000400888 extra_20-0x0000000000400820 extra_21-0x00000000004007B8 extra_22-
0x00000000004006FC extra_23-0x0000000000400694 extra_24-0x0000000000400648 extra_25-
0x0000000000400D38 extra_26-0x0000000000400CC2 extra_27-0x0000000000400C06 extra_28-
0x0000000000400B9E extra_29-0x0000000000400B36 extra_30-0x0000000000400AAE extra_31-
0x0000000000400A46 extra_32-0x00000000004009DE call_chain

174

•record number is 91

•Event number (ei) is 0

•Extra_01 -> extra_16 are the branch source addresses

•Extra_17 -> extra_32 are the branch target addresses

•extra_00 points to the most recent LBR source entry

•In this case extra_06

•Most recent target is extra_(extra_00+17)

•Thus last target is extra_23 = extra_23-0x0000000000400694

•And PEBS IP field is = 64--0033:0x0000000000400694-0

175

Winning with High-K 45nm Technology
High Value, High Volume, High Preference

/dumpsamples example output
PEBS

00000445 64--0033:0x0000000000401665-0 p-0x00000978 c-00 t-0x00000978 sgno-
0x00000001 ei-00 tsc-0x0000011CF7198F6F extra_00-0x0000000000000202 extra_01-
0x0000000000401665 extra_02-0x00000123F1DE149A extra_03-0x0000000000000001 extra_04-
0x0000000000000000 extra_05-0x00000123F1DE149A extra_06-0x000000001B4E4355 extra_07-
0x000000004ABCE4E1 extra_08-0x00007FFFA989B710 extra_09-0x00007FFFA989B6A0 extra_10-
0x0000000000000000 extra_11-0x0000000000000001 extra_12-0x00007FFFA989B400 extra_13-
0x0000003731E97DD0 extra_14-0x0000000000400720 extra_15-0x00007FFFA989B860 extra_16-
0x0000000000000000 extra_17-0x0000000000000000 extra_18-0x00007FFFA989B6F8 extra_19-
0x0000000000000041 extra_20-0x0000000000000038 extra_21-0x000000000000FFFF extra_22-
0x0000000000000000 store_fwd_lnx2

175

•Event number (ei) is 0 (in this case the latency event)

•Extra_01 is Event IP

•IP of instruction after the instruction that caused the interupt (“IP+1”)

•Extra_02-> extra_17 are the register values at the completion of the offending

instruction

176

Winning with High-K 45nm Technology
High Value, High Volume, High Preference

PEBS Buffer field definitions

176

(x)->r_flags //extra_00

(x)->linear_ip //extra_01

(x)->rax //extra_02

(x)->rbx //extra_03

(x)->rcx //extra_04

(x)->rdx //extea_05

(x)->rsi //extra_06

(x)->rdi //extra_07

(x)->rbp //extra_08

(x)->rsp //extra_09

(x)->r8 //extra_10

(x)->r9 //extra_11

(x)->r10 //extra_12

(x)->r11 //extra_13

(x)->r12 //extra_14

(x)->r13 //extra_15

(x)->r14 //extra_16

(x)->r15 //extra_17

(x)->data_linear_address //extra_18

(x)->data_source //extra_19

(x)->latency //extra_20

177

Winning with High-K 45nm Technology
High Value, High Volume, High Preference

Precise Events

Significant expansion of PEBS
capability on Intel® Core™ i7
Processors

–4 events simultaneously

–Latency event = IPF data ear + bit pattern for
data source

–Branches retired by type

–Calls retired + LBR gives call counts

–Calls_retired + full PEBS gives function
arguments on Intel64

177

178

Winning with High-K 45nm Technology
High Value, High Volume, High Preference

Data Access Analysis and PEBS

Data address profiling for loads and
stores can be done as it is on Intel®
Core™2 Processor Family

–Full PEBS buffer + disassembly to identify
registers with valid addresses at time of
capture

–Mem_inst_retired.load

– Cannot deal with mov rax,[rax] type instruction

–Mem_inst_retired.store

– Not subject to constraint of loads

– Inst_retired.any

– Cannot deal with EIP+1 = first instr of Basic Block

178

179

Winning with High-K 45nm Technology
High Value, High Volume, High Preference

Intel® Core™ i7 Processor PerfMon
PEBS Buffer

RFLAGS

RIP

RAX

RBX

RCX

RDX

RSI

RDI

RBP

RSP

R8

R15

063BTS Buffer Base

BTS Index

BTS Absolute Maximum

BTS Interrupt Threshold

PEBS Buffer Base

PEBS Index

PEBS Absolute Maximum

PEBS Interrupt Threshold

063

Global Perf Overflow MSR

PEBS Counter Reset 1

PEBS Counter Reset 2

PEBS Counter Reset 0

Data Linear Address

Data Source (encodings)

Latency (core cycles)

0H

8H

10H

18H

20H

28H

30H

38H

40H

48H

50H

58HPEBS Counter Reset 3

0H

8H

10H

18H

20H

28H

30H

38H

40H

48H

50H

88H

90H

98H

A0H

A8H

Nehalem - Format 0001b

DS Buffer Managment PEBS Record

Merom/Penryn - Format 0000b

179

180

Winning with High-K 45nm Technology
High Value, High Volume, High Preference

Load Latency Threshold Event:

 Ability to trigger count on minimum latency
– Core cycles from load execute->data availability

 Linear address in PEBS buffer
– Allows driver to collect physical address

– Only total measurement of local/remote home access

 Data source captured in bit pattern
– Actual NUMA source revealed

 Only ONE latency event/min thresh can be
taken per run

– Minimum latency programmed with MSR

– Global per core
– 0x3F6 MS_PEBS_LD_LAT_THRESHOLD bits 15:0

– HW samples loads

– EX: Sampling fraction for local dram=
mem_inst_retired.latency_gt_128(DS= A or C)
/mem_uncore_retired.local_dram

180

181

Winning with High-K 45nm Technology
High Value, High Volume, High Preference

Front End/Decode Analysis

 Instruction decode BW has lower maximum

 Instruction flow interruption at RAT output

–UOPS_ISSUED.STALL_CYCLES –
RESOURCE_STALLS.ANY

–HT ON
– subtract half the cycles as well

– Or UOPS_ISSUED.CORE_STALL_CYCLES-

RESOURCE_STALLS.ANY

 ILD_STALL.LCP_STALL

181

182

Winning with High-K 45nm Technology
High Value, High Volume, High Preference

NUMA, Intel® QuickPath Interconnect, and
Intel ® Xeon 5500/5600 Processor DP

systems

 Intel® QuickPath Interconnect (Intel® QPI)
will greatly increase memory bandwidth of
our platforms

 Integrated memory controllers on each
socket access DIMMs
– Intel® QPI provides cache coherency

– Bandwidth improves by a lot

 Bandwidth improvement comes at a price
– Non-Uniform Memory Access (NUMA)

–Latency to DIMMs on remote sockets
is ~2X larger

Pealing away the Bandwidth layer
reveals the NUMA Latency layer

182

183

Winning with High-K 45nm Technology
High Value, High Volume, High Preference

NUMA Modes on DP Systems
Controlled in BIOS

Non-NUMA
–Even/Odd lines assigned to sockets 0/1

–Line interleaving

NUMA mode
–First Half of memory space on socket 0

–Second half of memory space on socket 1

183

184

Winning with High-K 45nm Technology
High Value, High Volume, High Preference

Non-Uniform Memory Access
and

Parallel Execution

 Parallel processing is intrinsically NUMA
friendly
– Affinity pinning maximizes local memory access

– Message Passing Interface (MPI)

– Parallel submission to batch queues

– Standard for HPC

 Shared memory threading is more
problematic
– Explicit threading, OpenMP* product, Intel®

Threading Building Blocks (Intel® TBB)

– NUMA friendly data decomposition (page-based) has
not been required

– OS-scheduled thread migration can aggravate
situation

*Other names and brands may be claimed as the property of others.
184

185

Winning with High-K 45nm Technology
High Value, High Volume, High Preference

HPC Applications will see
Large Performance Gains due to

Bandwidth Improvements

 A remaining performance bottleneck may be
due to Non-Uniform Memory Access latency

 This next level in the performance onion was
not really addressed

– Other performance tools offered little insight

– Default usage of Non-NUMA BIOS settings

– Except for some HPC accounts

 Intel® PTU data access profiling feature was
designed to address NUMA

– NHM events were designed to provide the required
data

185

186

Winning with High-K 45nm Technology
High Value, High Volume, High Preference

Gather and OOO execution

186

no prefetch pref = 8 pref = 16 pref = 32 pref = 64 pref = 96

2 fp ops 34.5 34.9 34.2 37.2 38.7 38.9

4 fp ops 44.5 34.5 33.6 38 42.2 41.4

8 fp ops 74.8 34.8 34.1 38.7 42.7 41.7

16 fp ops 108.9 34.6 34 42.2 50.9 45.6

Data collected on Core™ 2 processor, prefetchers on

187

Winning with High-K 45nm Technology
High Value, High Volume, High Preference

Glossary

PMU: Performance Monitoring Unit

–Assembly of counters and programmable
crossbars that allow counting and profiling using
user selectable events

 FE: core pipeline Front End

–Responsible for branch prediction, instruction
fetch, decode to uops, allocation of OOO backend
resources

BE: core pipeline Backend

–Stage uops waiting for inputs, execute upon
availability, retire in order

187

188

Winning with High-K 45nm Technology
High Value, High Volume, High Preference

Glossary

RS: reservation station

–Where uops are staged for execution waiting for
availability of their inputs

ROB: Reorder Buffer

–Where uops wait prior to retirement until all
older uops have retired and execution path is
confirmed. Second point corrects when uops are
executed on a mispredicted path.

RAT: Resource Allocation Table

–Allocates BE resources for uops prior to issuing
them from front end of pipeline to the backend

188

189

Winning with High-K 45nm Technology
High Value, High Volume, High Preference

Glossary
Cachelines are 64 bytes

 LLC: Last level Cache

–L3 on these processors

 LFB: line fill buffer

–Buffers used for transfering cachelines into and
out of L1D

WB: writeback

–Modified data is written back to higher level in
memory subsystem on eviction

RFO: Read for Ownership

–Stores require cachelines are in exclusive
ownership state so they can be modified

189

190

Winning with High-K 45nm Technology
High Value, High Volume, High Preference

Glossary

Prefetch, by hardware (HW) or by explicit
instruction (SW)

–Request cacheline prior to execution of
consuming instruction (load/store) with intention
of hiding latency

BW: bandwidth

–Data moved/unit time. I prefer cachelines/cycle
as that is what is measured

 Latency: time required to transfer a single
line from source to usage.

190

191

Winning with High-K 45nm Technology
High Value, High Volume, High Preference

Glossary

SIMD: Single instruction multiple data

–SSE parallel execution mode

–AKA vectorization

X87: legacy floating point computation
mode. In contrast to SSE FP instructions

NT: Non Temporal

–Data store mode that writebacks data in 64 byte
aligned contiguous 64 byte chunks directly to
dram without RFO

HITM: Hit Modified

–Snoop response when line is found in modified
state in another cache

191

192

Winning with High-K 45nm Technology
High Value, High Volume, High Preference

Glossary

HT: Intel® Hyper-threading Technology

–Execution mode allowing uops from two threads
to be executed in an intermingled flow, without
an OS context switch, through a single core
pipeline.

Turbo: Intel® Turbo Boost Technology

–Adjusting core frequency upwards on active core
when other cores are under utilized, while
staying within required power envelope.
Enhances performance of single threaded
execution

192

