®

Performance Analysis and

(intel
SW optimization for HPC on

Intel® Core™ 17, Xeon™ 5500 and 5600
family Processors*

Presenter: David Levinthal
Principal Engineer

Business Group, Division: DPD, SSG

Version 1.1.2
July 28, 2010

* Intel, the Intel logo, Intel Core and Xeon are trademarks of Intel Corporation in the U.S. and other countries.

Legal Disclaimer

INFORMATION IN THIS DOCUMENT IS PROVIDED IN CONNECTION WITH INTEL PRODUCTS. NO LICENSE, EXPRESS
OR IMPLIED, BY ESTOPPEL OR OTHERWISE, TO ANY INTELLECTUAL PROPERTY RIGHTS IS GRANTED BY THIS
DOCUMENT. EXCEPT AS PROVIDED IN INTEL'S TERMS AND CONDITIONS OF SALE FOR SUCH PRODUCTS, INTEL
ASSUMES NO LIABILITY WHATSOEVER AND INTEL DISCLAIMS ANY EXPRESS OR IMPLIED WARRANTY, RELATING TO
SALE AND/OR USE OF INTEL PRODUCTS INCLUDING LIABILITY OR WARRANTIES RELATING TO FITNESS FOR A
PARTICULAR PURPOSE, MERCHANTABILITY, OR INFRINGEMENT OF ANY PATENT, COPYRIGHT OR OTHER
INTELLECTUAL PROPERTY RIGHT.

UNLESS OTHERWISE AGREED IN WRITING BY INTEL, THE INTEL PRODUCTS ARE NOT DESIGNED NOR INTENDED
FOR ANY APPLICATION IN WHICH THE FAILURE OF THE INTEL PRODUCT COULD CREATE A SITUATION WHERE
PERSONAL INJURY OR DEATH MAY OCCUR.

Intel may make changes to specifications and product descriptions at any time, without notice. Designers must not rely on the
absence or characteristics of any features or instructions marked "reserved" or "undefined." Intel reserves these for future
definition and shall have no responsibility whatsoever for conflicts or incompatibilities arising from future changes to them. The
information here is subject to change without notice. Do not finalize a design with this information.

The products described in this document may contain design defects or errors known as errata which may cause the product to
deviate from published specifications. Current characterized errata are available on request.

Contact your local Intel sales office or your distributor to obtain the latest specifications and before placing your product order.

All products, computer systems, dates, and figures specified are preliminary based on current expectations, and are subject to
change without notice.

Customers, licensees, and other third parties are not authorized by Intel to use Intel code names in advertising, promotion or
marketing of any product or service.

Performance tests and ratings are measured using specific computer systems and/or components and reflect the approximate
performance of Intel products as measured by those tests. Any difference in system hardware or software design or
configuration may affect actual performance. Buyers should consult other sources of information to evaluate the performance of
s¥stems or components they are considering ﬂurchasmg_. For more information on performance tests and on the performance
of Intel products, visit Intel Performance Benchmark Limitations

Copyright © 2010, Intel Corporation. All rights reserved.

http://www.intel.com/performance/resources/limits.htm

Risk Factors

The above statements and any others in this document that refer to plans and expectations for the first quarter, the year and the
future are forward-looking statements that involve a number of risks and uncertainties. Many factors could affect Intel’s actual
results, and variances from Intel’s current expectations regarding such factors could cause actual results to differ materially from
those expressed in these forward-looking statements. Intel presently considers the following to be the important factors that
could cause actual results to differ materially from the corporation’s expectations. Current uncertainty in global economic
conditions pose a risk to the overall economy as consumers and businesses may defer purchases in response to tighter credit
and negative financial news, which could negatively affect product demand and other related matters. Consequently, demand
could be different from Intel's expectations due to factors including changes in business and economic conditions, including
conditions in the credit market that could affect consumer confidence; customer acceptance of Intel’s and competitors’ products;
changes in customer order patterns including order cancellations; and changes in the level of inventory at customers. Intel
operates in intensely competitive industries that are characterized by a high percentage of costs that are fixed or difficult to
reduce in the short term and product demand that is highly variable and difficult to forecast. Revenue and the gross margin
percentage are affected by the timing of new Intel product introductions and the demand for and market acceptance of Intel's
products; actions taken by Intel's competitors, including product offerings and introductions, marketing programs and pricing
pressures and Intel’s response to such actions; Intel’s ability to respond quickly to technological developments and to
incorporate new features into its products; and the availability of sufficient supply of components from suppliers to meet
demand. The gross margin percentage could vary significantly from expectations based on changes in revenue levels; capacity
utilization; excess or obsolete inventory; product mix and pricing; variations in inventory valuation, including variations related
to the timing of qualifying products for sale; manufacturing yields; changes in unit costs; impairments of long-lived assets,
including manufacturing, assembly/test and intangible assets; and the timing and execution of the manufacturing ramp and
associated costs, including start-up costs. Expenses, particularly certain marketing and compensation expenses, as well as
restructuring and asset impairment charges, vary depending on the level of demand for Intel's products and the level of revenue
and profits. The recent financial crisis affecting the banking system and financial markets and the going concern threats to
investment banks and other financial institutions have resulted in a tightening in the credit markets, a reduced level of liquidity
in many financial markets, and extreme volatility in fixed income, credit and equity markets. There could be a number of follow-
on effects from the credit crisis on Intel’s business, including insolvency of key suppliers resulting in product delays; inability of
customers to obtain credit to finance purchases of our products and/or customer insolvencies; counterparty failures negatively
impacting our treasury operations; increased expense or inability to obtain short-term financing of Intel’s operations from the
issuance of commercial paper; and increased impairments from the inability of investee companies to obtain financing. Intel's
results could be impacted by adverse economic, social, political and physical/infrastructure conditions in the countries in which
Intel, its customers or its suppliers operate, including military conflict and other security risks, natural disasters, infrastructure
disruptions, health concerns and fluctuations in currency exchange rates. Intel's results could be affected by adverse effects
associated with product defects and errata (deviations from published specifications), and by litigation or regulatory matters
involving intellectual property, stockholder, consumer, antitrust and other issues, such as the litigation and regulatory matters
described in Intel's SEC reports.

3 intel)

Performance Analysis Methodology
for HPC
 Measure application performance

-Time or rate of work
- Compare to other platforms

* Analyze the contributions to
performance bottlenecks methodically

-Top Down

Performance Analysis Methodology
for HPC

* Two possible objectives

— Influence future silicon design
— Intel personnel do lots of this

-Modify build and/or source
to improve performance

-The sole focus of this presentation

* The central objective is to identify
performance bottlenecks and estimate
the potential gain for fixing them

-Without an accurate estimate of the gain a
great deal of effort can be wasted

Structure of this presentation

* What would the author do with:
—A brand new machine
—A tar ball of 100 million source lines
- Documented, working build procedure
—Data set and instructions to run the app
- And one commandment:

Make Go Fast

but get the same answer

Presentation Agenda

e Optimization workflow overview
* Event based sampling

Why so complicated
How the nuts and bolts work

« HPC/Scientific computing overview
« Compiler problems/tuning compiler usage

o IC
o IC
o IC
o P

entifying and removing stalls

entifying and removing resource saturation
entifying and removing non scaling

"U features and data interpretation

¢, (5

ossary in backup (intelg)

Performance Analysis Methodology

 The steps
- 1. make sure the platform is correct
- It should be - some thought went into the specifications
- But don’t take this for granted
— 2. Use the correct compiler (Intel® Compiler)
- And invoke it correctly
— This should also have already been done...but..

- 3. Analyze interaction of SW and micro architecture and
tune code/compiler usage

- Intel® VTune™ Analyzer* or better, Intel® Performance
Tuning Utility (PTU)

— Iterative process
— 4. Parallelize the execution as appropriate
- Batch queue / Intel® MPI Library

- OpenMP** product, Intel® Threading Building Blocks
(Intel® TBB), Intel® CILK™ Plus, explicit threading

« Iterate on 3 and 4

3 *Vtune and CILK are trademarks of Intel Corporation in the U.S. and other countries. i n ter ’
**Qther names and brands may be claimed as the property of others.

Platform Optimization: Step 1

1. Make sure the platform is correct
- Enough memory
- Page faults (Perfmon*, vmstat¥*)
— rates of >100 /sec is cause for investigation
- Make sure DIMMs are in identical sets of 6 for DP machines
— 3 channel memory controller
— Best performance with completely uniform dimms
— Make sure SATA Bios setting is AHCI, not IDE setting
- Use RAID or SSD if disk speed is critical
- Prefetcher BIOS Settings correct for the app: ON

- Intel® 11.0 compiler can generate SW prefetch
- NUMA BIOS setting correct: ON

- Intel® Hyper-Threading Technology BIOS option set correctly
for the application

— HT does not always help HPC
— Probably makes little difference

Disable C states to ensure machine stability when using
event based sampling on Corei7/Xeon 5500 . @
PINg (lntel)

* Other names and brands may be claimed as the property of others.

Compiler Usage Optimization: Step 2

* 2. Optimize the time consuming
functions

- Profile functions, and check compiler
options

—Intel® VTune™ Analyzer and Intel® PTU
have source file granularities

- Data grouped per source file to identify hot
files

- Do not assume this has been done
- Build environments are complex

0 (intelﬁ)

Micro architectural Optimization:
Step 3

* 3. Identify & Optimize the time-consuming
functions

 Use performance events methodically to
identify performance limitations

- Intel® PTU, Intel® VTune™ Analyzer, etc.

 Confirm that compiler really did produce good
code (visual inspection of ASM)

- For the components of the code using the cycles

 Go after largest, easy things first
— Accurate estimate of potential gain is critical!

* Documentation for Intel® Core™ i7 processor
Performance Monitoring Unit (PMU) is

available :in/teb

Parallelization for HPC : Step 4

4. Use as many cores and machines as
possible

—Parallel processing by batch queue is OK
- Trivial parallelism
- Hard to beat the throughput

» (intelﬁ)

Parallelization for HPC : Step 4

4. Use as many cores and machines as
possible

- Figure out clean data decomposition

-Intel® MPI Library for process parallel
execution

- Minimal shared elements
- Maximal address separation
-OpenMP¥*, Intel® TBB, CILK, explicit
threading for shared memory
— Can reduce all to all MPI API costs

* Other names and brands may be claimed as the property of others. - l®
13 (lnte)

DDR3

DP Platform

DDR3

14

CoO||C1l|[C2| C3 COo|C1l| C2| C3
8M LLC 8M LLC
IMC || QPI || QPI ¥-—" QPI || QPI | IMC"
R 71
A\N /L

Gfx

Event Based Sampling Analysis

* Code profiling with performance events
can identify where the interaction of
the code and data with the
microarchitecture is sub optimal

—Ex: What code execution results in load
driven cache misses?

- Event_count*Penalty ~ potential gain
- A well defined penalty is essential

* Such profiling also provides an
execution weighted display of the
generated instructions

—Vectorized code was generated but is it
being executed?

But There are THOUSANDS of Events,

15 Which Ones Matter? (intelﬁ)

Which Events you need depends on
what problem you wish to study and
what you want to accomplish
Example: Last Level Cache Misses

* What you mean by an LLC miss depends on the
exact nature of the question you are asking

* Are you asking about Bandwidth consumption?

— Due to reads?, RFOs?, HW Prefetch, NT stores? Total?,
Code?, SW prefetch?, Cacheable Writebacks?

— Location of the bandwidth consumption?
— Source of the data provided?

e Or about Latency/Pipeline stalls
— Different architectures stall on different things

o Intel® IA-32/Intel64 Processors’ memory access stalls are mostly
due to loads

Events needed to measure bandwidth and

6 memory stalls are COMPLETELY different (intelg)

Intel® Xeon™ 5500 load Penalties

Remote Remote Remote | Remote
Cache Cache Cache Cache
LLC Hit | LLC Hit | LLC Hit local Remote | Local Remote
Secondary L2 No Clean Snoop Local Remote | home Home Home home
L1D_HIT | Miss Hit Snoop Snoop =HITM Dram Dram Fwd FWD HITM HITM
Mem_load_retired 0
.L1d_hit (By Def) >
. 0->Max
Mem_load_retired Val
Hn_LFB a Depend dn frequency] dimms, bios, etc
Mem_load_retired
.L2_hit 6
Mem_load_retired
.LLC Unshared_hit ~35
Mem_load_retired
.other_core_|2
_hit_hitm ~60 ~75
Mem_load_retired ~225
_ _reti
LLC_Miss ~200 | ~350 | ~180 | ~180 | -250 | ~370
Mem_uncore_retired
.Other_core_|2_hitm ~75
M tired ~225
em_uncore_retire
.Local_Dram ~200 -250
Mem_uncore_retired
.Remote_dram ~350 ~370
Mem_uncore_retired.
Remote_cache_
local_home_hit ~180

Note: All latencies and memory access penalties shown are nigerely illustrative. Actual latencies will depend on (among other things) processor model, core and
uncore frequencies, type, number and positioning of DIMMS, {llatform model, bios version and settings. Consult the platform manufacturer for optimal setting for
any individual system. Then measure the actual properties of fat system by running well established benchmarks.

17

intel.

The Important Penalties Vary by a Factor of TEN

Intel® PTU uses profiles to manage
complexity

= Intel{R) Perforrmance Tuning Utility - Eclipse Platfarm E@
File Edit MNawigate Project FRun Window Help

= o- Q. - - - Y |[RA InteltR) Perfa... | 7

A Tuning Mavigatar &3 = B8 = 8
Tk

& [3

2 BA EBasic Statistical Callgraph

&) Basic Call Count

Rename 0 Basic Data Access Profiling
Delete &) Basic Heap Profiler
& Refresh ES &) Basic Sarmpling
0 Intel{R) Core(ThA) i7 processor farmily - Branch Snalysis
Properties D Intel(R) Core(Th) i processor family - Client Analysis

9 Intel(R) Core(ThA) i¥ processor family - Client Analysis with Call Sites
0 Intel(R) Core(ThA) i7 processor farmily - Cycles and Uops

0 Intel(R) Core(ThA) i¥ processor farmily - False-True Sharing

9 Intel(R) Core(Th1) i¥ processor farmily - Front End Inwestigation

0 Intel{R) Core(ThA) i7 processor farmily - General Exploration

0 Intel(R) Core(Th1) i7 processor farmily - Loop Analysis

&) Intel(R) CoredTh) iT processor farmily - Loop Analysis with Call Sites
0 Intel{R) Core(ThA) i7 processor farmily - Memor,y Access

0 Intel(R) Core(Th14) i¥ processor family - Memorny Access Address Profile
&) Working Set

EExperiment Surnmary &4 Console = B8

Mo surmmary information can be obtained from current selection,

o @ 1iterns selected

. intel.

19

Intel® PTU predefined collections

Cycles and Uops

- Cycle usage and uop flow through the pipeline
Branch Analysis

- Branch execution analysis for loop tripcounts and call counts
General Exploration

- Cycles, instructions, stalls, branches, basic memory access
Memory Access

- Detailed breakdown of off-core memory access (w/wo address
profiling)

Working Set
- Precise loads and stores enabling address space analysis
FrontEnd (FE) Investigation
- Detailed instruction starvation analysis
Contested lines
- Precise HITM and Store events
Loop Analysis

- 32 events for HPC type codes, w/wo call sites, i.e. including LBR
capture

Client Analysis

- 54 events for client type codes, w/wo call sites, i.e. including LBR
capture

Many Possible Issues -> Many Different Events intel)

Controlling collection

& Preferences
Intel{R) PTU Project Intel(R) PTU Project

Target
{*) This computer

[

Performance workload

Workload duration, sec | eli] =

) Launch this application at start of profile
Application: | |

Application parameters: | |

Working directory: | |

(#) Profile without launching an application

Advanced properties

Time-ba

nterval multiplier: (L0 v|
B

Event-based sampling 'Sample After’ multiplier: | 1.0 F ~~
[Juse event multiplexing -
10.0
- /
e [Ok l [Cancel]

intel.

Performance Monitoring Unit

* The Performance Monitoring Unit (PMU)
consists of a set of counters that can be

programmed to count user-selected signals of
microprocessor activity

- Cpu_clk_unhalted, inst_retired, LLC_miss, etc..

 Counting the number of events that occur in a
fixed time period allows workload
characterization

- Using a spectrum of events allows a decomposition

of the applications activity with respect to the
microarchitecture components

- Particularly useful for studying the architecture’s
strengths and weaknesses running an application

Performance Monitoring Unit

e The PMU can be programmed to generate
interrupts on counter overflow

— Allows periodic sampling of program counter for any
user-chosen event

- Initialize count to (overflow - periodic rate)

- Interrupt Vector Table is programmed with the
address of the interrupt handler

- Intel® VTune™ Analyzer driver is invoked by HW on
counter overflows and given a program counter where
the interrupt (i.e. counter overflow) happened

* Identify statistically where events
occur in the program

— Application profiling by event

SKID:

IP of causal instruction vs IP of PMI

Event associated with IP +N

Time

23

BPU
Fetch
Q

Q
decode
decode
Q

Q

Q

RAT

RS

RS

RS

RS
exec

exec

Retire

IP+N

IP+3
IP+2

IP+1

e

L1 ifetch_miss

overflow

PMI occurs at IP +

propagation delays

l delay

LLC ifetch_miss

overflow

IP +m

Analyzing HPC Applications

e Overview
 Loop analysis
- Tripcounts
- Vectorization

* Memory access dominated

-Latency dominated
-Bandwidth dominated

 Execution dominated

2 (intelﬁ)

Overview

 Performance Breakdown/cycle
accounting can be applied to any scale
of a program
—Multiple interacting applications->
single apps-> single modules->

source files/functions->
basic blocks

- Methodology does not change

- But can inherit conclusions from higher levels
based on importance/cycle cost

* At all stages in the process look for
poorly written, actively executing code
that can be improved

HPC Applications

- Dominated by loops

 Rarely have pipeline front end problems
- Except for very large binaries (ifetch latency)

 Large data sets
- Not cache resident
- Ex: Weather simulation, Oil Reservoir
- Frequently DRAM bandwidth limited
— Or DRAM Latency limited

 Occasionally HPC apps are uop flow limited
- Data blocked
— Ex: oil exploration, FFTs

What matters when optimizing a
loop?

1. The Trip Count
2. The Trip Count

3.The TRIP COUNT!

4. Variations in the tripcount
5. And some other things

BUT..what you do about them depends on
THE TRIP COUNT

And of course there are virtually no tools to assist you in
determining this..other than printf

(you can use PIN..)

This WIll be Discussed Later
- (intelg)

HPC Loops and Memory Access

« Calculations require data as input and
the most severe limitations in a
computer are on data access

- CPU speed and efficiency have increased

much faster than memory speeds and
bandwidth.

 Load operations are almost always
scheduled almost immediately before
consumption (adds, multiplies etc)

* Lack of availability will quickly lead to
execution stalls

- 000 execution can buy only a few cycles.

Event Classes: High Level View

1. Execution flow events
— Cycles, Branches, stalls, uops/inst_retired
— Guide compiler usage
2. Penalty events
- Ex: load requiring access to dram
- Modify code/build to reduce penalties
3. Resource saturation events
- Bandwidth, load/store buffers, dispatch ports
- No well defined cost
- Change data layout/access patterns
4. Architectural characterization
— Cache accesses, MESI states, snoops
- Used to improve silicon design, not application performance
5. Instruction mix
- Do not measure what you think, extremely difficult to validate

. (intelﬁ)

Event Classes

1. Execution flow events:
Guide Compiler Usage

- Cycles, Branches, stalls, uops/inst_retired

2. Penalty events
- EX: load requiring access to dram

3. Resource saturation events
- Bandwidth, load/store buffers, dispatch ports
— No well defined cost

4. Architectural characterization
— Cache accesses, MESI states, snoops

5. Instruction mix

Cycles: Multiple time domains

 There are actually 4 cycle events on a modern
microprocessor

— Core unhalted cycles

- Reference frequency unhalted cycles
— Core halted cycles

- Reference Frequency halted cycles

Core frequency needed for perf issues entirely in the core
- Penalties (ie pipeline stalls) in core cycles
Reference frequency needed for:
— Evaluation of variable frequency effects (Turbo/Power Management)
- Wall clock time utilization
- Ex: Network server applications

- Bandwidth/memory latency

Utnhﬁ\lted events are required for counting modes to work
ata

Halted.ref = TSC change - cpu_clk_unhalted.ref

o (intelﬁ)

Cycle Accounting and Uop Flow

* Cycles =
Cycles dispatching to execution units +
Cycles not dispatching (stalls)

— A trivial truism
 Uops dispatched = uops retired +
speculative uops that are not retired
- Non-retired uops due to mispredicted branches
- Uops_issued.any — uops_retired.slots

 Optimization Reduces Total Cycles by
- Reducing stalls
- Reducing retired uops (better code generation)
- Reducing non retired uops (reducing mispredictions)

(Simplified) Execution in an OO0 Engine

* Two asynchronous components
connected by buffering

- Front End provides instructions
- Back End gets data and executes

instructions
- Back End trumps Front End
— If BE issues occur, fixing FE issues Reservation
accomplishes nothiV Station
BrPredict [pecoder | —1 Allocation | RS | dispatch | Execution 4%’;
Reorder
» Buffer
Front End Back End
FE BE '
Retirement/Writeback - ®
33 (lntel)

* Uop Issue

Identifying Front End Stalls

- Uops have been allocated resources
- No downstream blockage (resource_stalls)

—FE Stalls = an instruction delivery problem
= Uops_issued.stall_cycles — Resource_stalls

Inst Fetch
Br Predict

v

Decoder

34

—

Resource
- Allocation

\ 4

RS

dispatch

»
>

Execution
Units

P

ROB

Uops_issued
Uops_issued.stall cycles
Uops_issued.core_stall cycles
Resource_stalls

\ 4

A 4

Retirement/Writeback

(Simplified) Execution in an OO0 Engine
* Design optimizes Dispatch to Execution
—Uops wait in RS until inputs are available

- Keeping the Execution Units occupied
matters

Inst Fetch Resource

- ¢ dispatch | Execution
Br Predict | | Decoder | Allocation P

Units VV
- ROB

\ 4
Retirement/Writeback

- (intelﬁ)

Uop Flow Monitors Execution
* Uop Execute
-Uops have inputs ?
- No downstream blockage (DIV/SQRT)
- No execution = no progress

Inst Fetch Resource » RS | dispatch JJ| Execution
Br Predict Decoder | Allocation + P Units

‘L /

Uops_executed.portX
Uops_executed.core_stall cycles
Only non HT events in the core

A\ 4

v

\ 4
ROB

\ 4

A 4

Retirement/Writeback

“ (intelﬁ)

Uop Flow Monitors Execution
* Uop Retire
—All older instructions retired ?
-No retirement = ? (out of order execution?)

Inst Fetch Resource

- ¢ RS dispatch | Execution
Br Predict Decoder | Allocation P

Units

A\ 4

A 4

v

»
>

\ 4
ROB

\ 4

Uops_retired
Uops_retired. stall _cycles \
Precise retirement stall identifies ‘

11 LR
push out Retirement/Writeback

- (intelﬁ)

Uop Flow

Fetch / Decode To Uncore MEU

32 KB
32 KB “— Data Cache

Instruction Cache

nst_writlen_fo _iq '
—p»| Branch Target

Buffer Div/Mul

nstruction
Decode [
(4 issue)

Microcode
Sequencer

36 entry

Register Allocation
Table (RAT)

Reservation Stations (RS)
Scheduler / Dispatch Ports

Re-Order Buffer
(ROB) - 128 entr

Uops_Issued

Qualitative: Artistic License employed

PEBS Basic Events

e Mechanism:
— counter overflow arms instr_retired

PEBS _ _]
itlb_miss_retired
- Next event gets
captured and raises uops_retired
PMI
— PEBS mechanism br_instr_retired

captures architectural
state information at - -
completion of critical mem_instr_retired.stores

instruction

 Including EIP (+1),
even when OS defers
PMI

mem_instr_retired.loads

For memory events, EIP (+1) is always next instruction

- (intelﬁ)

Branch Events

« Measure Control flow through the program

« Can be used for
- loop trip counts
- Reconstructing (multi function) execution paths
- Driving inlining, IPO, PGO compilations
* Used in conjunction with Last Branch Record
(LBR) even more can be done
— Basic block execution counts
- Instruction mix
— Call counts per source
- etc

Basic Branch Analysis
 Vastly improved precise branch monitoring
capabilities
- Branches retired

- 16 deep LBR
— LBR can be filtered by branch type and privilege level

- One per SMT
 Not merged when SMT disabled

- Only taken branches are captured

* Precise BR retired by branch type
— Calls, conditional and all branches

— Coupled with LBR capture yields
— Call counts
— “HW call graph”
— Basic block execution counts

" (intelﬁ)

Branch Analysis

* Precise branch events on NHM enable
— Function call counts
- Function arguments (em64T only)
— Taken fraction/branch

* Mispredicted Branches must be counted with
Non-PEBS events BR_MISP_ EXEC.* and
BR_INST_EXEC.* on Corei7/Xeon 5500

* Br_misp_retired.* on Xeon 5600 (PEBS)

Branch Analysis: Call Counts

* Call counts require sampling on calls

- Sampling on anything else introduces a
“trigger bias” that cannot be corrected for

* Requires PEBS buffer to identify which
branch caused the event

- EIP+1 results in capturing call target

 Requires LBR to identify source and
target

- Matching PEBS EIP with LBR target

Precise Conditional Branch Retired

 Counted loops that actually use the
induction variable will frequently keep
the tripcount in a register for the
termination test

- E.g. heavily optimized triad with the Intel
compiler has

Addq $0x8, %rcx
Cmpq %rax, %rcx

Jnge triad+0x27
* Average value of RAX is the tripcount

y (inteF)

Branch Analysis: Function Arguments
(Intel64 only)

 Functions with “few” (<6?) arguments
use registers for argument values

 Capturing full PEBS buffer + LBR on
calls_retired event allows
measurement of distribution of
argument values per calling site

-E.g. length of memcpy,memset

" (intelﬁ)

Processing LBRs

Branch_ O Target O

Branch 1 Target 1

*All instructions between Target 0 and Branch_1 are retired 1 time
*All Basic Blocks between Target 0 and Branch_1 are executed 1 time

*All Branch Instructions between Target_0 and Branch_1 are not taken

So it would all Seem Very Straight Forward

Shadowing and Precise Data Collection

* The time between the counter overflow
and the PEBS arming creates a
“shadow”, during which events cannot
be collected

~8 cycles?

 Ex: conditional branches retired

- Sequence of short BBs (< 3 cycles in duration)

- If branch into first overflows counter, Pebs
event cannot occur until branch at end of 4th BB

- Intervening branches will never be sampled

20

20

N INININ

20

20

Shadowing

Assume 10 cycle shadow for this example

@)
P
c O
@)
@)
@)
@
P
P P
P
c ¢ C c C

O means counter overflow
P means PEBS enabled
C means interupt occurs

O |olo|lZ2|2

5N

Reducing Shadowing Impact

* Some “events” will never occur!
- Falling into shadowed window

* Use LBR to extend range of the single
sample

* Count the number of objects in LBR and
increment count for all of them by 1/15

—Since you have only one sample

Minimizing Shadowing Impact on BB

Cycles/branch taken

N INNINIO

20

20

O
P
c O
O
O
P
P
P
CcC Cc C

Many more with 20
Cycles/branch taken

Execution Count

Pebs Samples taken

N

N

0

0

O 0
0

P 0
P
c C

5N

15N

15N

15N

15N

16N

17N

18N

19N

Number of LBR entries

In this example there
are always 15 BB'’s
covered in the LBR.

Incrementing the BB
execution count for
each BB detected in
the LBR, by 1/15 seen
in the LBR path will
greatly reduce the
effect of shadowing

Many more with N Many more with 15 N

samples taken

LBR Entries

Branch Filtering

LBR Filter Bit Name Bit Description bit
CPL_EQ_O Exclude ring O 0
CPL_NEQ_O Exclude ring3 1
Exclude taken conditional
JCC branches 2
NEAR_REL_CALL Exclude near relative calls 3
NEAR_INDIRECT_CALL | Exclude near indirect calls 4
NEAR_RET Exclude near returns 5
Exclude near unconditional near
NEAR_INDIRECT_JMP branches 6
Exclude near unconditional
NEAR_REL_JMP relative branches 7
FAR_BRANCH Exclude far branches 8

51

Branch Filtering

 User near calls only

- Tracking back from OS critical sections to user
function that caused the problem

- Lack of returns may be an issue in some cases
— But not for HPC ©

- Use static call analysis to clean up chains

 User and OS near calls only
- Profiling OS call stacks

- Eliminating leaf functions may be complicated by
lack of returns
— Don’t remove returns if this is a problem
— Use BTS to capture deeper stack

- Issue: cannot exclude unconditional jumps without
excluding calls

Precise cycles can be constructed
from any PEBS event

* Allow profiling code sections screened
with STI/CLI semantics

- Ring 0 OS critical sections

* PEBS sampling mechanism may loose
interrupts during halted state

- Instruction retirement required to generate
performance monitoring interrupts (PMI)

Counts will not occur without PEBS being invoked

- (intelﬁ)

Using cycles to optimize the
optimizations

* Profile the application for cycle usage and uop flow.
— Identify hot functions
- Check asm of FP intensive code for correct instruction mix
— X87 is slower than SSE
- Intel® Compiler has FP-model flags and many pragmas

* Vectorize long tripcount loops
- =SSE4.2 uses unaligned loads more aggressively
- Align data whenever possible

— Check loop tripcounts with br events and register values
(described later)

- Interchange loop orders to get long loops as inner loop
— Change multi dimensional array layout as needed

— Completely unroll short tripcount (<~7) inner loops
- Split/merge loops depending on code size

- Predicate hoist constant condition if’s out of loops
- Etc, etc, etc...I could write a book

o (intelﬁ)

Using cycles to optimize the
optimizations
« C++ and large binaries: Only optimize what uses cycles

- Use call counts to drive compiler inlining

- Compiler needs to evaluate a large enough scope to do its
best work

- Particularly functions/methods invoked inside loops
- Size vs Speed

- Extremely large binaries need to minimize size
— -0Os (linux) =01 (windows)
- Conditional Branch Mispredictions
- HW prediction is shockingly good
— Costis unretired uop flow (uops_issued.any —uops_retired.slots)
— Optimize case statement order, lowers uops_retired
 Use Intel Compiler LIBM,MKL, tbbmalloc, tbbmalloc_proxy
— Intel linker with LD_PRELOAD env variable
- =L/path/to/intel/libs -limf etc

- http:/ /software.intel.com/en-us/articles/optimizing-without-
breaking-a-sweat/

- (intelﬁ)

Thoughts on optimizing large OOP
code bases

e Classic OOP will result in code bases of
small functions integrated together to
invoke the algorithm

* Signatures
- Low instruction_retired/call_retired
- High call_retired/branch_retired
—High indirect_call/call_retired
—High uops_issued.core_stall_cycles -

resource_stalls.any

~High 2latency(source)*ifetch_miss(source)

- (intel®

How big are the CERN programs

1000000
100000 \\
o \

1000 \:\

\\.

100

10
—— ATLAS example run

— CMS example run

Geantd example run

]. I I I I I I I I T T T T I

SO R S N T R -
e N S I A e S

& BT
Wvoor 5 o

,\’Co

o5 o
Cacheline access frequency evaluated by sorting cachelines by
their accesses

Thus a binary working set size measurement

. (intelg)

Optimizing large Object Oriented
Code

* Inlining is the advice of choice but things are
more complicated.

 Inlining increases binary size and can make
ifetch misses more costly and code slows down
- Even if fewer in overall number

 Ifetch miss events have among the largest IP
skids of all events
— They can show up in the wrong function

 Large codes built of many small methods can
result in flat cycle profiles

— It can take thousands of functions to account for 80%
of the clock cycle samples

- Thus thousands of functions must be optimized to
achieve a significant performance improvement [inter)

Optimizing large Object Oriented
Code

* The author knows of no proven methodology to
correct the cost of excessive taken branches
and the resulting flat cycle profile.

- Need fewer calls,
- instructions required for calling conventions

- Larger functions to allow the compiler to see the whole
calculation and do a better job

- Larger shared objects to allow greater effect from IPO

— Create shared objects using just the hot methods to avoid
excessive inlining

* This has to be applied to enough
methods to account for 80->95% of the

cycles
Mostly this is about reducing the total

instruction count (inl:er)

Thoughts on optimizing large OOP

code bases

* Function calls result in added instructions
— Call and return

- Trampolines required for position independent code/
shared object cross invocations

- Indirect branches can be more costly
- Freeing & restoring registers for local use
- Mostly an ia32 issue
- Setting and reading function arguments
- Larger on ia32 due to required use of stack

* Virtual function calls (function pointers)
increase indirect call instructions and
associated pointer loads

. (intelﬁ)

Thoughts on optimizing large OOP
code bases
* Does a call graph help?
-~ Unlikely

- Provides the direct path back to main
- Usually sampled on time
— Does not provide call counts in most cases

- Does not identify clusters of active
(excessive) call activity

o (intelﬁ)

Thoughts on optimizing large OOP
code bases
* A modest proposal:
 Use LBRs and static analysis to

evaluate frequency and cost of function
calls

—the call count

—count taken branches between call and
arrival in function

- Get count of indirect branches invoked
- Add cost for function arguments
- Add a cost for push/pop of registers

. (intelﬁ)

Thoughts on optimizing large OOP

code bases
* A modest proposal:

 Use social network analysis/network theory
to identify clusters of active, costly function
call activity

- Web search on Social networking/social networking
analysis
 Order clusters by total time and/or total
“cost”

- Split time of functions shared between clusters by
call counts

— Calls have a direction
— Utility functions must not be viewed as bridges

- (intelﬁ)

Thoughts on optimizing large OOP
code bases
* A modest proposal:
* Manually reduce function count in hot
clusters by explicit code inlining

- Prioritize work by call overhead cost to be
gained

- Duplicate code as needed
-~ Reduce cross shared object call counts

o (intelﬁ)

Using cycles to optimize the
optimizations
 PEBS near call event + LBRs to get call counts/source
- Selecting source files to compile with enhanced inlining
- IPO can be enahnced when used with PGO
 PEBS near call event + registers (em64T) to get
function arguments

- Fix memset/memcpy calls with short lengths

— Excessive calls to malloc/free due to constructor/destructor?
- Identify small malloc’s/free’s

- Let the compiler allocate small structures statically rather than malloc
and free them excessively

- (intelﬁ)

Using cycles to optimize the
optimizations
 Optimize only functions that use
significant cycles

-~ Reduces build time
- Minimize fighting the compiler

- Changing optimizations or compilers in large
builds can be problematic

* Move gcc/icc and create script called

gcc/icc

#!1/bin/sh

if echo $@ | grep -f /tmp/sourcefilelist.txt > /dev/null ;
then /opt/intel/Compiler/11.0/083/bin/intel64/icc.ori —g -fast $@;
else gcc.ori -g -02 $@;

fi

- (intelﬁ)

Using cycles to optimize the
optimizations
* PTU sometimes shows *.h files as source

 Generate a list of c/cpp files as follows:
— Export list of functions from Intel® PTU

— Create script grepf.sh to grep for defined symbols:
#1/bin/sh
if nm --defined-only --demangle $1 | grep -f $2 >
/dev/null ; then echo "basename $1 .0 .cpp; fi

- Find hot object files and remember cpp files:
find -name "*.0" -exec grepf.sh '{}'
/tmp/functionlist.txt \; > /tmp/sourcefilelist.txt

* This will produce sourcefilelist that only

includes targets of compiler

. (intelﬁ)

Event Classes

1. Execution flow events
— Cycles, Branches, stalls, uops/inst_retired

2. Penalty events
Change code to remove the penalty

- Ex: load requiring access to dram

3. Resource saturation events
- Bandwidth, load/store buffers, dispatch ports
— No well defined cost

4. Architectural characterization
— Cache accesses, MESI states, snoops

5. Instruction mix

Memory Access

e Load instruction uses virtual address to
access memory space

- HW translates that to physical address to
access caches

— DTLB does this

* Access is hierarchical
— Check L1D first
- If (miss) check if Line Fill Buffer (LFB) allocated
- If(LFB miss) allocate LFB, escalate miss to L2

- If(miss L2) get Super Queue (SQ) slot, escalate to
uncore

Memory Access Penalties

e Load misses cause execution stalls

—In most cases store misses will not stall
execution

- Data to be stored is held in store buffer until
desired line is in L1d, thus execution
continues

* Loads that hit LFBs overlap in time with
original line request

- If the original request was a load, the
original miss accounts for the entire penalty

- If there are multiple load request to the LFB
the least costly would be the penalty

- Not all load misses are equally costly

Stall Decomposition on Intel®
Core™ 17 Processors

- Same basic methodology as on Intel® Core™2
processors¥*

* Basic strategy is to identify the largest
penalty event contributions first
- Work your way down to smaller contributors

* FE starvation can nhow be measured
— And no branch misprediction flush penalty

 Only both_threads_stalled can be measured
at execution

- SMT will make Zevents,*penalties,; >
both_thread_stalled

— ALU_only stalls can be measured per thread
— Ports 0,1 and 5

* Intel, the Intel logo, Intel Core and Core Inside are trademarks of Intel Corporation in the U.S. and - t l®
71 other countries. ‘ l n e)

Stall Decomposition: Zevents *penalties,

The Elephants

 LLC, L2, and DTLB misses are the large penalty,
common events

 LLC activity must be measured at L2 for it to have core,
PID, TID context

— Uncore has no ability to track core, PID or ThreadID
- Uncore event collection not yet supported
* Figure of merit: Events*Penalty/cycles

- Samples_ev*SAV(ev)*Penalty(ev)/
(Samples_cyc*SAV(cyc))

- If SAV(ev) = SAV(cyc)/Penalty(ev)

- FOM = Samples_ev/Samples_cyc

— This is ~ how the default SAVs are set

- Minimizes required screen area in the data display

” (intelﬁ)

Stall Decomposition: Zevents *penalties,
The Elephants

* Figure of merit: Events*Penalty/cycles

 Overcounts when there are temporally
overlapping penalties

e Compilers can hoist loads. So make sure
there are stalls as well

- PEBS event uops_retired.stall_cycles should pile up
very close to instructions suffering large penalties

* The combination provides the answer
to the critical question:

Is the fix worth the effort?

- (intelﬁ)

Penalty Events: Memory Access

 Intel® Core™ i7 processor memory access
events are “per source”

- How many times cacheline came from “here”

* Unique sources have unique Penalties
- DP system has ~10 sources outside a core
- Large number of performance events

« Memory access events are precise
- HW captures IP and register values
- Sample + Disassembly => Reconstruct Address

 Latency Event captures IP, load latency, data
source and address

- Similar to Itanium® Processor Family* Data Ear

* [tanium is a trademark or registered trademark of Intel Corporation or its subsidiaries in the United - l@,
States and other countries. ‘ l n te

Offcore Response Latencies

 LLC Hit that does not need snooping
- LLC latency ~ 35-40 cycles

 LLC Hit requiring snoop, clean response ~65
 LLC Hit requiring snoop, dirty response ~75
 LLC Miss from remote LLC ~ 200 cycles

e LLC Miss from local Dram ~60 ns

 LLC Miss from remote Dram ~100 ns

Note: All latencies and memory access penalties shown are merely illustrative. Actual latencies will depend on (among other things) processor model, core and
uncore frequencies, type, number and positioning of DIMMS, platform model, bios version and settings. Consult the platform manufacturer for optimal setting for
any individual system. Then measure the actual properties of that system by running well established benchmarks.

s (intelﬁ)

Memory Access PEBS Events

Identify LLC and DTLB load miss
- Precise load events do not include DCU prefetch/ L2 prefetch

Name Penalty Umask | Umask_name
mem_load_retired |0 Ox1 L1D_ HIT

6 0x2 L2 HIT

~35 0x4 LLC_HIT_UNSHARED¥*

~75 0x8 OTHER_CORE_L2_ HIT HITM*

depends | 0x10 LLC_MISS
depends | 0x40 HIT_LFB

0x80 DTLB_MISS*

LLC_HIT_UNSHARED should be LLC_HIT_NO_SNOOP
OTHER_CORE_L2_HIT_HITM should be LLC_HIT_SNOOP
DTLB_MISS counts primary and secondary DTLB misses on Corel7
Only counts primary on Xeon™ 5600 Family Processors
Penalty for DTLB miss is not a constant
Also use Dtlb_load_misses.walk_cycles on Xeon™ 5600 Family Processors

Note: All latencies and memory access penalties shown are merely illustrative. Actual latencies will depend on (among other things) processor model, core and
uncore frequencies, type, number and positioning of DIMMS, platform model, bios version and settings. Consult the platform manufacturer for optimal setting for
any individual system. Then measure the actual properties of that system by running well established benchmarks.

% (intelﬁ)

Precise Uncore Response

Xeon™ 5500 Family Processors
 Load response from LLC, another core,

local DRAM, remote socket, remote
DRAM and IO

Name Penalty | Umask | Umask_name
mem_uncore_retired | ~85 0x2 OTHER_CORE_L2_HITM
REMOTE_CACHE_
~185 0x8 LOCAL_HOME_HIT

~200 0x20 LOCAL_DRAM
~350 0x40 REMOTE_DRAM
0x80 I0

OTHER_CORE_L2_ HITM should be LOCAL_HITM

Note: All latencies and memory access penalties shown are merely illustrative. Actual latencies will depend on (among other things) processor model, core and
uncore frequencies, type, number and positioning of DIMMS, platform model, bios version and settings. Consult the platform manufacturer for optimal setting for
any individual system. Then measure the actual properties of that system by running well established benchmarks.

7 (inteF)

Precise Uncore Response

Xeon™ 5600 Family Processors
 Load response from LLC, another core,

local DRAM, remote socket, remote
DRAM and IO

Name Penalty Umask | Umask_name
mem_uncore_retired | ~85 0x2 LOCAL_HITM
~375 0x4 REMOTE_HITM
LOCAL_DRAM_AND_
~220 0x8 REMOTE_CACHE_HIT
~375 0x10 REMOTE_DRAM
0x80 UNCACHEABLE

Note: All latencies and memory access penalties shown are merely illustrative. Actual latencies will depend on (among other things) processor model, core and
uncore frequencies, type, number and positioning of DIMMS, platform model, bios version and settings. Consult the platform manufacturer for optimal setting for
any individual system. Then measure the actual properties of that system by running well established benchmarks.

s (intelﬁ)

79

Precise Store DTLB miss

Name Event |Umask |[Umask _name
mem_store_retired | 0x0c Ox1 DTLB_MISS*
Ox2 dropped events

DTLB_MISS counts primary and secondary DTLB misses on Corel7

Only counts primary on Xeon™ 5600 Family Processors

Overlapping Memory access penalties
Xeon 5600 family:
Offcore_request_outstanding

cmask,
Event Name umask [inv
OFFCORE_REQUESTS_OUTSTANDING.ANY.READ 0x8
OFFCORE_REQUESTS_OUTSTANDING.ANY.READ_NOT_EMPTY 0x8 1,0
OFFCORE_REQUESTS_OUTSTANDING.DEMAND.READ_CODE Ox2
OFFCORE_REQUESTS_OUTSTANDING.DEMAND.READ_CODE_NOT_EMPTY |0x2 1,0
OFFCORE_REQUESTS_OUTSTANDING.DEMAND.READ_DATA Ox1
OFFCORE_REQUESTS_OUTSTANDING.DEMAND.READ_DATA_NOT_EMPTY |Ox1 1,0
OFFCORE_REQUESTS_OUTSTANDING.DEMAND.RFO 0x4
OFFCORE_REQUESTS_OUTSTANDING.DEMAND.RFO_NOT_EMPTY Ox4 1,0

Offcore_requests_outstanding.demand.read_data_not_empty = cycles there is
at least one request from L1d that had to be satisfied by escalation to uncore
Includes L1d HW prefetch, loads and SW_prefetch

Defines upper limit of memory access penalties due to L2 miss

. (intelg)

So what do you do?

* Load driven misses resulting in pipeline stalls can be
fixed by

— Use longest tripcount loop to drive strategy

— Change loop order/data layout to give HW prefetcher a
chance

— Divide large structures by usage (See MILC)
— Structures of arrays rather than arrays of structures

— Make sure buffer initialization is consistent with usage
- Make remote_dram misses local dram misses & cut latency in half

* DTLB misses: use large pages

o (intelﬁ)

So what do you do?

* Load driven misses resulting in pipeline stalls can be fixed by

 SW prefetch _mm_prefetch(addr, hint)
<ia32intrin.h>

— Use LOAD_HIT_PRE to identify when prefetch distance is too
small

— Min prefetch dist (iter) ~ 200/(uops_per_iteration/3)
— For local dram
— Will change as latency changes

- long inner loop-> prefetch ahead in inner loop
— Short inner loop-> prefetch 1,2 iterations ahead on outer
— Reused linked list -> create indirect address array

— #pragma openmp for (guided)
will cause havoc

- Volume 2 of that book
- SW prefetches will not help a BW limited application

» (intelﬁ)

Other Penalties

* Divides and SQRT (Arith.Cycles_div_active)
- Vectorize
— Save reciprocals that are reused
- Merge with bandwidth limited loops

* Store Forwarding (Load_Block.overlap_store)
- Event only on Xeon™ 5600
- Use Intel Compiler
- Be careful with data type sizes (keep consistent)

* FP exceptions (uops_decoded.ms)
- Use Intel compiler (no x87, FTZ)
- Uninitialized values in simd registers

 No ability to measure stalls associated with
chained long latency instructions

- Sum = a+b+c+d+e...evaluated left to right (intelw)

Instruction Starvation

e Lots of calls to small functions can lead to
starving the pipeline of instructions

-0Only L2 prefetchers prefetch instructions

 Uops_issued.core_stall_cycles -
resource_stalls.any = cycles BE wants
instructions, but does not get them

—This is more accurate with HT off

* Can be cross checked on Xeon™ 5600
processor with
offcore_requests_outstanding.demand.read
_code_not_empty (for L2 miss)

. (intelﬁ)

Decomposing instruction starvation

Event Penalty

12_rqsts.ifetch_hit ~6
offcore_response_0.demand_ifetch.local_cache ~35
offcore_response_0.demand_ifetch.local_dram ~200
offcore_response_0.demand_ifetch.remote_dram ~350

Ifetch miss events have among the largest IP skids of all performance
events. The IP can easily have been on in a previously executing
function at the time the ifetch miss occurred. See slide 23
Uncertainties are also larger, due to the many buffers in the pipeline
Instruction starvation does not occur unless the buffers drain

Note: All latencies and memory access penalties shown are merely illustrative. Actual latencies will depend on (among other things) processor model, core and
uncore frequencies, type, number and positioning of DIMMS, platform model, bios version and settings. Consult the platform manufacturer for optimal setting for
any individual system. Then measure the actual properties of that system by running well established benchmarks.

- (intelﬁ)

Instruction Access Penalties

« Demand Ifetch: offcore_response.demand_ifetch.*

- Usually associated with function calls followed by taken
branches in LARGE binaries

- IPO, force inlining
- PGO to reduce taken branches
- shrink sizes of other functions
— Change order of link command
- Offcore_response.demand_.ifetch.local_dram
- Sw_prefetch(&foo(),1); ?2????
- Offcore_response.demand_ifetch.remote_dram

- Run 1 copy of binary per socket
— Must have two complete copies on the disk

- Offcore_response.demand_ifetch.llc_hit_no_other_core
- Sw prefetch?, PGO, IPO

« ITLB misses: use large Itlb pages

. (intelﬁ)

Reducing calls and *.so

* Use linker and a control list to identify
internal and external functions in *.so to
reduce the use of trampolines

—-icpc -WI,-z,defs -L/External -L/Linker -WI, -

version-script,export.tmp

$ cat export.tmp

{

global:
_Fool;
_Foo2;

local:
_Baril;

_Bar2;
¥

87

Reducing calls and *.so

 Identifying the internal functions is not
simple

* Use LBRs, and sfdump5 (see backup) to
identify call chains between *.so

* Merge source files into fewer *.so
—This will improve effectiveness of PGO/IPO

* Use global/local file of previous slide to
reduce trampolines

NOTE: Author has never personally done
this, so he does not know if it really works,

_or if the syntax is really correct. :i/jntelg

Event Classes

1. Execution flow events
— Cycles, Branches, stalls, uops/inst_retired

2. Penalty events
- Ex: load requiring access to dram

3. Resource saturation events
- Bandwidth, Id/st buffers, dispatch ports
— No well defined cost

4. Architectural characterization
— Cache accesses, MESI states, snoops

5. Instruction mix

. (intelﬁ)

Resource Limitation Events

 Resource limitation is usually only a problem
when the resource is saturated

— There is ~no cost* for bandwidth until the bandwidth
is close to saturated

— *Latency depends weakly on BW on Corei7

* Lost cycles due to resource saturation can be
hard to measure

* Only way to determine bandwidth limit is to
measure it

— Count cachelines transferred/cycle for triad
— (w/wo SSE NT stores)
- Depends on the number of triad threads

 Resource saturation results in no gain from HT

Resource Limitation: Memory
Bandwidth

 Usually needs HW (or SW) prefetch

— Load latencies will restrict execution otherwise
- Exception: for(i=0;i<len;i++)a[i] = b[addr[i]];

* Limit depends on

- number and location of concurrent threads consuming large
numbers of lines

- For asynchronous execution this becomes ~impossible to know
— core and uncore frequencies
- type, number, size, location of dimms
- bios version and settings
- Motherboard

 Measured in cycles/cacheline transferred

- Triad with/wo RFO result in ~ same limit!

— All "BW" events discussed here count cachelines
transferred

o (intelﬁ)

Triad bandwidth vs thread count

18 T"Socket 0 only /.,
1.6 /
1.4 /

1.2 /

0.8 /

0.6

/ Socket 0 full,

0.4 / adding threads
on socket 1

—¢—Seriesl

0.2

O T T T T T T T T 1

1 2] 4 . 5 ., 6 7 .
Open MP triad on machine with unmatched dimms

NUMA = ON

Note: All latencies and memory access penalties shown are merely illustrative. Actual latencies will depend on (among other things) processor model, core and
uncore frequencies, type, number and positioning of DIMMS, platform model, bios version and settings. Consult the platform manufacturer for optimal setting for
any individual system. Then measure the actual properties of that system by running well established benchmarks.

» (intelg)

Latency stalls vs Bandwith
saturation

* A latency stalled program has a small
number of outstanding data cachelines in

flight simultaneously

1=0;

While(mystruc->next 1=0){
mystruc=mystruc->next;
ali] = mystruc->b_val;
I+ +;

by

Only one (possibly 2) loads in flight at a time

* Clearly a triad with prefetchers enabled in

_BW limited (inl:er,

Gather, 000 execution and
Bandwidth saturation

Consider:
For(i=0;i<len;i++)A[i] = B[ADDR]i]];

A data collection might show something like 1000 cycle samples, 200
Instruction retired samples and 5000 mem_uncore_retired.local _dram
samples

The mem_uncore SAV is 10K, the cycle SAV is 2 million

This absorbs the 200 cycle penalty..so the ratio of the samples is the ratio
of the cycles...

Clearly, there are more cycles in dram access than cycles executed.

04 (intelg)

Gather, 000 execution and
Bandwidth saturation

In a gather loop the RS acts as a prefetcher.

There are 6 uops/iteration -> ~5 iterations in the RS?

except the loads go out immediately..

there is no dependency so the 2 loads can be executed,

the incr, cmp and branch can execute, again as there are no dependencies
so only the stores pile up

This would suggest ~30 iterations in flight at a time

the number of load buffers might be what blocks FE uop issue
there are 48 and 2/iteration are needed

The loads of ADDRJi] are sequential and thus HW prefetched.
All the stalls are on the load of B[ADDRJI]]
Thus the events fall on the next instruction.

The mem_uncore_retired.local_dram events are all overlapped..
Thus events*penalties overcounts by a huge factor

95

Bandwidth per core

* Much more complicated than on Intel®
Core™2 processors
-Bandwidth limit depends on nhumber of

threads using maximum BW and core
position of those threads

— CAN ONLY BE MEASURED

- No single event counts total cachelines
in+out to memory /core

— Cacheable writebacks are written to LLC and
written to memory at a later time

- Offcore_response.data_ifetch.all_dram
— However, WB ->dram makes no sense

- Local vs remote memory
-~ NT SSE Stored cachelines are problematic

Offcore_Response: Breaking Down
Off-core Memory Access
 Matrix type event

- Request type X Response type
— 65025 possible real combinations (65535 — 2 X 255)

- Request and Response programmed in MSRs
- OR(Request bits true) .AND. OR(Response bits true)

— Ex: all LLC misses = set bits
0,1,23,4,5,6,11,12,13,14
— 787F

* Solves problem of averaging over widely
differing penalties

 Only one version of the event (b7/msr 1a6)
- offcore_response_0

. (intelﬁ)

98

Memory Access: Off-core Access
* Offcore_Response_0

— “umasks” set with MSRs 1a6

— Two versions on XEON 5600 processor family
— Programming a little different

Bit position

Description

Request

Demand Data Rd = DCU reads (includes partials, DCU
Prefetch)

Type

Demand RFO = DCU RFOs

Demand Ifetch = IFU Fetches

Writeback = MLC_EVICT/DCUWB

PF Data Rd = MPL Reads

PF RFO = MPL RFOs

PF Ifetch = MPL Fetches

OTHER

Response

LLC_HIT_UNCORE_HIT

Type

OIRIN([a[WN|HL|WIN|=|O

LLC_HIT_OTHER_CORE_HIT_SNP

[
o

LLC_HIT_OTHER_CORE_HITM

==
[y

LLC_MISS_REMOTE_HIT_SCRUB

[
N

LLC_MISS_REMOTE_FWD

[
)]

LLC_MISS_REMOTE_DRAM

[
o

LLC_MISS_LOCAL_DRAM

(Y
1

I0_CSR_MMIO

Offcore_response Reasonable Combinations

MSR
Response Type Encoding
ANY_CACHE_DRAM 7Fxx
ANY_DRAM 60xXx
ANY_LLC_MISS F8xx
ANY_LOCATION FFxx
I0_CSR_MMIO 80xx
LLC_HIT_NO_OTHER_CORE | 01xx
LLC_OTHER_CORE_HIT 02xx
LLC_OTHER_CORE_HITM 04xx
LCOAL_CACHE 07xx
LOCAL_CACHE_DRAM 47xx
LOCAL_DRAM 40xx
REMOTE_CACHE 18xx
REMOTE_CACHE_DRAM 38xx
REMOTE_CACHE_HIT 10xx
REMOTE_CACHE_HITM 08xx
REMOTE_DRAM 20xx

MSR

Request Type | Encoding
ANY_DATA xx11
ANY_IFETCH xx44
ANY_REQUEST xxFF
ANY_RFO xXx22
COREWB xx08
DATA_IFETCH xx77
DATA_IN xx33
DEMAND_DATA xx03
DEMAND_DATA_RD | xx01
DEMAND_IFETCH xx04
DEMAND_RFO xx02
OTHER xx80
PF_DATA xx30
PF_DATA_RD xx10
PF_IFETCH xx40
PF_RFO xx20
PREFETCH xx70

99

A bit different on Xeon 5600 Processor Family

NT local stores counted by 0200 not 4000

Total Memory Bandwidth

 Delivered + Speculative Traffic to local memory

- Reads and Writes Per Source
— UNC_QHL_REQUESTS.IOH_READS
— UNC_QHL_REQUESTS.IOH_WRITES
— UNC_QHL_ REQUESTS.REMOTE_READS (includes RFO and NT store)
— UNC_QHL_REQUESTS.REMOTE_WRITES (includes NT Stores)
— UNC_QHL REQUESTS.LOCAL_READS (includes RFO and NT Store)
— UNC_QHL_REQUESTS.LOCAL_WRITES (no NT stores)

° PreC|se totals can be measured in IMC

- But cannot be broken down per source
— UNC_IMC_NORMAL_READS.ANY (or by channel, includes RFO)
— UNC_IMC_WRITES.FULL.ANY (or by channel, includes NT stores)

100 ‘ inter]

A few particularly useful events for
measuring BW

e Offcore_response.data_in.local_dram
— Read BW (per core) from local dram

o Offcore_response.data_in.remote_dram
- Read BW (per core) from remote dram
— Indicates NUMA locality problem

* Uncore events get totals but only in counting mode with no
data/core

- Unc_imc_normal_reads.any

— Total read cachelines from this mem controller
- Unc_imc_writes.full.any

— Total written cachelines to this mem controller

101 ‘ inter]

Latency vs Bandwidth

* On Xeon™ 5600 processors the average
occupancy of the super queue can be
evaluated as
offcore_requests_outstanding.any.reads/

cpu_clk_unhalted.thread

o If this is large then the loop is likely BW
limited

 If it is small and the event counts indicate a
memory access problem due to loads then it
is likely to be a latency issue

102 ‘ inter]

Triad bandwidth vs thread count

2.5
Socket 0 only
i L 4
4
4
1.5 *
L 4
4
1 * ® & &
2
0.5 * Socket O full,
adding threads
on socket 1
0 . T T
0 2 4 6 8 10 12 14

Open MP triad on machine with matched dimms

NUMA = ON

Note: All latencies and memory access penalties shown are merely illustrative. Actual latencies will depend on (among other things) processor model, core and
uncore frequencies, type, number and positioning of DIMMS, platform model, bios version and settings. Consult the platform manufacturer for optimal setting for
any individual system. Then measure the actual properties of that system by running well established benchmarks.

103 ‘ intela

Average super queue occupancy

14
12 <aTel N | n !

Socket 0 only -
10 Y [

‘ [|
2 4
8 \ 4
2 2

V'S ¢ ¢ @ socketO
° Socket O full, W socket1
. adding threads

on socket 1
2
O T T T T
0 2 4 6 8 10 12 14

Variation per core is ~ 20%
Many temporally overlapping requests identifies
bandwidth saturation

Note: All latencies and memory access penalties shown are merely illustrative. Actual latencies will depend on (among other things) processor model, core and

uncore frequencies, type, number and positioning of DIMMS, platform model, bios version and settings. Consult the platform manufacturer for optimal setting for
any individual system. Then measure the actual properties of that system by running well established benchmarks. ~ l ®)

104 (i

Average super queue occupancy

total

14 Socket O only
12 « *
2
10 *
* L 2
8 . M
. ¢ ¢ ° Socket 0 full,

; di I ! ¢ total
A on socket 1
2
0 T T T T T T 1

0 2 4 6 8 10 12 14

Evaluated with no knowledge of thread count

Note: All latencies and memory access penalties shown are merely illustrative. Actual latencies will depend on (among other things) processor model, core and

uncore frequencies, type, number and positioning of DIMMS, platform model, bios version and settings. Consult the platform manufacturer for optimal setting for
any individual system. Then measure the actual properties of that system by running well established benchmarks. ~ l ®)

105 ‘ I

Identifying bandwidth saturation

e Identifying BW saturation by measuring
bytes/time is complicated by the BW limit
changing with the number of threads
consuming BW (slide 90)

* Non concurrent execution, with some
threads consuming large BW, while others
consume little, can make identifying
saturation extremely difficult

106 ‘ inter]

Identifying bandwidth saturation

* Average SQ occupancy limit varies less with
thread count/concurrency

* It does not distinguish between LLC hits and
LLC misses

* Recipe:
—Identify problematic functions with <SQ occup>

—Use offcore_response events to determine the
fraction associated with LLC hits vs misses

107 ‘ inter]

But what is the potential gain?

* None of this measures what is heeded!
— It does not tell us if the fix is worth the effort!

* The fix is to reduce the number of lines
transferred

- Consume more data per line transferred
 Gain
- BW_time = total_lines/BW_Ilimit
- Exec_time = time to execute instructions
- Memory latency of ~0

- Time = MAX(BW_time, Exec_time)
- Completely BW limited ~ change_in_total_lines/BW_Ilimit
Problem: cannot measure exec time,
BW limit is absurdly complex in general
(must assume synchronous execution)

108 ‘ inter]

An example
Double *a, *b;
For(i=0; i<len; i+=8)a[i] = sqrt(b[i]);

We might be able to compress aand b to
transfer fewer lines

Double *ap, *bp;
For(i=0; i<len/8; i++)apli] = sqrt(bpli]);

But would it actually go any faster?
No, The SOQRT latency ~ matches the BW limit

109 ‘ inter]

Estimating the gain

* Exec time ~ uops_retired.slots/ 3'+
arith.cycles_div_active

— Undercounts cycles associated with chained long latency
uops

* Optimized BW time = Adjusted_lines/Max_bw

e Gain ~ Cpu_clk_unhalted.thread -
MAX(Optimized BW time, Exec Time)

 Many Uncertainties, but better than nothing

— Assumptions about concurrency of high BW usage

— Assumptions about cycles associated with chained long
latency uops

— Is uops/3 realistic?

110 ‘ inter]

What do you do about Bandwidth?

* Data layout change is usually best
— Fix buffer initialization to make remote_dram small
— Fix order of structure elements (big to small)
— Eliminate unused structure elements
— Divide structures into parallel structures by use
— Measure data consumed/cacheline in
— Sum load/store in loops (ignore stack pointer, +=)

— Multiply by total tripcount & divide by
64*offcore_response.data_in.local_dram

— Fix nested loop order

e Measure data_in with prefetchers on & off

— If difference is large
- Change data layout to help HW prefetcher or

— Consider sw prefetching everything and disabling HW
prefetchers

111 ‘ inter]

00O resource Saturation

 Load buffer saturation (resource_stalls.ld)
- In HPC, frequently due to bandwidth saturation

e Store buffer saturation (resource_stalls.st)
— This will cause stores to stop the pipeline
- Usually associated with stores missing 11d/I12 etc
- SW prefetch, change layout to help HW prefetch

* Port saturation (uops_executed.portX/cycles)
- Most common for load port (2)
— Avoid loop distribution (F90)
- Merge loops to reuse data while available
- Align data and vectorize

Less than ideal multi core scaling

e Perfect scaling results in the number of perf
events (summed over cores) being constant

* Difference of event counts can identify
locality using cycles and some reasons for
non scaling behavior
—Cacheline access contention can cause non scaling

- Load-hitm and store address analysis identifies this

* Most non scaling due to resource saturation
and evaluated as a ratio: events/wall_cycles

- Wall_cycles ~ cycles/active cores
or Cpu_clk_unhalted.thread max(ICPU)

- Cannot be seen in difference display

113 ‘ inter]

Sources/signatures of non scaling
* Turbo

—Having this on results in large drop from 1->2

 Smaller share of LLC
—Decrease in LLC hits, increase in LLC miss

* Increase in page faults
—More threads require more memory

* Asymmetry associated with core O
—0OS induced imbalance

» Context switching
- 0S’s love to move things around, being the boss!

-Don’t know about logical cores & double up on one
physical core, while other phys cores are idle

114 ‘ inter]

Sources/signatures of non scaling

e Saturating a resource
- Ex: Bandwidth
—Code optimization increases resource saturation

 Shared memory application specific
—Serial execution
—Overly contested lock access
—False sharing (non overlapping access to a line)

* NUMA based non scaling
—Increase in *.remote_dram

 HT can be viewed as a way to recover scaling

115 ‘ inter]

More sources of non scaling

* Load imbalance
—Increase in halted cycles

 MPI global operations

— increase in time associates with MPI global APIs
- Ex: allreduce

* Synchronous message passing
—-"Intrinsically” non scaling

116 ‘ inter]

Resolving non scaling issues

e Disable turbo while doing measurements
* Disable HT while doing measurements

* Pin all affinities
— OS’s love to move things

— Old OS’s will schedule 2 threads on a physical core while
leaving other physical cores idle. This increases with thread
count

 Make sure there is enough memory
- /proc/meminfo->Active (?)
e Do 1 thread baseline on a core other than O

e Increased LLC miss
— Usual approaches to fixing these, see previous

117 ‘ inter]

Resolving non scaling issues

 Bandwidth issues
—Check data decomposition for sepparation
—Improve data layout to reduce cacheline usage
—See previous section on BW issues

* Excessive lock contention
—Use finer grained locking
—Use faster locking APIs
—Make sure the global update is really needed
— Can you continue working with local copy
 False sharing
- Put 64 bytes between data elements

118 ‘ inter]

Resolving non scaling issues

* NUMA related non scaling

- Remote dram data access
— Improve buffer initialization for local access
— Make multiple copies for each socket

-~ Remote dram ifetch access

- Make two binaries on the disk and affinity pin per
socket

 MPI global operations
—Use openMP within a box to reduce MPI nodes
—Use good MPI library

119 ‘ inter]

Resolving non scaling issues

 Load imbalance

—Seen as halted cycles
— TSC difference for successive cpu_clk _unhalted.ref != SAV

- Work queue approach dynamically restores
balance

— At a cost
— NUMA locality can be lost
— SW prefetching can become unpredictable within a thread

— Estimate work during data decomposition to
create balanced work rather than balanced
iteration count

—Save some iterations for final work queue
balancing

120 ‘ inter]

Graphical tool needed to organize
data viewing

* Workflow of event based performance
analysis is extremely complicated

- Requires an enormous number of features/options
to enable all possible tasks

- Automation is very difficult

* To do a lot of things requires a lot of options
- Many docking windows, menus, buttons
— Easier to make a tool for a knowledgable user

 The data collection is the easy part
Interpreting the data and

determining the correct action

IS the hard part D

Tool Requirements

 Maximize data density
—Required quantity of data is enormous

* Integrated source/asm display

e Ability to restart sessions later

* Difference utility to monitor changes
* Minimize mouse clicks

* Predefined event lists

* Predefined penalty file
- Cycle accounting
—dynamic column layout

122 ‘ inter]

123

Primary display shows offending
events and even call counts

Applications Places System -%@ 4:51PM Q)
= |

Intel{R) Performance Tuning Utility - /fhome/levinth/works _4_nda/milc_orig/Loop-Analysi: 6-14-42 - Eclipse Platform

File Edit Navigate Project Run Window Help

i Q- B »
M tuning 2 = 0| 3 Loop-Analysis-with-Call-Sites-2010-04-29-16-14-42 53 =8
= Function RVA Module |cpu_. [cru_..|msT_..|uops .. [uops_. [uops .. |mem . [mEm.. |Res.. |BR NST RETREDMNEAR cALL |uop. |RE[]
b @ atias_icore g compute_gen_staple 0x376A su3_rmd 33,410 33,410 35,287 12,179 20,637 19,907 22,025 22,091 18,632 0 38,163 ¢
b @atias 4 + path_product 0x56BE su3_rmd 27,360 27,360 30,277 10,763 16,813 17,079 22,579 22,604 14,609 1 31,494 1,¢
- < u_shift_hw_fermion_pp Ox15150 su3_rmd 21,156 21,156 26,444 9,948 11,882 11,709 16,040 16,107 11,133 6 27,959 4
b @atias_np_1 eo_fermion_force_3f 0x13972 su3_rmd 0 0 0 0 0 0 0 0 0 3 0
P @y atiascore_g eo_fermion_force_3f 0x138E7 su3_rmd 0 0 0 0 0 0 0 0 0 1 0
b & gcc_g_build eo_fermion_force_3f 0x137F3 su3_rmd 0 0 0 0 0 0 0 0 0 2 0
~ @ milc_orig b dslash_fn_on_temp_s... 0xC044 su3_rmd 8,870 8,870 20,017 733 2,167 2,217 592 583 1,873 122,164 1
I add_3f_force_to_mo... 0x14842 su3_rmd 16,839 16,839 28,255 3,984 6,240 5,866 4,806 4,775 1,837 6 36,652 3,¢
b @trad b u_shift_hw_fermion_np OxLG6A4E su3_rmd 7,253 7,253 9,046 3,136 3,882 3,915 5,249 5,232 3,688 5 9,621 1
b @triad_omp imp_gauge_force 0x11AC8 su3_rmd 3,621 3,621 3,533 1,418 2,171 2,223 1,843 1,820 1,752 0 5,067 :
eo_fermion_force_3f 0x12768 su3_rmd 3,543 3,543 5,576 355 1,007 1,097 407 374 783 0 8,081
@ triad_snb3 <unknown(s)> 0x0 vmiinux 4,613 2,268 2,136 599,612 458,805 731,810 1,102 713 416 85,098 4,003 I
P @trad2 b add_3f_force_to_mo... Ox16144 su3_rmd 6,414 6,414 11,425 1,269 2,158 2,077 1,462 1,476 B80S 2 14,722 1,3
add_3f force_to_mo... OxL70EE su3_rmd 4,441 4,441 8,076 822 1,403 1,337 951 932 450 0 10,444 ¢
b declare_strided_gather Ox73F4 su3_rmd 783 783 1,815 198 167 125 30 32 115 48 1,791
load_longlinks 0x5150 su3_rmd 410 410 262 224 289 2906 348 349 214 o 375
add_3f force_to_mo... Ox157F2 su3_rmd 1,434 1,434 2,549 278 as2 459 313 315 122 0 3,29 :
dslash_fn 0x8388 su3_rmd 470 470 576 158 266 268 185 186 237 0 629
grsource_imp OXED8E su3_rmd 260 260 123 134 219 208 251 249 181 0o 152
update OXA40A su3_rmd 156 156 97 85 119 108 134 134 99 0 144 5]

(] | D
Limit |g5es w | Granularity |Function 4+ | Process | Al + | Thread [AII :] Module [AH :l Cpu ITota\ :]

figy Experiment Surmmary & Console & . [Advanced Profile Info

<terminated=> Intel(R) Core(TM) i7 processor family - Loop Analysis with Call Sites [Intel(R) PTU] vtsarun jmilc_orig/Loop-Analysis-with-Call-Sites-2010-04-29-16-14-42 -s -dl -ec ARITH.CYCLES_DIV_BU

--- workload ---
workload stopped => 04/29/2010 ©4:28:53 PM

(1]| [+)

B

B levinth@levinth-nhmb:~ Intel(R) Performance Tuning Utility - /home/levinth/worksp... || @ Starting Take Screenshot

124

Set the Granularity to LOOPS

Applications Places System -%@
7.# Intel(R) Performance Tuning Utility - /home/levinth/works
Fle Edit Mavigate Project

_4_nda/milc_orig/Loop-Analysi:

6-14-42 - Eclipse Platform
Bun Window Help

<terminated= Intel(l ore(TM) i7 processor family -

workload stopped => 04/29/2010 ©4:28:53 PM

i Q- B »
M tuning 2 = 0| 3 Loop-Analysis-with-Call-Sites-2010-04-29-16-14-42 53 =8
= = || Address | Function Module |cpu_. |cru_. [msT.. |uo.. [uop.. |uop. |mem.. |RaT_. |mem.. |Res.. |uops.. |Re.. |me.. [R..[m..[m|B.. []
b & atias_lcore g 0x58CB b path_product su3_rmd 24,831 24,831 28,709 9,642 14,925 15,259 19,207 12,587 19,177 13,840 29,465 988 1,829 391 300 1 472 |
b @atas 4 0x153F2 - u_shift_hw_fermion_pp su3_rmd 15,775 15,775 13,503 9,645 11,032 10,813 15,802 10,607 15,876 10,432 14,700 332 519 ©0 17 0 75
- 0x15425 = u_shift_hw_fermion_pp su3_rmd 12,943 12,943 5,720 9,473 10,673 10,328 15,644 10,064 15707 10,042 6413 297 493 0 3 0 55
b @yatias_np_1 0x15425 u_shift_hw_fermion... su3_rmd 12,943 12,943 5,720 9,473 10,673 10,328 15,644 10,064 15707 10,042 6413 297 493 0 3 0 55
b gy atlascore_g 0x1551C b u_shift_hw_fermion_pp su3_rmd 2,341 2,341 6,823 46 196 294 0 384 0 248 7,182 30 0 0 00 20
b & gcc_g_build 0x154FB u_shift_hw_fermion_pp su3_rmd 138 138 252 28 35 48 35 20 33 27 377 2 5 0 30 0
~ @ milc_orig 0x153F2 u_shift_hw_fermion_pp su3_rmd 293 293 504 98 127 143 123 125 136 115 546 3 21 0 11 0 0
0x155F3 u_shift_hw_fermion_pp su3_rmd 60 60 204 0 1 0 0 14 0 0 182 0 0 0 0o o0
b @triad Ox3F57 b compute_gen_staple su3_rmd 13,933 13,933 14,919 5,835 8,801 8,090 10,393 8,907 10,424 7,635 15,149 346 1,117 © 229 0 190
b @tmad_omp 0x148BA add_3f force_to_mo... su3_rmd 16,838 16,838 28,255 3,983 6,239 5,865 4,806 4,876 4,775 1,837 36,651 3,942 399 0 60 0 37
0x4BDB b compute_gen_staple su3_rmd 8,039 8,039 8,961 2,702 4,882 4,795 5,384 4,370 5,417 4,542 9,775 148 580 O 17 0 101
@ triad_snb3 0x3985 b compute_gen_staple su3_rmd 6,954 6,954 7,885 2,133 4,206 4,225 4,601 3,454 4,558 3,993 8,043 160 549 O 24 0 131
P @trad2 0x43CA b compute_gen_staple su3_rmd 3,074 3,074 2,083 1,232 2,044 2,008 1,435 1,707 1,458 1,698 3,087 259 23 0 16 0 13
OxL6CE8 b u_shift_hw_fermion_np su3_rmd 5,273 5,273 4,576 3,023 3,565 3,585 5,194 3,469 5,181 3,398 5,021 142 133 ©0 1 0 32
0x151A5 b u_shift_hw_fermion_pp su3_rmd 5,374 5,374 12,940 299 841 888 231 1,387 231 699 13,257 68 44 o0 82 0 22
OxDOE1 b dslash_fn_on_temp_s... su3_rmd 4,018 4,018 9,453 295 977 1,018 285 675 282 848 10,000 8O 23 0 162 0 18
0x11B30 P Imp_gauge_force su3_rmd 3,621 3,621 3,540 1,418 2,171 2,224 1,843 725 1,820 1,753 5,067 377 621 7 30 1 35
0x13015 b eo_fermion_force_3f su3_rmd 3,476 3,476 5,538 321 956 1,039 345 289 316 769 8,025 2 258 160 101 1 29
0xC432 b dslash_gr-6h_temp_s md 3,753 3,753 9,441 249 633 755 139 a62 144 643 10,198 64 36 3 10 0 26
0x57CD b pagproduct su3_rm 1,189 1,189 513 762 980 918 1,994 838 2,024 607 702 331 146 1 0 0 21 [+
<] / N\ I [+)
Limit |g5es Granularity Loop 4+ | Prockss | anl + | Thread [AII :] Module [AH :l Cpu ITota\ :]
figy Experiment s&nmary & Console & . [advanceg/Profile Info ® % Lu bH = B- 9> 708

op Analysis with Call Sites [Intel(R) PTU] vtsarun jmilc_orig/Loop-Analysis-with-Call-Sites-2010-04-29-16-14-42 -s -dl -ec ARITH.CYCLES_DIV_BU!

(1]|

B

B levinth@levinth-nhmb:~ Intel(R) Performance Tuning Utility - /home/levinth/worksp... || @ Starting Take Screenshot

4:51pM Q)

Get Tuning Advice for the Selected Event/Ratio:
Highlighting the Event Row Enables Explanation

levinth-nhmb: 1 (levinth) (=13

M npplications Places System (B @ Ty = Intel(R) Performance Tuning Utility - Loop Analysis with Call Sites (2009-07
i ——

Intel{R) Performance Tuning Utility - Loop Analysis with Call Sites (2009-01-05-12-51-57) - Eclipse Platform

=l

File Edit MNavigate Project Run MWindow Help
Ci~ Q- | &~ = »
B4 Tuning Navigator 23 =8 Basic Sampling (2009-01-05-12-08-21) Basic Sampling (2009-01-01-11-49-19) Loop Analysis with Call Sites (2009-01-05-12-51-57) & =]
=) = ||| Function RVA \ Module | cpP | CcPU_ | INST_ | UOPS_ | uoPs___ | uops_ | MEM | RAT _ | RES | MEM | uoP | RE|[-]
- ¢ milc b L
<unknown(s)> Ox0 vmlinux-2.6.1... 32,309 25,071 3,485 467,123 368,591 598,992 91,156 324 598 417 9,120 :
Basic Sampling (2009-01-01-;
b path_product Ox56BE su3_rmd 26,927 26,927 30,323 12,888 20,264 8,690 13,485 15,118 15,902 24,046 31,383 2,]
Basic Sampling (2009-01-05-1/| \ \, shire hw_fermion_pp 0x15150 su3_rmd 20,824 20,824 26,474 10,505 11,551 11,110 12,587 13,139 12,267 16,609 27,882 ¢
s e BRI EES | b add_3f_force_to_mo... 0x14842 su3_rmd 15,914 15,914 28,241 3,675 6,980 5,761 1,903 5,006 1,804 5,009 36,479 4,
b dslash_fn_on_temp_s... 0xC044 su3_rmd 8,415 8,415 20,048 793 2,547 2,136 509 1,838 1,983 721 22,081 1
b u_shift_hw_fermion_np Ox16A4E su3_rmd 7,101 7,101 9,051 3,737 4,002 3,713 4,010 4,437 4,014 5,435 9,488 |
E add IF Farce o mao Nx1R1A4A s3I rmrd 5 97A 5 974 11 3IRG 1 2R5 2 394 2 naz [1-14 1 ARR? 774 1 54an 14 /R74 1 L)
(Gl \ [+]
Limnit [95% E] Granularity [Functmnlz] Process [AII E] Thread [AII E] Module: [Au E] Cpu [Total E]
Experiment Summary Console m =0

[Function : compute_gen_staple - quark_stuffd.c

Event

Samples

Events

Issue

CPU_CLK_UNHALTED THREAD
INST_RETIRED.ANY
UOPS_EXECUTED.CORE_STALL_CYCLES
UOPS5_RETIRED.STALL_CYCLES
RESOURCE_STALLS RS_FULL
MEM_UNCORE_RETIRED.LOCAL DRAM
MEM_LOAD_RETIRED LLC_MISS

RAT_STALLS ROB_READ_PORT
UOPS_RETIRED .ANY

32,722 65.,444,000,000
35,237 70.,474,000,000
16,111 32,222,000,000
14,930 29,860,000,000
20,074 40,148,000.,000
23,366
10,787

233,660,000
107,870,000

19,912 39.824,000,000
38,044 76.088,000,000

Hot Function = 0.1919

Clocks per Instructions Retired - CPl = 0.9286
Execution Stall Cycles = 0.4924

Retirement Stall Cycles = 0.4563

RS Full = 0.6135

LLC load driven misses - local dram

LLC load driven misses = 0.3297

Rob read port 5tall Cycles = 0 6085
Ucode Retired = 0.0797

(4]

Get Tuning Advice for the Selected Event/Ratio:
Highlighting the Event Row Enables Explanation

(levinth)

M) spplications Places Systern %Q

B levinth@levinth-nhmb: ~ = Intel(R) Performance Tuning Utility - Loop Analysis with Call Sites (2009- []*

=

icorrecting for the latency) approximately pref_dist is set to latency/
ideal_cycles_per_iteration. If the ideal_cycles/iteration is very small there

[Function : compute_gen_:

may be little that can be gained as the Reservation Station will be able to do

Event
CPU_CLK_UNHALTED THR)
INST_RETIRED.ANY
UOPS_EXECUTED.CORE
UOPS_RETIRED.STALL_C
RESOURCE_STALLS R5_F

he prefetching by itself. For example a simple gather loop does not improve
when SW prefetches are added. Further in such cases it is important to
lorganize the data so that the fewest number of cachelines and thus SW
prefetches are needed. Arrays of large structures: Looping over arrays of
large structures, while using only a fraction of the structure components can
result in discontinuous strides which defeat the HW prefetchers. In such

—cases not enly will the HW prefetchers not prefetch the desired cachelines

but they can pollute the caches by prefetching unused cachelines. The use
lof SW prefetches can over come the first issue and lower the latency. The
best solution is to split the large structures into parallel structures and thus

Lo seiis s s e lin arallel arrays, defined by the applications use. The Array of Structure

histograms and the event filtering capabilities in PTU were designed for

—] Intel(R) Performance [Explain - Eclipse Platform E]@E]
File Edit Navigate Project Run Window Help Long latency loads can dominate the performance of an application.]
g 9:- o~ Feducing the effective latency can be accomplished by a variety of = »
e - fechnigues including data blocking, to keep cachelines closer to the core (in
~) =g)) cache), changing data layout or access patterns, to enhance hardware)) =g
B4 Tuning Navigator 23 Basic Sampling (2009-0 ¢otching efficiency and explicit software prefatch instruction usage. The s with Call Sites (2009-01-05-12-51-57) &
=) ~ ||| runction number of posibilities is almost limitless. What follows is a shoert discussion of UOPS | MEM | RAT | RES | MEM | UOP | rel[2]
s @ few more common issues. Nested loops: HW prefetching is driven by the = =
- & milc > laccess pattern of the inner loop for the most part. If there are address L
. . | <unknown(s)> discontinuities at the termination of the inner loop, (large strides induced by 591 598,992 91,156 324 598 417 9,120 3
@ Basic Sampling (2009-01-01-- I path_product chfan.ges in outer loop \nd.ex) then leng Ia.tency loads are likely at the change. D64 8,690 13,485 15,118 15,902 24,046 31,383 2,]
Basic Sampling (2009-01-05-"| = _ e b rermion PThIS is perhaps most easily solved by using SW prefetches executing several bs1 11,110 12,587 13,139 12,267 16,609 27,882 ¢
. o . = == =Flouter loop index values ahead. If inner and outer loop indexes going in
b add_3f_force_to_mo.jopposite directions this can cause this discontinuities even when the entire pao 5,761 1,903 5,006 1,804 5,009 36,479 4,
I dslash_fn_on_temp_s laddress space is being accessed. Simply reversing the direction of one of 547 2,136 509 1,838 1,983 721 22,081 1
b u_shlft_hw_fermlon_nthe loops is usually the simplest s.olut\on. Indiretly .accessed data: Con;lder hoz 3,713 4,010 4,437 4,014 5,435 9,488 1
lan access of Data[address[loop_index]] address is accessed sequentially =1
b‘""' 3F force to mo g will be effctively prefetched by the HW prefetcher. Data will not. By far RSN A S AL ERINE- b i LGN AL i) 1|"]Q
- he simplest solution is to us SW prefetches, but the prefetch distance (as
Limit [95% E] GranUigefined by the value of loop_index_pref is set to loop_index + pref_distance) E] Cpu [Total E]
is dependent on the latency and the time per iteration of the loop (after =
Experiment Summary Con]

etired - CPl = 0.9286
0.4924
F 0.4563

local

MEM_LOAD_RETIRED LLC| : " € F 03207
lexactly this purpose and are reccomended. Pointer chasing: Structure
mccess by pointer chasing (mystruc is set to mystruc-=next) is a very —

RAT STALLS ROB READ [c@mMmon data access coding style. It results in assembly instructions that s =D 6085

UOPS_RETIRED .ANY

look like: mov register [register+const]. Thus are fairly easy to recognize
leven when there is no source nor symbolic information. In most cases there
is little that can be done. Hyperthreading is usually effective for applications
whose performance is limitted by the resulting latency associated with
[pointer chasing. If the linked list is stable over repeated accesses then it is

(4]

e e S [
Inrafatrhad with Snftwrare nrafatrh inctnactinne Thic hainn nna nf tha Fawe Y
£ | ¥

Differences of EBS Measurments

e Intel® PTU supports an analysis of differences of experiments
* This requires
— Event names must be the ~same

— Load Modules have the same names
- They can be the same, with data taken on different machines

- They can be different but built from the same source
— Allowing differences to be analyzed down to source view

- They can be completely different (sources and binaries)
— PTU will compare functions with the same names for modules with the same names

e Identify compiler differences/regressions
e Multi core scaling

For perfect scaling and identical work,
total event counts, summed over cores,
will be equal

. (intelﬁ)

Data blocked 2X2 unrolled Matrix Multiply
compiled at -O02 (Binary = o2\ matrix_blk2.exe)

Cycle_Usage Profile

& Intel(R)
File Edit MNavigate Project Run Window Help
e Q- oo~ £ | ntel®) Perfo... | ™
B4 turing Mavigator 52 = O |([Eg z007-12-01-08-05-39 2007-12-11-12-57-03 = 3
=% | = || Function Module B.x|cr.. |m.. |m|r]rs.. |~
=il matrix_oz 8| 7
2007-12-11-12-49-13 ExRaiseStatus ntkrnlpa.exe 19 117 58 2 5 52
=iy matrix_xt V5_InstanceInit mecscan32.dil 17 252 436 3 6 42
2007-12-11-12-57-03 ZwYield Execution ntkrnlpa.exe 15 50 5 0 2 26
= @ triad WScan_ReloadData mescan32.dil 6 184 236 0 0 53
2007-12-01-03-05-39 init_arr matri_blk2.exe 4 12 7 0 0O 4
2007-12-02-11-48-01 KiDispatchInterrupt ntkrnlpa.exe 3 39 2 0 4 4541
<unknown(s)= win32k.sys 3 15 3 0 0 11
=<unknown(s)> mfeapfl.sys 2 113 178 0 0O 15
<unknown(s)= <unknown(s)32> 2 13 6 0 2 5
KfAcquireSpinLock hal.dll 2 2 i o0 0 1
KeAcguireInStackQueuedSpinLock hal.dll 1 31 10 0o 0 9
KeReleaseQueuwedSpinLock hal.dll 1 30 i0 o O 16
Allocate_Inspector_HMemory engine.dll 1 19 22 0 1 15 »
Limit Granularity Process |All | Thread |All ~ | Maodule: |All - | Cpu |Tot
= 3

E Experiment Summary &3

Application: C:\mini_app_old\matrix_mult\block\o 2\matrix_blk2.exe Event Based Sampling 28,187 samples

Work Directory: C:Yymini_app_old\matrix_multi\blocko2 IMST_RETIRED.AMY 10,612 samples x 2000000 = 21,224,00
405 samples x 2000000 = 810,000,000

FITEEEELT Intel{R) Core(TM)2 CPU Tl 2 RESOURCE_STALLS.BR_MISS_CLEAR 25 samples x 2000000 = 50,000,000 &\

Frequency: 1.53 Ghz 37 camples x 2000000 — 74,000,000 e\

L2 Cache Size: 4096

| A

Console

MEM_LOAD_RETIRED.L2_LINE_MISS

RS_UOPS_DISPATCHED.CYCLES_MOME

7,297 samples x 2000000 = 14,594,000
CPU_CLK_UMHALTED.CORE 8,182 samples x 2000000 = 15,354,000
775 samples x 2000000 = 1,552,000,00

BUS_TRAMNS_BURST.SELF

12 samples x 100000 = 1,200,000 ever
3 samples » 100000 = 300,000 events |
620 samples x 2000000 = 1,240,000,00

152 samples x 100000 = 15,200,000 ey
&6 samples x 100000 = 6,600,000 ever

intel.

Data blocked 2X2 unrolled Matrix Multiply
compiled at -03 -QxT (Binary =
xt\matrix_blk2.exe)
Cycle_Usage Profile

& Intel(R)
File Edit MNavigate Project Run Window Help
N @E' =T ﬁlEIntel(R}Perﬁ:\... | >
B4 turing Mavigator 52 =38 2007-12-01-08-05-39 2007-12-11-12-45-13 52 = 3
=l |<4===g>| = Function | Module | R. ~
-y matrix_o2 T | C:= '-.',\'DrkspaceiE;BD'u‘natrixio2'\2007- 12-11-12-49-13 | s| 7 B
2007-12-11-12-49-13 ZwYield Execution ntkrnlpa.exe 30 Q2 22 1 3 69
=iy matrix_xt ExRaiseStatus ntkrnlpa.exe 16 258 140 3 9 150
2007-12-11-12-57-03 Vscan_ReloadData mcscan32.dil 15 243 344 0 3 62
= @ triad W5_InstanceInit mescan32.dil 9 198 375 0 4 32
2007-12-01-03-05-39 long CWhemInstancezGetObjectParts{void *,unsigned long,unsigned long,unsigne... fastprox.dll 6 12 3 0 1 13
2007-12-02-11-48-01 <unknown(s)>= win32k.sys 4 8 i 0 2 7
RtIReAllocateHeap ntdil.dll 3 25 11 1 0 16
KeAcguireInStackQueuvedSpinLockAtDpcLevel ntkrnlpa.exe 3 23 & 1 0 22
init_arr matrix_blk2.exe 3 5 6 0 0 6
KiDispatchInterrupt ntkrnlpa.exe 2 a2 9 3 5 2,233
KiFastSystemCallRet ntdil.dll 2 43 i5 0 O 22
tan ntdil.dll 2 30 35 0 O 19
strchr ntdil.dll 2 22 i5 0 O 10
Limit Granularity Process |All b | Thread Module: |All - | Cpu |Tof
E Experiment Summary &3 Console = 8
Application: C:\mini_app_old\matrix_mult'\block\xt\matrix_blk2.exe Event Based Sampling 26,752 samples
Work Directory: C:Yymini_app_old\matrix_multi\blockxt RESOURCE_STALLS.BR_MISS_CLEAR 36 samples x 2000000 = 72,000,000 ev
43 samples x 2000000 = 95,000,000 ev
FITEEEELT Intel{R) Core(TM)2 CPU Tl 2 RS_UOPS_DISPATCHED.CYCLES_MOME 1,042 samples x 2000000 = 2,084,000,
Frequency: 1.53 Ghz 4,714 samples x 2000000 = 9,428,000,
L2 Cache Size: SHEE CPI_CLK_IUNHALTED.CORE 7,622 samples x 2000000 = 15,244,000
1,166 samples x 2000000 = 2,332,000,
INST_RETIRED. AMY 11,401 samples x 2000000 = 22,802,00
443 samples x 2000000 = 835,000,000
MEM_LOAD_RETIRED.LZ_LIME_MISS 11 samples x 100000 = 1,100,000 even
11 samples x 100000 = 1,100,000 even
BUS_TRAMS_BURST.SELF 203 samples x 100000 = 20,300,000 ev
&5 samples x 100000 = &,500,000 even
< &J
[akid

E intel.

Only Significant Difference is Cycle Count
Create Difference Display

e Control click to select 2 experiments
* Right click to select "Compare Experiments”

& Intel(R) ty - 2007-12-11-12-57-03 - Eclipse Platform
File Edit Mavigate Project Run Window Help
il Q- <=
AT = B8 2007-12-01-08-05-39 2007-12-11-12-49-13 2007-12-11-12-57-03 2%
=] |<fp| = Function Module | B.2
=gy matrix_o2 =3
ZwYieldExecution ntkrnlpa.exe 30 a2 22 1 3 69
=gy matrix_xt ExRaiseStatus ntkrnlpa.exe 16 258 140 2 9 150
B e *r=-an_ReloadData mcscan32.dil i5 243 344 0 3 62
=y triad Mew * Instancelnit mescan32.dil s 198 375 0 4 32
Fa 2007'12'01'05 CWhemInstancenGetObjectParts(void *,unsigned long,unsigned long,unsigne... fastprox.dil [12 3 0o 1 13
2007-12-02-11 nown(s)> win32k.sys 4 B 1 o 2 7
llocateHeap ntdil.dll 3 25 11 1 0 16
Delete uvireInStackQueuvedSpinLockAtDpclLevel ntkrnlpa.exe 3 23 6 1 ©0 22
r matrix_blk2.exe 3 5 & 0O 0 [
patchInterrupt ntkrnlpa.exe 2 92 9 3 5 2,232
ystemCallRet ntdil.dil 2 a3 i5 ©0 O 23
@] Refresh ks ntdiLdll 2 30 35 0 o 19
| strchr ntdildil 2 22 15 0 0 10 ¥
Limit Granularity |Fun|:ti|:|n w | Process |AII s | Thread |AII w | Module: |all - | Cpu E
E Experiment Summary &3 Console = 8
Application: C:Ymini_app_oldmatrix_multiblockio 2\matrix_blk2.exe Event Based Sampling 25,187 samples
Wark Directory: C:\mini_app_oldYmatrix_multiblock\o2 IMNST_RETIRED. AMY 10,512 samples x 2000000 = 21,224, 0C
405 samples x 2000000 = 810,000,000
PrE===En TERETETNEEY RN E RESOURCE_STALLS.BR_MISS_CLEAR 25 samples x 2000000 = 50,000,000 ey
PR LEHEE 37 samples x 2000000 = 74,000,000 ev
L2 Cache Size: =EEE MEM_LOAD_RETIRED.L2_LINE_MISS 12 samples x 100000 = 1,200,000 ever
3 samples x 100000 = 300,000 events |
RS_UOPS_DISPATCHED.CYCLES_MOME 5620 samples x 2000000 = 1,240,000,0C
7,297 samples x 2000000 = 14,594,000
CPU_CLK_UNHALTED.CORE 8,182 samples x 2000000 = 15,354,000
776 samples x 2000000 = 1,552,000, 00
BUS_TRAMS_BURST.SELF 152 samples x 100000 = 15,200,000 ev
66 samples x 100000 = &,600,000 ever
=2 2
:¢ 2items selected

=
u

inte

Differences of Samples
Differences in Cycles Shown in msec to Correct for
Comparison of Machines at Different Frequencies

tility - 2007-12-11-12-49-13 - 2007-12-11-12-57-03 - Ecli
File Edit MNavigate Project Run Window Help

Cs QE' = @lEInteI(R}Perﬁ:\. | >

B4 turing Mavigator 52 =38 2007-12-01-08-05-39 2007-12-11-12-49-13 2007-12-11-12-57-03 BP 2007-12-11-12-49-13 - 2r ,-12-11-,. S7-03 X

= |<4===g>| = Function | Module | Time({...
=y matrix_o2 o I multiphy_d matrix_blk2.exe 23 1,789.224 o
2007-12-11-12-99-13 b =unknown(s)= mieapfk.sys 116 0 0O 13
=iy matrix_xt P w5_InstanceInit mcscan32.dlil 61 3 2 10
2007-12-11-12-57-03 I PGPCheckKeyRingSigs firecore.dll o 50.14 50 0 O o
= a triad I SetWin32SecurityDescriptorFromSD cimwin32.dll (u] 14.041 43 0 0 -1
2007-12-01-08-05-39 I READ_PORT_UCHAR hal.dll o 10.03 0o o 1 -1
2007-12-02-11-48-01 I init_arr matrix_blk2.exe 1 7.02 i o o -2
I r cunknown(s)= |<unlcm‘.mm[s)32> | 1| ?.018' 5| 0| 5
b <unknown(s)> win32k.sys -1 7.018 2 0 -2 4
b =unknown(s)= ntfs.sys 1 6.018 2 0 3 8
b FindActCboSectionGuid kernelz2.dll o 5.015 i o O 1
b =unknown(s)= mieavik.sys o 4,013 4 0 0 5
B <unknown(s)= hal.dll lu] 4.012 o o o0 15
I wesnopy ntdll.dil] 4.012 o 0 0 0 >
Granularity |Function | Process |All ** | Module: |All R
E Experiment Summary &3 Console = 8
Application: C:Ymini_app_oldYmatrix_mult\blocko 2Ymatrix_blk2.exe Event Based Sampling 28,187 samples
Work Directory: C:Yymini_app_old\matrix_multi\blocko2 IMST_RETIRED.AMY 10,612 samples x 2000000 = 21,224,00
405 samples x 2000000 = 810,000,000
FITEEEELT Intel{R) Core(TM)2 CPU Tl 2 RESOURCE_STALLS.BR_MISS_CLEAR 25 samples x 2000000 = 50,000,000 &\
Frequency: 1.53 Ghz 37 camples x 2000000 — 74,000,000 e\
L2 Cache Size: SHEE MEM_LOAD_RETIRED.L2_| INE_MISS 12 samples x 100000 = 1,200,000 ever

3 samples » 100000 = 300,000 events |
RS_UOPS_DISPATCHED.CYCLES_MOME 620 samples x 2000000 = 1,240,000,00
7,297 samples x 2000000 = 14,594,000

CPU_CLK_UMHALTED.CORE 8,182 samples x 2000000 = 16,364,000
775 samples x 2000000 = 1,552,000,00
BUS_TRAMS_BURST.SELF 152 samples x 100000 = 15,200,000 ev

&6 samples x 100000 = 6,600,000 ever

(ki

1z Scaling Analysis: Sort by Time and see what causes non /; tel,
. scaling inte

Drill down by Double Click on
Function to Source iIn difference
view
It is likely to ask where to find the source
file

& Map Source File

Could not find the following source file:

| multiply_t2i2j_blk.c |

Choose file from a different location:
| C:\mini_app_old\matrix_mult\block \multiply_t2i2j_blk.c |

[] add directory to the project search directories list

[Mever show this dialog for this project again {show assembly only instead)

Ok] [.ﬁ.sseml:ulr_.r Only] [Cancel]

132 ‘ inter]

Same Source can Display
Difference per Source Line

& Intel(R)
File Edit MNavigate Project Run Window Help
- = P Q- = <
Tuning Navigator E2 =4 2007-12-01-08-05-39 | 2007-12-11-12-49-13 | 2007-12-11-12-57-03 | 2007-12-11-12-43-1...
=l |g| = [Source] [Assembl\; {1st exp.}] [Assembl\; {2nd exp.]l] = D 59 9 - El Event of Interest:

=il matrix_o2

Lo 2007-12-11-12-49-13
& matrix_xt

[2007-12-11-12-57-03
& triad
2007-12-01-03-05-32
2007-12-02-11-48-01

BUS_TRAMS_BURST.SELF

L..| Source

IMS...

[

7 int i.j.k.ii.Jjj.numi.numj:

8 int 12.J2.numi . numjld:

=] double temnp:

10 ~~transpo== b

11 for{i=0;i<NUM.i++) {

12 fortk=0:k<HUM L++3 £ 4 5 4 10

13 T[1i][k] = b[k][i]: -1 -15 1 -11

14 T

15 T

15 numi = 256

17 numij = 16:

13 =

13 for{ii = 0; ii<HUM: ii+=numil{

20 for{ii = 0. F3<HUM. Fi+=numid{

21

22 for{i=ii; i<ii+numi-1; i+=2) {

23 foréj=j5: j<jjit+tnumi-—-1: F+... -3 1

24 for(l=0; k<HUM: lk++) { -5 134 153 23

25 c[1][3] = =[1]1[3]1. .. 3 241 -420 1 1 45

26 c[i+1]1[4]1 = =[i+1. .. -17 545 382 2 36

27

3 =[i1[j+1]1 = =[il[... -5 518 155 -1 29 B

29 c[i+1]1[4+1]1 = =[i... -2 364 -199 -1 29

30

3

32 T ~
Total Selected:

EExperiment Summary &a Console 8

Shift Right click to Highlight a

Region and Display Subtotal at the

& Intel(R)

Bottom

ility - multiply t2i2j blk.c - Eclipse Platform

E multiply_t2i

File Edit MNavigate Project Run Window Help
- = P Q- = <
Tuning Navigator E2 =4 2007-12-01-08-05-39 | 2007-12-11-12-49-13 | 2007-12-11-12-57-03 | 2007-12-11-12-43-1...
= |g| - [Source] [Assembl\; {1st exp.}] [Assembl\; {2nd exp.]l] T - 2 | [i]

Ewvent of Interest: | BUS_TRAMS_BURST.SELF

=il matrix_o2

Lo 2007-12-11-12-49-13
& matrix_xt

[2007-12-11-12-57-03
& triad
2007-12-01-03-05-32
2007-12-02-11-48-01

L..| source |g.. |7m.. |ms.. |m.]r.|¢s... |
s 4
7 int i.3j.k.1ii.Jjji.numi.numj:
8 int 12.J2.numi . numjld:
=] double temnp:
10 ~~transpo== b
11 for(i=0;i<HUMi++) {
12 fortk=0:k<HUM L++3 £ 4 5 4 10
13 TL[i][k] = b[kI[1]: -1 -15 1 -11
14 T
15 T
15 numi = 256
17 numij = 16:
18
19 for{ii = 0: ii<HUM. dii4+=numili

for{ji = 0. JF3<HUM. Fi+=numji{

for{i=ii; i<ii+numi-1; i+=2) {

for{i=jij: Jj<jj4+numji-—-1: 3 1

|2

Total Selected:

-26 1,801 -19 3 =il 163

E Experiment Summary &3 Console

Select "Assembly (1st Exp.)"”
Only Contributing Basic Blocks are Displayed

& Intel(R)
File Edit MNavigate Project Run Window Help
- > R
B4 turing Mavigator 52 = O |([Eg z007-12-01-08-05-39 |ZDD?—12—11—12—4Q—13 |ZDD?—12—11—12—5?-03 |znn?-12-11-12-49-1...
|§| - lSDurcel |§a’-\55emb|y (1st exp.}§| [Assembl\; {2nd exp.]l] | D 59 9 - El Event of Interest: |BUS_TR.-'—\.NS_BURST.SELF vl
Elﬁ matrix_o2 —5" Show Source File Il —
I 2007-12-11-12-49-13 L..I fa] I B I Tin 25 Address I L..I Assembly (1st exp.) =
@ matriv_xt a4 ~ Block 9 multiply_d+065h:
2007-12-11-12-57-03 7 int i.3j.k.1ii.Jjji.numi.numj: 0x1435 25 mowv ecx, DWORD PTE [esp+034h’
& triad g8 int 12.J2.numi . numjld: Ox143% 25 mow DWORD PTRE [esp+028hk]. =bp
2007-12-01-038-05-39 =] double temp: O0x143D 25 mow e=1i, =bp
2007-12-02-11-42-01 10 ~~transpo== b Ox143F 25 mow DWORD PTRE [esp+04ikh]. =a=x
11 for{i=0:i<HUM i++) { Ox1443 25 =hl e=i. 0x6h
12 for(lk=0;k:HUM k++2 £ 4 Ox1445 25 add e=z1, =bp
13 TL[i][k] = bl[k][i]: -1 Ox1448 25 mowv DWORD PTR [esp]. =d= =
14 T Ox1448 25 =hl e=i. 0x7h
15 T Ox149E 25 lea ecx, DWORD FPTE [ecxtesi]
18 numi = 256 Ox1451 25 add e=i. DWORD PTR [e=p+0Z2ch’
17 numj = 16 3 0x1455 25 mowv DWORD PTRE [e=p+0ch]. ecx
18 1 Ox145% 25 mow ebp. ec=
19 for{ii = 0; ii<HUM. ii+=numil{ 0x1458 25 mow ecx, e=di
20 for{iji = 0: F3i<HUM: Fi+=numii{ 0x145D 25 =hl =cx,. 0=6h
21 0x1460 25 add ecE. e=di T
22 for{i=ii; i<ii+numi-1; i+=2) { 0x1462 25 =hl ecx, 0x7h
23 for{j=4j3: Jj<jj+numi-1: J+ Ox1465 25 add ecx. DWORD FPTR [e=p+038h’
B 0x1462 25 mow DWORD PTR [esp+010h]. ec:
E Ox146D 25 mowv edx. =cE
E = Ox146F 25 mow ecx. o=di
0x1471 25 =hl ecx. 0x3h
= Block 10 multiply_d+0ad4h:
0x1474 24 mowv sax. —0x400
20 = Block 11 2... multiply_d+0a9h:
31 e Ox147a 25 fld OWORD PTR [esi+eax*8+020 ..
< | > - < il | 3 -
Total Selected: -26 1,80 Total Selected (40 instructions):
E Experiment Summary &3 Console = 3
[akid

intel.

Select "Assembly (2nd Exp.)"”
Only Contributing Basic Blocks are Displayed
Now for BOTH Binaries

-

& Intel(R) Performance Tu Utility - multiply t2i2j blk.c -
File Edit MNawigate Project Run Window Help
Ci~ B & § B~ i -
Tuning Navigator E2 =4 2007-12-01-08-05-39 | 2007-12-11-12-49-13 | 2007-12-11-12-57-03 | 2007-12-11-12-48-1...
E3hl [source | [assembly (1st exp.) | [Assembly (2nd exp.) | = 2 49 9 o9 [i] Eventoflnterest: |BUS_TRANS_BURST.SELF ~|
=il matrix_o2 E
L 2007-12-11-12-49-13 L.| Source [B.. |Tm. |ms. |m ;. |&s.. | |
@ matrin_xt 22 for{i=ii: i<ii+numi-1: i+=2) {
-{Eg 2007-12-11-12-57-03 23 for{j=3jj: j<jj+numj-1: Jj+... -4 1
& triad E : :
2007-12-01-08-05-32 | 25|
2007-12-02-11-42-01 E3
Ed
Total Selected: -26 1,801 -19 3 -1 163
Address I L..I Assembly (1st exp.) == Address I L..I Assembly (2nd exp.))
- Block @ multiply_d+065h: = Block 10 2... multiply_d+014fh:
Ox1435 25 mow ecx. DUORD PTR [e=p+034h] Ox151F 25 mowvs=d =mm3 ., MMWORD PTR [e=i]
O0x1432 25 mow DWORD PTRE [esp+028hk]. =bp T Ox1523 26 mowsd =mm2, MHWORD PTRE [esi+02
0x1430 25 mow e=1i, =bp 0x1528 28 movs=d =mml ., MMWORD PTR [e=si+081 =
Ox143F 25 mow DWORD PTRE [esp+04ik]. eax b | Ox1530 22 mowvsd =mml ., MHWORD PTRE [e=si+02
Ox1443 25 =hl e=si. 0O=6th 0Ox1538 29 mowv ed=. —0=x400
Ox1445 25 add e=1i. =hbp = Block 11 2... multiply_d+016dh: N |
0x1448 25 mow DWORD PTR [esp]. =d= 0x1530 25 movsad =mmd . HMWORD PTRE [edi+ed
Ox1448 25 =hl e=i. 0x7h Ox1546 25 mul=d =mmd . MHWORD PTR [ehxz+ed
Ox149E 25 lea ecx, DWORD FPTE [ecxtesi] Ox154F 25 adds=d =mm3 ., =mmd
Ox1451 25 add e=i. DWORD PTR [e=p+02ch] Ox1553 25 mowvs=d HHMWORD PTR [e=i]. =mm3
0x1455 25 mow DWORD PTRE [e=p+0ch]. ecx 0x1557 26 movsd =mn5 . HMMHWORD PTRE [edi+ed
Ox1452 25 mow ebp., ec= Ox1560 26 mul=d =mm5, MHWORD PTRE [ebhx+ed
0x1458 25 mowv ecx. =di el 0x1569 26 adds=d Emm2 . =EmmS |
2] L)] = S]] [T}]]
Total Selected (40 instructions): Total Selected (23 instructions):
E Experiment Summary &3 Console | = 3

n<>

Export Selected Source and the Contributing Basic
Blocks from Both Binaries to a Single CSV Spread
Sheet
Instant Compiler Regression Bug Report

& Intel(R)] ility - multiply t2i2j blk.c - Eclipse Platform
File Edit Mawigate Project Run Window Help
Cs @E =T ﬁlEIntel(R}Perﬁ:\... | >
2007-12-01-08-05-39 2007-12-11-12-49-13 2007-12-11-12-57-03 2007-12-11-12-49-13 - 2007-12-11-12-57-03 ==
: [Source] [Assembly (1st exp.)] [Assembly {2nd exp.)] D B P = [i] | EventofInterest: |BUS_‘I‘RANS_BURST.SELF w |
L.| source |s... |tm... |ms... [m.|r..|rs.. | ~
2z forf{i=ii; i<iid4numi—1; i+=23 {
23 for({j=d3 J<jj4numi—1;: J+. .. -3 -4 1
: 4
il
=0 Export to CSV File...
21 Copy to Clipboard 2
Select All =
Total Selected: -26 1,801 -19 3 =1
Export selecbed source and assodated basic blo:
Address | L..| Assembly {1st exp.) | BU... | Time(... | IMST... | M... | R... | F s Address] L..] Assembly (2nd exp.) | BLY. ... | Time(... | IMST... | M... | R... | ta)
- Block 9 multiply_d+065h: 1 = Block 10 2... multiply_d+014fh: 1 22 9 1
0x1435 25 mow ecx, DWOR. . . 0x151F 25 mows=d =mm3 . MMWO. 1
0x143% 25 mow DWORD FPTE. . . 0x1523 26 mows=d =mmZ . MHWO . .. 14 7 1
0x 1430 25 mow e=si, =bp 0x1528 28 mows=d =mml ., HMMWO. .. 1 i 1
0x143F 25 mow DWORD FPTE. . . 0x1530 22 mows=d =mmd,. MHWO. . 1
0x1443 25 shl esi, 0=xch n 0x1538 29 mow edx, —0=x400
Ox1446 25 add e=1i, =bp = Block 11 2... multiply_d+016dh: 117 5,583 9,661 1 (=3
0x1443 25 mow DWORD FTE. . . 0x1530 25 mowsd =mm4 ., MMWO. 9 560 899
Ox1498 25 =hl e=si. O0=x7h Ox1546 25 mul=d =mmd . MHWO . . 8 a0 104 2
Ox149E 25 lea ecx, DWOR. . . Ox154F 25 addsd =mm3d . =mmd 5 295 453 |
0x1451 25 add e=si. DWOR. .. 0x1553 25 mows=d MMWORD FPTE. . . = 453 874
Ox1455 25 mow DWORD FTR. . . 0x1557 26 mowsd =mmS . MMWO . 15 481 a52
0x145% 25 mow ebp. ec=
Ox 1458 25 mow ecx, =di Ox1562 26 adds=sd =HmmZ . =mmb =] o7 126
0x145D 25 =shl ecx. 0O=th Ox1560 26 mows=d MMWORD FPTE. . . 11 463 752
Ox1480 25 add ecx, =di b O0x1575 28 mows=d =mmb . MMWO . .. 3 5238 60 b
< | > < | >
Total Selected (18 instructio... 92 7,404 9,650 5 5 3€ Total Selected (1 instruction): 5 45 51
:<>

Measuring non parallel execution

* With turbo enabled, non parallel execution
will result in a frequency boost to the core
executing the serial code

* The serial functions can be identified using
the filtering capability of the over time
display

138 ‘ inter]

Single threaded execution with

turbo boost enabled

F
12:27 PM &

0

| Ea- | @~ | = »
- Basic-Sampling-2010-05-20-11-47-46 3 =B
. | Add... | Function Module CPU_... _[CPU_...|CPU_CL... |INST_RE... [INST... [CPU_...|CPU_...
— CPU O max(ICPU) CPU O CPUO
triad_60_cpu0O
ox434 main triad_60_cpu0O 33 33 33 18 18 31 31
0x98D TRIAD triad_60_cpu0 1 1 1 2] [+] [+] [+]
0x53D main triad_60_cpu0O o [+]]] [+] 1 1
! Ox7AS8 TRIAD triad_60_cpu0 o o 2] 2] [+] 1 1
| Limit [100% | v | Granularity [Basic Blo # | Process [triad_60_| 3 | Thread [l 4| Module [triad_s0_ 2| Cpu [0 5
& console (E Experiment Summaryf Advanced Profile Info Overtime View: Basic-Sampli =0
- |
Charts: [1 (- | Resolution: [1000 [2] % Gl =% = % & =
Granularity: | Experimeni Basic-Sampling-2010-05-20-11-47-46
i
Name Cc Scale
40EG
CPU_CLK_UNHALTED. THRISM x| ~ |
INST_RETIRED.ANY x[~] S
i [0 CPU_CLK_UNHALTED.TOT
3.0E9 H
(€| 1] 2.5E9 W
Events][Event Ratm] o Facti
T 0ED
Frequency Multiplier IS B
1.
1.0E!
5.0E!
0.0
] . T T ; ; ; ; ; ; T : ; ; ; : :
r T T T T T) a8 10 1z 14 16 18 20 22 24 26 28 30 32 34
a 0.2 04 0.6 0.8 1 Time, s
N |

[1 [WNC config]

139

tmstall@cthor-wsml:~/triad/NFS_tri... 3 tmstall@cthor-wsm1:~ Intel{R) Performance Tuning Utility - /...

intel.

Zoom in on frequency multiplier
select range and filter up

| v | @~ | i >

Basic-Sampling-2010-05-20-11-47-46 2 =0

Function RVA Module cPU_... cPuU_...|cpu_cL... |INST_RE... [INsT... |cpPu_... | cPu_...
CPUO | max({lCPu) CPU O cPUO

Ox7AB |triad_60_cpuo 12,450(/12,450|27,093 (27,093
main 0x244 triad_60_cpu0 33 33 33 18 18 32 32
f | Limit [100% |~ | Granularity |Function | 3| Process |triad_60_ 2| Thread [All 2| Module |triad_60_| $| Cpu [0 2

E Console fE Experiment Summaryf Advanced Profile Info -2010-05-20-11-47 - =38

Charts: (1 [| Resolution: (1000 [%] 4 [E | 2 % % @& &
Granularity: | Experimeni 3 Basic-Sampling-2010-05-20-11-47-46 |

Overtime View: Basic-Sampli

CPU_CLK_UNHALTED.THR|
W INST_RETIRED.ANY
[0 CPU_CLK UNHALTED.TOT

(&l

111
Events H Event Rat

Frequency Multiplier & 8=

T il it

140 inte ®

Source View Shows what is
Executed

B
u

Fle Edit Navigate

levinth-nhmb:1 (levinth)

QAppI\cations Places System %Q

Project Run Window Help

levinth@levinth-nhmb: ~

Intel(R) Performance Tuning Utility - quark_stuff4.c - Eclipse Platform

=1Ed

Ci= @ | v B >
Mz =0 Basic Sampling (2009-01-0.. Basic Sampling (2009-01-0... Loop Analysis with Call Sit... path_product.c Branch_Analysis (2009-01-... =
[Source] [Assemnlyl [Contrcl Grapnl @ 4 9 % [i] Eventof Interest: ICPU_CLK_UNHALTED THREAD E]
= @ milc — —
3 Basic < Line | Source CPU C... | INST ... | BR_I... | CPU C... | * | Address | Line |Assemmy | CPU C... | INST ... | BR |1~
1939 FORALLSITES (i,8) EH] 79 766 88 0x1541B 1945 add r13, rdx a5 160
EgBasic e |10, mult_su3_mat_hwvec_for_inlinc... 4505 12,886 2661 4505 0x1541E 1945 lea T12,QWORD PTR [r10+r8]
1941 } 0x15422 1945 xor r14d,ridd Ll
Loopnf!I 1942 elze /* backward shift */ + Block 12 1... 11,974 5,896 1
1943 i 0x15425 |1945|movaps *nmé , xS | 75| 43 I
1944 FORALLSITES (1, s) 50 177 502 50 0x15428 1945 movaps xmm8, xmmd 39 148
1945 mult_adj_sui_mat_twvec(s(s->1... 14277 13301 2932 14,277 ||| 0x1542C 1945 movaps
1946 1 | 0x15430 1945 movaps
1947 0x15434 1945 movaps 69 86
1948 if (*mtag == NULL) E3 0x15438 1945 movss MUK [r14+r13] 35 156 =
(] [v [I [*)
Total Selected: 14,277 13,301 2,932 14,277 4 | Total Selected (L instructid ,2‘

DIULK LU

BIOCK ba

Block 15
Line 1944

Block 11

[Block 12 |

Line 1945

Block 13

DnaRtids Block 14

Block 27

| Line 16577

Line 1945

Block 19

Block 41

=== - | Rlock 40

[»)

(1]

Gl Experiment Summary Console Advanced Profile Info &3

This Is Vectorized

File Edit

=
n}

Cmp in Blk 15 Controls Loop,
Comparing R8 and R11. R8

levinth-nhmb: 1 (levinth)
M) spplications Places Systern %ﬁ

levinth@levinth-nhmb: ~

increments by 48 (30H

= Intel{R) Performance Tuning Utility - quark_stuffd.c - Eclipse Platform

Intel{R) Performance Tuning Utility - quark_stuffd.c - Eclipse Platform

Mavigate Project Bun Window Help

Q- | -

[Sourcel [Assemnlyl [Control Graphl

Basic Sampling (2009-01-0...

@D W 9 49 [i] Ewvent of Interest: ICPU_CLK_UNHALTED.THREAD

Loop Analysis with Call Sit...

path_product.c

Branch_Analysis (2009-01-...

[-]

T | Experiment Summary | Console Advanced Profile Info 2

~ & milc < -
B3 Basic ¢| 202 | source cruc. |nst_. |BRi. [cpuc. ||[+] | Address | Line | Assembiy |cruc. st . |erl[4]
y asic =
1940 mult_su3_mat_twvec for_inline. .. 4,505 12,886 2,661 4,505 0x155DE 1945 movss DWORD PTR [rl4+rlz+0lc... 91 301
J
Basic | 11941 } 0x155E5 1945 add r14,08h 134 518
1042 else /* backward shift */ 0x155E9 1945 cmp ri14,018h 1 1
EgLoop || [1943 { 0x155ED 1945 jnge Block 14 1
1944 FORALLSTTES (i, s) 50 177 502 50 —
1945 milt_adj_sui_mat_hwvee (& (s->1... 14,277 13,301 2,932 14,277 0x155F3 1044 add r8, 030h =]
1946 } 0x155F7 1944 add rax,08h 37 110
1947 m 0x155FB 1044 add rex, 0468h 1 8
1948 if (*mtag == NULL) 0x15602 1944 cmp rs,r1l h
1949 *mtag = start_gather from_tem... z 0x15605 1944 jnge Block 11 z
[«] [[»] (<] I [»]
Total Selected: 50 177 502 50 | Total (5 Instr : as 177 5
BIOCK LU BIOCK b4 (=]
Block 15 Hlock Ll |L.B'°C:9ﬁ | -
Line 1944 ine 1 Elock 13 Block 55
Hm S Block 14 B
ﬁL T i Block 43
Block 19 Block 42
Block 18 .]
Line 1952 Block 41
Block 26
—— Block 27 -
| — - | Rlock 40 il
(4] [[+]
=0

14

Register Values Collected with Precise Event
Br_inst_retired.all_branches in Blk 11 Yield Values
for R11 (14 samples)

levinth-nhmb: 1 (levinth)
M) spplications Places Systern %ﬁ

levinth@levinth-nhmb: ~

Intel{R) Performance Tuning Utility - quark_stuffd.c - Eclipse Platform

= Intel{R) Performance Tuning Utility - quark_stuffd.c - Eclipse Platform

File Edit MNavigate Project Run MWindow Help

ci~ Q- | - s »
=g Basic Sampling (2009-01-0... Basic Sampling (2009-01-0... Loop Analysis with Call Sit... path_product.c Branch_Analysis (2009-01-... m =]
[Sourcel [Assemnlyl [Control Graphl @ @ %9 2 [il Eventof Interest: ICPU_CLK_UNHALTED.THREAD E]
~ & milc i <
B Basic ¢ Line | Source C | * | Address | Line |Assemnly | CPU_C ‘ INST_ | BR_INST_RETIRED ALL_BRANCHES | CPL |
G asic £
1941 1 0x153E3 1945 movsxd rl5,risd
c
Basic 5| 1545 clse /% backward shitt */ 0x153E6 1945 lea r15,QWORD PTR [r15+r15+%8]
1943 { 0x153EA 1945 lea rll,QWORD PTE [r1l+rli*z] 3 H
EgLoop A|| [1944 FORALLEITES (i, s) Ox153EE 1945 shl rll,04h

1945 mult_adi su3_mat hwvec (& [s->1... - Block 11 |1... | 274 555 | 14
1946 1 0x153F2 1945 mov rsi, QWORD PTR [rax+rdi] 50 152
1947 0x153F6 1945 movss xmmS, DWORD PTR [reil 16 6
1948 if (*mtag == NULL) = 0x153FA 1945 movss xmmd ,DWORD PTR [rsi+04h] 70 37
1949 *mtag = start gather from tem... 0x153FF 1945 movss xmm3,DWORD PTR [rsi+08h] 1 2
1950 dir, EVENANDCD. . . =] 0x15404 1945 movss xmmz ,DWORD PTR [rsi+0ch] 41 149 [~]
(<] I [»] (<] [»]
Total Selected: 144 | Total (11 Instr H 274 555 14 2
BIOCK LW BIOCK 54 (=]
Block 15 Hlock il |L.B'°C:9ﬁ | -
Line 1944 - 1= Block 13 Block 55
L 05 Block 14 B
ﬁL Line 1945 -Block 43
Block 19 Block 42
Block 18 . |
Line 1952 Block 41
Block 26
I ——— Block 27 =
" ———— - | Rlock 40 L4
(o] I [v] T
T | Experiment Summary | Console Advanced Profile Info 2 =0
=
v
< 3 ::

Select the Asm Line, Right Click and
Show Register Statistics

levinth-nhmb: 1 (levinth)
M) spplications Places Systern %ﬁ levinth@levinth-nhmb: ~
[Intel{R) Performance Tuning Utility - quark_stuffd.c - Eclipse Platform

BIX

|
-~

= Intel{R) Performance Tuning Utility - quark_stuffd.c - Eclipse Platform

File Edit MNavigate Project Run MWindow Help

i~ Q- | = =1 @
=g Basic Sampling (2009-01-0... Basic Sampling (2009-01-0... Loop Analysis with Call Sit... path_product.c Branch_Analysis (2009-01-... . =0
[Sourcel [Assemnlyl [Control Graphl @ @ %9 2 [il Eventof Interest: ICPU_CLK_UNHALTED.THREAD E]
- ¢ milc — —
B3 Basic < Line | Source c/[*| | Address | Line |Assemnly | CPU_C \ INST_ BR_INST_RETIRED ALL_BRANCHES cry 2|
1941 1 0x153E3 1945 movsxd rl5,risd
1942 else /* backward shift */ 0x153E6 1945 lea rl5,QWORD PTR [rl15+r15+%8]
1943 { 0x153EA 1945 lea rll,QWORD PTRE [rl1l+4rlil*z] -
LUOp:ﬂ 1944 FORALLEITES (i, =) 0x153EE 1945 shl rll,04h |
1945 mult adj_su3_mat hwvec (&(s->1... - Block 11 Li.s 274 555 14
1946 }
1947 | ox153p CXPOrtte CSVFle... BD PTR [reil 16 6
1048 if (*mtag == NULL) I ox153F COPY te Clipboard BD PTR [rsi+0dh] 70 37
1949 #mtag = start_gather from tem... ox153F Select Al BD PTR [rsi+08h] 1 2
1950 dir, EVENANDOD. .. [~ 0x1540 £ypand Al BD PTR [rsi+0ch] 41 149 [~]
L l 2l 1l Collapse All L)
Total Selected: 14,| truction): 50 152 14 4
Input Methods » o
Biock 15 | fp5 8 h e sl Tine 1045 | :
Line 1944 Elock 13
Line 1945 Block 14 W

Block 43

Line 1945 j

Block 18

Block 18
Line 1952 Block 41
Block 26
I ——— Block 27 =
" ———— - | Rlock 40 L4
(o] [[»] n
T | Experiment Summary | Console Advanced Profile Info 2 =0
e
B &
£ ¥

14 intel.

Tripcount is constant (min=max=avg, rms=0)
and Equals 786432/48 = 16384
Which is the 4-Dim Lattice size for this Problem

(levinth)
(] Applications Places System %Q B 1evinth@levinth-nhmb: ~ = Intel(R) Performance Tuning Utility - quark_stuffad c - Eclipse Platform s
= Intel{R) Performance Tuning Utility - quark_stuffd.c - Eclipse Platform (S=1E3
File Edit MNavigate Project Run MWindow Help
i Q- | =~ 2 .
=g Basic Sampling (2009-01-0... pafRegisters Stats ¥ lch_Analysis (2009-01-... I =
Name Min Max Average Std. Dev
[Sourcel [Assemnlyl [Control Graphl
rax 10112 130952 74449 42080
Line | Source rbx 442533120 443450736 443066835 344925 INST_ BR_INST_RETIRED ALL_BRAMNCHES CcPU
1941 ! rex 4 7 5 1
1942 else /* backward shift */
(rdx 47519491776912 47519508815352 47519500848529 5933300
1943 |
. X rsi 453042848 459092256 456269140 1786479
EgLoop A [1944 FORALLEITES (i, s)]
1945 il skl el rdi 442533120 443450736 443010654 287229 a 555 14
1946 1 rbp 14073609518390 14073609518392 14073609518391 9
1947 rsp 14073609518320 14073609518320 14073609518320 0 & 6
1948 if (*mtag == NULL) rg 60672 785712 446698 252480 o 37
1949 tmtag = start _gather fro| g 443057472 443450736 443226013 160002 = 2 ||
1950 dir, EVEHN| L 149 =

(<] I
Total Selected:

ol

786432 786432

459078528

786432
457622725
ri3 47519491776108 47519508814404 47519500847633 5933283
rid 24 24 24 o]

14

456225552

Click outside or press <Esc> to close]
T

= Block 14]
h / Block 43
Block 42
Block 18 5
Line 1952 Block 41
Block 26
I ——— Block 27 =
" ———— - | Rlock 40 L4
(o] I [v] 0
T | Experiment Summary | Console EAdvanced Profile Info 2 =0
e
- s
£ ¥

Source/Asm View Text Search
Utility

(levinth)
M) spplications Places Systern %f}, B 1evinth@levinth-nhmb: ~

= Intel(R) Performance Tuning Utility - quark_stuffd.c - Eclipse Platform

= Intel{R) Performance Tuning Utility - quark_stuffd.c - Eclipse Platform (S=1E3

File Edit MNavigate Project Run MWindow Help

Ci~ Q- | &~ = i
=0 Basic Sampling (2009-01-0... Basic Sampling (2009-01-0... Loop Analysis with Call Sit... path_product.c Branch_Analysis (2009-01-... i =]
[Sourcel [Assemnlyl [Control Graphl @ @ %9 2 [il Eventof Interest: ICPU_CLK_UNHALTED.THREAD E]
- ¢ milc < (=
B Basic ¢ Line | Source CPU_C | INST_ BR ! Address Line | Assembly CPU_C ‘ INST_ | BR_INST_RETIRED Al |*|
3 Basic ¢ - —
1941 } = Find [X | SRS ris,risd
1942 else /* backward shift */ Ea rl5,0WORD PTR [rl15+rl15+*8]
1943 { n Ea rll, QWORD PTR [rll+rll*z] —
Loop A| | 1944 FORALLSITES (i, 3) 50 171 [Direction Scope hil rll,04h 7]
1945 mult_adj_ su3_mat hwvec (&(s->1... 14,277 13.301 & Forward @ Source 274 555
1946 } O Backward (O Assembly
1947 X pvss xmmS, DWORD PTR [reil 16 6
Options
1948 if (*mtag == NULL) bvss xmmd ,DWORD PTR [rsi+04h] 70 37
[] Case Sensitive
1949 *mtag = start gather from tem... pves xmm3 , DWORD PTE [r=i+08h] 1 2
1950 dir, EVENANDOD... W) YY=Ty) el] bvss xmmZ, DWORD PTR [rsi+0ch] 41 149 =
[EmI I I [»]
Total Selected: 14,277 13,301 ptal (1 Instr! }H 50 152
BIOCK LW BIOCK 54 (=]

Block 11 [Block 12 |
Block15 | ,ITje 1045 Line 1945 h
Line 1944 — 1= Block 13 Block 55
L) L Block 14 B
7 ety
Block 19 Block 42
Block 18 A]
Line 1952 Block 41
I —— Block 27 L |
" ———— - | Rlock 40 L4
<1 l D
T | Experiment Summary | Console EAdvanced Profile Info 2 =0
=
X >

Data Address Profiling _ Sorting -
and False Sharing Detection repositioning

segments of the
axes
Data Mining in 2 Dimensional Model — Applying

granularity -
Data changing scale of

Data HotSpots

Address — the axis

- Filtering -
projecting slices
onto another
dimension

IP f Code

Code
Hotspots

-

147 (intelg)

This foil is best viewed in animation mode

Data Address Profiling

Sampling during

app execution

Precise Event Sampling:
events associated with
memory operations, e.g.

MEM_INST_RETIRED.LOADS,
MEM_INST_RETIRED.STORES...

and False Sharing Detection

Symbolization &
Data Address
reconstruction

Aggregation

Sample: IP, data address, threadID..

Iterate over Samples To aggregate addresses into cachelines:

mulpd
MoV aps
mulpd
=ubpd
mov=d
movhpd
mulpd

ample record:

IP, process, module,

threadiID..

PEBS record:
IP, rax, rbx, rcx

Zmml . ®mm2

=mm2 , EMMYORD PTR [rsp+0230k]

Emm? . ¥mm2
=mm3, ®mml

=mml , HHWORD FTE [rox+rbz+rho_i.0+018h]
=mml, HHWORD FTR [rox+rbz+rho_i. 0+020h]

Zmml . ®mmd

148

Pin threads affinity

and PEBS records in
ebs.tb5

00000000055CC9900

00000000055CC9908

Using the binary 00000000055CC9910

’

identify the instruction ggggggggggggggg;g

2:21::?201‘?: SXSHt 00000000055CC9933

IP 1 &&. _FFFFCO
_Cﬁd‘lElil‘lE Address [Offset [Thread ... | Contributors MEM...LiD_MISS
- = 0oc00000000055cc300 Offsets: 5 Threads: 3 31 (0.0%]
Same cacheline accessed > Offseti0x00(0) Threads: 1 21 0.0%)
- I Thread: 00003 bb {00 14) Functions: 3 21 {0.0%:)
by d |ffe re nt threads < Offset:0x38(55) Threads: 1 5 (0.0%)
. P Thread:00003fbd{000%) Functions: 3 5 {0.0%:)
= Offset:0x08(8) Threads: 2 1(0.0%;)
at d Iffe re nt Offsets b Thread: 00003 b {00 14) Functions: 3 O {0.0%%)
H b Thread:00003fbc(0015) Functions: 1 1(0.0%%)
True and False Sharlng = Offset:0Ox10{18) Threads: 1 3 (0.0%%)
A b Thread:00003fbe(0015) Functions: 2 3 (0.0%]
Next foils Illustrate GUI < ety T S
I Thread:00003fbc(D015) Functions; 1 1 {0.0%:)

Navigation

intel.

se Cacheline Access Count to
Measure Working Set Size

Q- | o~

2008-05-06-14-39-22 2008-05-06-14-47-38 2008-05-06-14-53-00 2008-05-06-10-28-31 2008-05-06-15-01-59 2008-05-06-14-53-... 2 s

Function Module | BR_INST...ANCHES | BR_...ALL | MEM_INS... .LOADS MEM_INS....STORES
OpenMPUpdateStress test_seismic_static_rl00.exe 267,944 (49.1%) 35 (38.9%) 3,614,571 (49.9%) 1,036,316 (66.5%)
op 1PUpd v test_seismic_static_rl00.exe 267,687 (49.0%) 51 (56.7%) 3,626,685 (50.0%) 518,283 (33.2%)
<unknown(s)> vtune_drv 7,794 (1.4%) O (0.0%) 3,136 (0.0%) 2,105 (0.1%)
<=unknown(s)> vmlinux-2.6.18-53.el5 1,508 (0.3%) 3 (3.3%) 2,683 (0.0%) 1,664 (0.1%)
__kmp_fork_call libguide.so 129 (0.0%) O (0.0%) 262 (0.0%) 206 (0.0%)
Total Selected:

Granularity n Process [test_seismic_static_rlOO.exe E] Thread n Module [AII E] Filter by selection l@ é "
Console | Experiment Summary &= &3 Top by

2008-05-06-14-53-00 (2) PN2008-05-06-14-53-00 (2) : Working Set

Cacheline Address / Offset... | B.] 8.] MEM_..ADS | MEM..RES | contributors Address Range DE] —
b 0X0000000000d7ffcO O.. 0.. 233 (0.0%) 53 (0.0%) Offsets: 9 Threads:

b OX0000000000d02fcO . 239 (0.0%) 37 (0.0%) Offsets: 9 Threads:

P 0X0000000000d56000 . 239 (0.0%) 24 (0.0%) Offsets: 8 Threads:

b OXx0000000000d7e080 . 180 (0.0%) 72 (0.0%) Offsets: 9 Threads:

. 205 (0.0%) 38 (0.0%) Offsets: 9 Threads:

. 188 (0.0%) 54 (0.0%) Offsets: 10 Threads: 1
. 181 (0.0%) 57 (0.0%) Offsets: 9 Threads: 1

. 176 {0.0%) 58 (0.0%) Offsets: 10 Threads: 1
. 192 (0.0%) 41 (0.0%) Offsets: 9 Threads: 1

. 175 {0.0%) 58 (0.0%) Offsets: 10 Threads: 1
. 187 (0.0%) 43 (0.0%) Offsets: 9 Threads: 1

. 173 (0.0%) 57 (0.0%) Offsets: 9 Threads: 1

. 176 (0.0%) 53 (0.0%) Offsets: 10 Threads: 1
. 166 (0.0%) 63 (0.0%) Offsets: 9 Threads: 1

. 171 (0.0%) 57 (0.0%) Offsets: 9 Threads: 1

. 170 {0.0%) 55 (0.0%) Offsets: 10 Threads: 1

[+]
o
[+]
P Ox 08fcOo 0
I O0x0000000000d7c140 0O
I 0x0000000000d55040 0
I O0x0000000000c05140 0O
F OX0000000000da9rfco O..
[+]

o

[+]

o

[+]

o

[+]

b Ox 2e180
P Ox0000000000d2c000
I Ox0000000000cdbecO
P OX0000000000cf9380
I Ox0000000000cccdcO
F OX0000000000ccaS80
I Ox0000000000ca9240

Memory Size: 5 Mb 688 Kb (Cumulative: 49.1%) Refs: 43710 (Cumulative: 80.8%)

Pooo0O00OOODODOO0OO0OO0O0O

Total Selected:

P | T T m i imimE_ __ __ m._i_iumi. mAnA A A ma mnonn osme e oo o ru_ie = b2

Performance comparison difference may be due to Cache Size

149 intel.

150

Histo

(shown below)

glob-obj-nhmat &3

ram

NEW - Exact latency / Latency

— Exact latency in CPU cycles for loads collected with
Latency events

- Intel® PTU offers a latency histogram
— Can be filtered by selected hotspots

- IP and address spreadsheets{ and memory

histogram can be filtered by latency region

= 0O

Function Modue |Unk..ce 3 |oncore 3 | Locallic »» | .0 | LocalDRAM 3% [Re...AM 3% | UnknownHome | Loc..me | Remote Home | MEM_INsST...oLD 125 |
main glob-obj 0 (0.0%) 6503 (24.4%) 97 (16.1%) 0 (N/A) 139 (16.1%) 0 (N/A) 0(N/A) 0(0.0%) & 739..4.0%) 6 739 (23.9%)
Total Selected:
Granularity Process Thread Module Filter by selecton 5 2% | 3¢
A Memory Access and Latency Histograms X Memory Access Bin Size: |64Kbyte |w| | @ & = O
glob-obj-nhm-at
Description Value
displayed OxDADOOO
displayed OxFFFF233A0000
Max Reference... 2862
Mumber of bins 123
Bin Size 54 Kb
Filter
Low displayed OxDADDIO0
High VA displayed 0x1910000 Latency: 231 cycdes References: 758 000 events
Mumber of bins 124 ‘
hd 5 100000 O A A >
Experiment Summary E Cachelines View 23 Console | Tuning Mavigator Topby |Collected Data Refs |4 = =0
glob-obj-nhm-at

Y... | Module ‘Size {bytes)

Source File @Line | U..e » | Oncore 3 [L.c »|R..C®[L.M

»» | .. | Un...e |Loc.me |Re..me | MEM_INST_RETIRE... THRESHOLD_ 128 |

arrl glob-obj
arr2 glob-obj

4 000 000 glob-obj.c@8
4000 000 glob-obj.c@8

0(0.0%) 3737 (14.0%) 44 (7.3%) 0(N/A) 70 (8.1%) O (N/A) O (N/A) O (0.0%) 3 8..7%)
0 (0.0%) 2766 (10.4%) 53 (8.8%) 0 (NJA) 69 (8.0%) O (N/A) 0 (N/A) O(0.0%) 2 8..3%)

3 851 (13.7%)
2 888 (10.3%)

intel.

Array of Structures
(address-base)% struct_size
Most structure elements never accessed

]

151

Filtering to a Single Thread

Displays the Data Decomposition

levinth-nhma: 1 (levinth)

eI

ITuning Navigator 32

=08 2008-04-28-11-08-58 | 2008-04-28-11-09-36

% CG
& gather_numa
2008-04-28-11-09-36

@ gather_omp

@ OMP_triad
@ spB
3 triad

Function Module U. e »|O. e »|L.C »|R_C »|lLocal DRAM > |Rem_ RAM 3 | MEM_U__HITM | MEM U HITM |
TRIAD gather_fmal6_omp © (N/A) O (N/A) O {N/A) O (N/A) 2,359 (99.8%) 2,368 (98.2%) 2,359 (99.8%) 2,368 (98.2%)
<unknewn(s)> vmlinux-2.6.18-53.el5 0 (N/A) O (N/A) O (N/A) O (NfA) 5 (0.2%) 44 (1.8%) 5 (0.2%) 44 (1.8%)

F* 2008-04-28-11-08-58 Total Select...

Granularity [Function [| Process [gather_fma16_omp [| Thread [pooo3gbb(o003) Module (a1 [+ Fiterbyselection S & 3¢

Experiment Summary| Console| Cachelines View ﬂﬂﬂ Memory Access and Latency Histograms 2 Memory Access Bin Size: |4 MByte : G-l Q =0

2008-04-28-11-08-58 (2)

Description

Low VA displa 3 | |
0x2AAB18400000 Samples:53|

High VA displa

Max Referenc

Number of bin
Ein Size

Filter

Low VA displa
High VA displa

Number of bin

111 »

E] levinth@levinth-nhma: ~ levinth@levinth-nhma: ~/... levinth@levinth-nhma: ~/... Cg‘ [lewvinth] levinth@levinth-nhma:~/... || = Intel{R) Performance Tun... ---
< | >

152

intel.

levinth-nhma: 1 (levinth)

A Different Thread

& gather_numa
2008-04-28-11-09-36
@ gather_omp

@ OMP_triad

@ spB

3 triad

. | @ | - =
Tuning Navigator 2 = O ||Eg 2008-04-28-11-08-58 |2008—04—28—11—09—36
Function Module U. e »|O. e »|L.C »|R_C »|lLocal DRAM > |Rem_ RAM 3 | MEM_U__HITM | MEM U HITM |
8 co TRIAD gather_fmal6_omp © (N/A) O (N/A) O {N/A) O (N/A) 2,363 (99.9%) 2,369 (98.2%) 2,363 (99.9%) 2,369 (98.2%)
<unknewn(s)> vmlinux-2.6.18-53.el5 0 (N/A) O (N/A) O (N/A) O (NfA) 2 (0.1%) 43 (1.8%) 2 (0.1%) 43 (1.8%)

Total Select...

Granularity [Function [| Process [gather_fma16_omp [| Thread [pooosgbaiooos) Module (a1 [+ Fiterbyselection S & 3¢

Experiment Summary| Console| Cachelines View ﬂﬂﬂ Menk:ry Access and Latency Histograms &2 Memory Access Bin Size: |4 MByte : G-l Q =0

2008-04-28-11-08-58 (2)

Description

Low VA displa
High WA displa
Max Referenc
Number of bin
Ein Size

Filter

Low VA displa
High VA displa

Number of bin

E] levinth@levinth-nhma: ~ levinth@levinth-nhma: ~/... levinth@levinth-nhma: ~/... @ [lewvinth] levinth@levinth-nhma:~/... || = Intel{R) Performance Tun... ---
< | >

153

intel.

Example: False Sharing
What is it and why is it a Problem

— Cache coherency protocols require that all cores use
the most current version of every cacheline
— Shared lines can be modified by any thread

- Causing lines to be renewed regularly, if any
thread writes to any byte in the line

— (replace an invalid state copy with new valid copy)

- Line renewal can cause a cache miss by other
threads

- and a 40-300 cycle execution stall
— Depending on cacheline location

- False sharing is when different threads access non-
overlapping regions of a cacheline

False Sharing Causes Avoidable 40-300 Cycle Stalls

For Every Read Following a Write by Another Thread

154 ‘ inter]

Synthetic Example: Heavy Contention

on this Line --

Multiple Threads Accessing Different Offsets Indicate
False Sharing (Identified by Rose Highlighting)

Intel{R) Performance Tun

-08-33-27 - Eclipse Platfor

File Edit Mavigate Project Run Window Help
TN Q- o
= O |(Eg 2007-12-15-08-22-51 Eg 2007-12-15-08-33-27 &2 =0
=% | 7| || Function | Module Collected Data Refs (%Total) | LLC Misses (%Total) | Avg. Latency | Total Latency (%Total) | cachelines = | Pages = (%Total) | MEM_LOAD_RETIRED.L2 MISS (%Tota
=@ hitm sort main_share.exe 8,594,000,000 (100.0%) 400,000 (100.0%) 3 26,186,000,000 (100.0%) 1,029 24 (85.79%) 400,000 (100.0
2007-13
EF Y 2007-12
&y rizd
< >
Total Selected:
Granularity | Process w | Thread | 0] | Module | B £ Filter by selection l? é b4
Experiment Summary | Console | = Cachelines View 52 Top by |Collected Data Refs |» = a
2007-12-15-08-33-27
Cacheline Address / Offset j Thread /Function | Collected Data ... | LLC Misses (%T... | Avg. Latency Total Latency (... | Contention (%... | MEM_LOAD RE... | MEM_LOAD RE... | musT_RETIRg@® | Contributars
b 0x0042a3c0 1,959,600,000 ... 400,000 (100.... 3 6,252,000,000.. 909,100,000 (. 400,000 (100... 39,200,000 (8.. 1,920,0000000 .. Offsets: 2 Threads: 2
b 0x0064§f40 836,000,000 (... 0(0.0%) 3 2,508,000,000.. 0 (N/A) 0 (0.0%) 0(0.0%) 836,000,000 : 1 Threads;
b 0x0054Ff40 764,000,000 (... 0(0.0%) 3 2,292,000,000 ... 0 (nja) 0 (0.0%) 0(0.0%) 764,000,000 (... Offscte Rds: 1
b 0x0054§f80 366,000,000 (... 0 (0.0%) 3 1,098,000,000.. 0 (N/A) 0 (0.0%) 0(0.0%) 366,000,000 (... Offsets: 2 Threads: 1
b 0x0064§f80 276,000,000 (... 0(0.0%) 3 828,000,000 (.. 0 (NjA) 0 (0.0%%) 0(0.0%) 276,000,000 (... Offsets: 2 Threads: 1
b 0X004369c0 14,000,000 (0.... 0 (0.0%) 3 42,000,000 (0... 0 (N/A) 0 (0.0%) 0(0.0%) 14,000,000 (0... Offsets: 7 Threads: 1
b 0x0042e580 14,000,000 (0. 0(0.0%) 3 42,000,000 (0... 0 (N/A) 0 (0.0%) 0(0.0%) 14,000,000 (0... Offsets: 6 Threads: 1
b DX0042f380 14,000,000 (0. 0(0.0%) 3 42,000,000 (O.... 0 (nja) 0 (0.0%) 0(0.0%) 14,000,000 (0.... Offsets: 6 Threads: 1
b 0x004327c0 12,000,000 (0.... 0 (0.0%) 3 36,000,000 (0... 0 (N/A) 0 (0.0%) 0(0.0%) 12,000,000 (0... Offsets: 4 Threads: 1
b 0x00440900 12,000,000 (0.... 0(0.0%) 3 36,000,000 (0... 0 (NjA) 0 (0.0%%) 0(0.0%) 12,000,000 (0... Offsets:5 Threads: 1
b 0x0042e9c0 12,000,000 (0. 0 (0.0%) 3 36,000,000 (0... 0 (N/A) 0 (0.0%) 0(0.0%) 12,000,000 (0... Offsets: 5 Threads: 1
b 0x004396c0 12,000,000 (0. 0(0.0%) 3 36,000,000 (0 (N/A) 0 (0.0%) 0(0.0%) 12,000,000 (0... Offsets:5 Threads: 1
b 0x004399c0 12,000,000 (0. 0(0.0%) 3 36,000,000 (O.... 0 (nja) 0 (0.0%) 0(0.0%) 12,000,000 (0.... Offsets: 5 Threads: 1
b 0x00440dcD 12,000,000 (0.... 0 (0.0%) 3 36,000,000 (0... 0 (N/A) 0 (0.0%) 0(0.0%) 12,000,000 (0... Offsets: 5 Threads: 1
b 0x00430280 10,000,000 (0. 0(0.0%) 3 30,000,000 (0... 0 (NjA) 0 (0.0%%) 0(0.0%) 10,000,000 (0... Offsets:5 Threads: 1
b 0x0042f9c0 10,000,000 (0. 0 (0.0%) 3 30,000,000 (0... 0 (N/A) 0 (0.0%) 0(0.0%) 10,000,000 (0... Offsets:5Threads:1 |
< ' 2
£ | 3 | | Total selected:
ks 2007-12-15-08-33-27 (Basic Data Access Profiing)

155

intel.

A\

Expanding the “arrow” we see the 2

threads acce
Offsets...

& Intel(R) Performance Tuning Utility - 2007-12-15-08-33-27 - Eclipse I .atform

the line at Different
Is Is False Sharing

File Edit MNavigate Project Run Window
Ll R ﬁ|EIntel(R}PerfD. | >
Mz =0 2007-12-15-08-23-51 [Eg 2007-12-15-08-33- - =
= %&|™ ||| Function Collected Data Refs (%Total) | LLC Misses (%Total) | Avg. Latency | Total Latency (%Total) | cachelines = | Pages = (3¢Total) | MEM_LOAD RETIRED.L2_MISS (%Tota
=& hitm sort 8,594,000,000 (100.0%) 400,000 (100.0%) 3 26,186,000,000 (100.0%) 1,029 24 (85.7%) 400,000 (100.0
2007-1z
2007-12
oy triad
< >
Total Selected:
Granularity F Process w | Thread | @ + | Module Filter by selection T ﬁ ®
Experimegsummary | Consale Ell:achelines'\ﬁew x Top by
Cacheline Address / Offset / Thread / Function | Collected Data ... | LLC Misses (%T... | Avg. Latency | TotalLatency (... | Contention (%... | MEM_LOAD RE... | MEM_L0OAD RE... | ST _RegRED... | Cantributors
< 0x0042a3c0 1,959,600,000 ... 400,000 (100.... 3 6,252,000,000.. 909,100,000 (.. 400,000 (100... 39,200,000 (§.. 1,920,0 Offsets: 2 Threads: 2
b Offset:0x04(4) 1,050,500,000 (... 100,000 {25.0%) 3 3,319,000,000 (... 0{N/3) 100,000 (25.0%) 20,400,000 (36.... 1,030,00 . Threads: 1
b Offset:0%00(0) 509,100,000 (... 300,000 (75.0%) 3 2,933,000,000 (... 0{N/3) 300,000 (75.0%) 18,300,000 (42.... 850,000,00 Threads: 1
b 0X0064ff40 836,000,000 (... 0 (0.0%) 3 2,508,000,000 ... o (N/A) 0 (0.0%) 0 (0.0%) 836,000,000 (3
b 0x0054§f40 764,000,000 (... 0 (0.0%) 3 2,292,000,000 ... 0 (N/A) 0 (0.0%) 0 (0.0%) 764,000,000 (... 1 Threads: 1
b 0x0054ff80 366,000,000 (... 0 (0.0%) 3 1,098,000,000 ... o (N/A) 0 (0.0%) 0 (0.0%) 366,000,000 (.. Offsets: 2 Threads: 1
b 0Xx0064Ff80 276,000,000 (... 0 (0.0%) 3 828,000,000 (... 0 (N/A) 0 (0.0%) 0(0.0%) 276,000,000 (.. Offsets: 2 Threads: 1
b 0Xx004369¢D 14,000,000 (0.... 0 (0.0%) 3 42,000,000 (0. o (N/A) 0 (0.0%) 0 (0.0%) 14,000,000 (0... Offsets: 7 Threads: 1
b 0x0042e580 14,000,000 (0.... 0 (0.0%) 3 42,000,000 (0. 0 (N/A) 0 (0.0%) 0(0.0%) 14,000,000 (0... Offsets: 6 Threads: 1
b 0x0042380 14,000,000 (0.... 0 (0.0%) 3 42,000,000 (0. o (N/A) 0 (0.0%) 0 (0.0%) 14,000,000 (0... Offsets: 6 Threads: 1
b 0Xx004327cD 12,000,000 (0.... 0 (0.0%) 3 36,000,000 (0. 0 (N/A) 0 (0.0%) 0 (0.0%) 12,000,000 (0.... Offsets: 4 Threads: 1
b 0x00440900 12,000,000 (0.... 0 (0.0%) 3 36,000,000 (0. o (N/A) 0 (0.0%) 0 (0.0%) 12,000,000 (0... Offsets:5 Threads: 1
b 0Xx0042e9¢D 12,000,000 (0 0 (0.0%) 3 36,000,000 (0 (N/A) 0 (0.0%) 0(0.0%) 12,000,000 (0... Offsets:5 Threads: 1
b 0x004396¢D 12,000,000 (0.... 0 (0.0%) 3 36,000,000 (0. o (N/A) 0 (0.0%) 0 (0.0%) 12,000,000 (0... Offsets:5 Threads: 1
b 0Xx004399¢D 12,000,000 (0.... 0 (0.0%) 3 36,000,000 (0. 0 (N/A) 0 (0.0%) 0(0.0%) 12,000,000 (0... Offsets:5 Threads: 1
b 0x00440dcD 12,000,000 (0.... 0 (0.0%) 3 36,000,000 (0. o (N/A) 0 (0.0%) 0 (0.0%) 12,000,000 (0... Offsets:5 Threads:1
< J 2
< | 3 || Total Selected:
s

156

intel.

Select the falsely shared cacheline (how blue)
and Filter the Hotspot view to only Display
Accesses to that Line (multiple lines also work

& Intel(R) Performance Tu tility - 2007-12-15-08-33-27 - Eclipse Platform
File Edit Mavigate Project Run Window Help
i Qg i ﬁ|E Intel(R) Perfo. | >
Mz =0 2007-12-15-08-23-51 2007-12-15-08-33-27 52 =0
= %&|™ ||| Function | Module Collected Data Refs (%Total) | LLC Misses (%Total) | Avg. Latency | Total Latency (%Total) | cachelines = | Pages = (3¢Total) | MEM_LOAD RETIRED.L2_MISS (%Tota
=& hitm sort main_share.exe §,594,000,000 (100.0%) 400,000 (100.0%) 3 26,186,000,000 (100.0%) 1,029 24 (85.7%) 400,000 (100.0
2007-1z
2007-12
oy triad
4 E— >
Total Selected:

Granularity | S¥aaqas |+ | Process w | Thread | @ | Module Filter by Mggction T ﬁ ®
Experiment Summary | Console Ell:achelines'\ﬁew x Topby |CollectedDataRefs |»| [f] = O

IZDD?-IZ—IS-DS-B-Z?

Cacheline Address / Offset / Thread { Function Collected Data ... | LLC Misses (%:T... | Avg. Latency Total Latency (... | Contention (%... | MEM_LOAD_RE... | ME QAD_RE... | INST_RETIRED... | Contributors)
| 1,959,600,000 —. | 400,000 (100 | 3| 6,252,000,000 . | 909,100,000 (. | 400,000 (100 | 39,200, "0 (8- |1,920,000,000 . | Offsets: 2 Threads:2 fpu

I Offset:0x04(9) 1,050,500,000 (... 100,000 (25.0%) 3 3,319,000,000 (... 0(MNfa) 100,000 (25.0%) 20,400,000(46.... 1,030,000,000 (... Threads: 1
b Offset:0x00(0) 209,100,000 (1... 300,000 (75.0%) 3 2,933,000,000 (... 0(Mja) 300,000 (75.0%) 18,800,000 (42.... 890,000,000 (1i... Threads: 1

P 0x0D064Ff40 836,000,000 (... 0 (0.0%) 3 2,508,000,000 .. o(nfA) 0 (0.0%) 0(0.0%) 836,000,000 (... Offsets:1 Threads: 1

b 0x0054Ff40 764,000,000 (... 0 (0.0%) 3 2,292,000,000 ... 0 (N/A) 0 (0.0%) 0 (0.0%) 764,000,000 (... Offsets:1 Threads: 1

I DxD0S54FF80 366,000,000 (... 0 (0.0%) 3 1,098,000,000 ... o (N/A) 0 (0.0%) 0 (0.0%) 366,000,000 (... Offsets: 2 Threads: 1

b 0x0064Ff80 276,000,000 (... 0 (0.0%) 3 828,000,000 (... 0 (N/A) 0 (0.0%) 0 (0.0%) 276,000,000 (... Offsets: 2 Threads: 1

I 0x004369¢c0 14,000,000 (0.... 0 (0.0%) 3 42,000,000 (0.... o (N/A) 0 (0.0%) 0(0.0%) 14,000,000 (0.... Offsets: 7 Threads: 1

P 0x0042e580 14,000,000 (0.... 0 (0.0%) 3 42,000,000 (D.... 0 (N/A) 0 (0.0%) 0 (0.0%) 14,000,000 (0... Offsets: 6 Threads: 1

b 0x0042f380 14,000,000 (0.... 0 (0.0%) 3 42,000,000 (0.... o (N/A) 0 (0.0%) 0 (0.0%) 14,000,000 (0.... Offsets: 6 Threads: 1

P 0x004327c0 12,000,000 (0.... 0 (0.0%) 3 36,000,000 (D.... 0 (N/A) 0 (0.0%) 0 (0.0%) 12,000,000 (0... Offsets:4 Threads: 1

P 0x00440900 12,000,000 (0.... 0 (0.0%) 3 36,000,000 (0.... o (N/A) 0 (0.0%) 0(0.0%) 12,000,000 (0.... Offsets:5 Threads: 1

P 0x0042e9c0 12,000,000 (0 0 (0.0%) 3 36,000,000 (0 (N/A) 0 (0.0%) 0(0.0%) 12,000,000 (Offsets: 5 Threads: 1

b 00043960 12,000,000 (0.... 0 (0.0%) 3 36,000,000 (0.... o (N/A) 0 (0.0%) 0 (0.0%) 12,000,000 (0.... Offsets:5 Threads: 1

P 0x004399c0 12,000,000 (0.... 0 (0.0%) 3 36,000,000 (D.... 0 (N/A) 0 (0.0%) 0 (0.0%) 12,000,000 (0... Offsets:S5 Threads: 1

b 0x00440dcD 12,000,000 (0.... 0 (0.0%) 3 36,000,000 (0.... o (N/A) 0 (0.0%) 0 (0.0%) 12,000,000 (0.... Offsets:5 Threads: 1 .

< ' 3

< | 3 || Total Selected: 1,959,600,000 ... 400,000 (100.... 3 6,252,000,000.. 909,100,000 (... 400,000 (100... 39,200,000 (8... 1,920,000,000 ...

157 inte ®

Only Events Referencing the Selected
Line(s) are now in the Hotspot View
Double Click to reach source/ASM view

& Intel(R) Performance Tun i 8-33-27 - Eclipse Platfor
File Edit Mavigate Project Run Window Help
Fﬁ T % AR =T %’|EIntel(R} Perfo
Mz~ =0 2007-12-15-08-22-51 2007-12-15-08-33-27 3 =5
=% |~ ||| Function | Module dllected Data Refs (%Total) | Misses (%Total) | Avg. Latency | Total Latency (%Total) | cachelines = | Pages = (%Total) | MEM_LOAD_RETIRED.L2 MISS (%Tota
=@ hitm sort main_share.e 1,958,600,000 (22.8%) 40,000 (100.0%) 3 6,252,000,000 (23.9%) 1 1 (3.6%) 400,000 (100.0
200712
2007-1z
&y rizd
£)
Total Selected:

Granularity | ST Process Thread Module Filter by selection l? é b4
Experiment Summary | Console Topby |ColectedDataRefs | [fi] = O
IZDD7-12-1508-33-27
Cacheline Address f Offset [Thread / Function Avg. Latency Contributors L
39,200,000 (8. | 1,920,000,000 . | Offsets: 2 Threads: 2
b Offset:0x04(4) 1,050,500,000 (... 100,000 {25.0%) 3 3,319,000,000 (... 0(N/A) 100,000 (25.0%) 20,400,000 (46.... 1,030,000,000 (... Threads: 1
I Offset:0x00(0) 909,100,000 {1... 300,000 {75.0%) 3 2,933,000,000 (... 0{N/a) 300,000 (75.0%) 18,800,000 {42.... 890,000,000 (1... Threads: 1

I 0x0064ff40 836,000,000 (... 0 (0.0%a) 3 2,508,000,000... 0 (N/A) 0 (0.0%) 0 (0.0%) 836,000,000 (.. Offsets:1Threads:1

b 0x0054ff40 764,000,000 (. 0 (0.0%) 3 2,292,000,000 ... 0 (N/A) 0 (0.0%) 0 (0.0%) 764,000,000 (.. Offsets: 1 Threads: 1

I 0x0054ff80 366,000,000 (... 0 (0.0%a) 3 1,098,000,000... 0 (NfA) 0 (0.0%) 0 (0.0%) 366,000,000 (.. Offsets: 2 Threads: 1

b 0x0064ff80 276,000,000 (... 0 (0.0%) 3 828,000,000 (... 0 (N/A) 0 (0.0%) 0 (0.0%) 276,000,000 (... Offsets: 2 Threads: 1

I 0x004369¢0 14,000,000 (0. 0 (0.0%) 3 42,000,000 (O.... 0 (NjA) 0 (0.0%) 0 (0.0%) 14,000,000 (0... Offsets: 7 Threads: 1

I 0x0042e580 14,000,000 (0. 0 (0.0%a) 3 42,000,000 (0 (N/A) 0 (0.0%) 0 (0.0%) 14,000,000 (0. Offsets: 6 Threads: 1

b 0x0042380 14,000,000 (0. 0 (0.0%) 3 42,000,000 (0.... 0 (N/A) 0 (0.0%) 0 (0.0%) 14,000,000 (0... Offsets: 6 Threads: 1

I 0x004327cC0 12,000,000 (0.... 0 (0.0%a) 3 36,000,000 (0.... 0 (NfA) 0 (0.0%) 0 (0.0%) 12,000,000 (0... Offsets: 4 Threads: 1

b 0x00440900 12,000,000 (0. 0 (0.0%) 3 36,000,000 (0.... 0 (N/A) 0 (0.0%) 0 (0.0%) 12,000,000 (0... Offsets:S Threads: 1

I 0x004229¢0 12,000,000 (0. 0 (0.0%) 3 36,000,000 (0 (NjA) 0 (0.0%) 0 (0.0%) 12,000,000 (0... Offsets: 5 Threads: 1

I 0x004396c0 12,000,000 (0. 0 (0.0%a) 3 36,000,000 (0.... 0 (N/A) 0 (0.0%) 0 (0.0%) 12,000,000 (0... Offsets:5 Threads: 1

b 0x004399¢c0 12,000,000 (0.... 0 (0.0%) 3 36,000,000 (0.... 0 (N/A) 0 (0.0%) 0 (0.0%) 12,000,000 (0... Offsets:S Threads: 1
I 0x00440dco 12,000,000 (0.... 0 (0.0%a) 3 36,000,000 (0.... 0 (NfA) 0 (0.0%) 0 (0.0%) 12,000,000 (0... Offsets:5 Threads: 1 v
< ' 3 _

< 1 s || Total Selected: 1,959,600,000 ... 400,000 (100.... 3 6,252,000,000 ... 909,100,000 (.. 400,000 (100... 39,200,000 (8.. 1,920,000,000 ...

e

158

intel.

The Pointer "sum” is Causing the
False Sharing

& Intel(R) Performance Tu

File Edit Mavigate Project Run Window Help
Cis R 5 | M tel®) Perfo.., | 7
2007-12-15-08-22-51 2007-12-15-08-33-27 =&
[Source] [Assembly] [Control Graph] | DD D 2 [i] Eventof Interest: |COI|ected Dats Refs v|
[source | collect... [LicMs... [Total .. [MEM_L.| [address | L. Assembly Collected D... | LLCMis... | TotalLa... | mEM_ A
1 int =ort{int#* data. wolatile int*® =sum. int =ize... 0x1550 2 push ebp
0x1551 2 mowv ebp, esp
3 0x1553 2 push eCH
4 int 1i: 0x1554 2 push e=1
5 for(i=0; i<size; i++)*sum += datal[i]l=datali]: 1,959,8... 400,000 &,252... 400,0 0x1555 5 MmOV DWORD PTE [=bp-4]. 0=0h
[return ®sum: 0x155C 5 Jmp =ort+017h
7} - Block 1 sort+0eh:
0x155E 5 mov =ax, DWORD PTRE [ebp-4]
0x1561 & add sax, Ozxlh
0x1564 5 mov DWORD PTRE [ebp-4]. =ax
w Block 2 sort+017h:
0x1567 5 mow ecx, DWORD FTR [ebp-4]
0x1564 5 cmp ecx, DWORD PTE [ebp+010h]
0x156D & Jge sort+040h
~Block3 5 sort+01fh: 1,959,600,0... 400,000 6,252,00.. 400
0x156F 5 mow edx. DWORD PTE [shp-4]
0x1572 5 mow =ax, DWORD PTRE [ebp+08h]
0x1575 5 mow ecx, DWORD FTRE [ebp-4]
0x1573 5 mow =i, DWORD PTR [ebp+08h]
0x1578 5 mow edx, DWORD PTRE [saxtedx*d]
0x157E 5 imul ed=x, DWORD PTRE [esit+ecx*d]
0x1582 5 mow =ax, DWORD PTRE [ebp+0ch]
0x1585 5 mow ecx, DWORD PTE [eax] 553,600,000 400,000 2,034,00... 40c
0x1537 5 add scx, edx
0x1589 5 mov ed=, DWORD PTE [ebp+0ch] b
0x153C 5 mowv DWORD PTR [ed=z]. =cx 1,406,000,000 4,218,00...
0x153E 5 Jmp sort+lsh
+ Block 4 sort+040h:
0x1520 & mow sax, DWORD PTR [ebp+0ch] Z
< I S O 3
Total Selected: Total Selected (4 instructions):
=
n]

159

NUMA cacheline access

160 ‘ inter]

A NHM Socket is a Caching Agent and a

Home Agent

Uncore GQ Uncore
GQ
- Caching o o Caching L
L L
Agent PI P Agent
C g | g C
Home Agent Home Agent
IMC QHL QHL IMC
Socket 1 Socket 2

161

CA-A CA-B
i i Request Phase
snpDatd So®
< |

‘-

Simple Data Read

RdData request after LLC Miss to Local
Home (Clean Rsp)

Cores COI’eS
DRd
Uncore GO Uncore
[Broadcast C
Cache snoops to all 80/7@
Lookup SnpData other caching o) 4004.
agents) | > QC‘/;Q Y
o° Yiss
R
L SnpData)) L
L Q < Q = AN L
Pl > P Q\ @ O 99{0)
Cl Miss Snoop ! & ‘DH“‘ I KON c
to LLC] Rspl < W s,
[SenWng Req to @)
Local % [Fill complete to
(sock Socket?2
this am; ()]
Speculative
memory Rd
MC
QMC QHL l¢ Q
Data
Socket 2

Socket 1

RdData request after LLC Miss to Local
Home (Hitm Response)

Cores COI’eS
DRd
Uncore GO Uncore v
[Broadcast GQ C“9
Cache snoops to all Che
Lookup SnpData other caching
6/0 agents)]
é{b
&end S
L Snoorﬁ% SnpData o L
- ’ ot 5 L
\ > L = S,
C 7 | = % C
W RspIWb < a © %
[Data written back to WbIData /oe 4 W,
Remote Home. RspIWb is () Q [SSeﬂkoI tczomplete to
a NDR response. Hint to [Sendi qto g ocket?]
home that wb data '(—001"%0 s lati
follows shortly which is Soc e@% pecula IVG\NB
WbIData] this addres$) mem Rd
» | omMC
QmC QHL lg
Data
Socket 1 Socket 2

Uncore Opcode Match events

e Match address, opcode using an MSR
— 37 bit address match
— 8 bit opcode match

Event Event

code | Umask
UNC_ADDR_OPCODE_MATCH.IOH_REQUEST_TRACKER 35 01
UNC_ADDR_OPCODE_MATCH.REMOTE_CORES_REQUEST_TRACKER | 35 02
UNC_ADDR_OPCODE_MATCH.LOCAL_CORES_REQUEST_TRACKER 35 04

e Local Home data read, remote LLC hit

— Ev=35, umask = 2, opcode = RspFwdS = 0001 1010, opcode only

e Local Home data read, remote LLC hitm

— Ev=35, umask = 2, opcode = RspIWb = 0001 1101, opcode only
* RFO and perhaps other cases also (E->E problematic)

Summary

* Event based sampling performance analysis
s extremely powerful on Intel® Core™ i7,
XEON™ 5500 and 5600 Processor Families

» Correct methodology is essential

* Correct usage of events is essential
* Intel® PTU simplifies task

166 ‘ inter]

backup

167 ‘ inter]

Low level utilities

* PTU low level utilities can be invoked from
the command line by adding the PTU bin
directory to the path

 Low level PMU collector is SEP

—Invoked by vtsarun
—Data is stored in file called tbsXXXYYYY.tb5

—sep —start —ex 16 —ec
“"CPU_CLK_UNHALTED.THREAD:sa=2000000,UOPS
_RETIRED.ANY,UOPS_RETIRED.STALL _CYCLES"” -
app ./myapp —args " argl arg2”

- :sa=VAL explicitly sets SAV value for the event
preceding it

- -eX 16 causes sep to add PEBS buffer to event record

— Selecting data profile does the same thing - >
(lntel)

Low level utilities

e sep —start —ex 16 —ec
“"CPU_CLK_UNHALTED.THREAD:sa=2000000,UOPS
_RETIRED.ANY,UOPS_RETIRED.STALL_CYCLES,BR_
INST_RETIRED.NEAR_CALL:Ibr=2" —app ./myapp -
args " argl arg2”

* Event names must be upper case

 :Ibr=VAL turns on LBR capture with filter value
determined by VAL

 Filter values can be determined with profile editor and show
command button

LBR Value Filter Result
1 All Branches
2 All Calls
3 User Calls
4 All Calls & Ret i @
169 5 User Calls & Ret (| ntel)

Low level utilities

* sfdumpb5 creates test output based on data
in tb5 file

e sSfdump5 tbsXXXZZZ.tb5 —-modules >
modules.txt

-Summary of data

—Total number of samples and events=samples*SAV
— Events ordered by “event number”

- Total number of samples/module/event_type

170 ‘ inter]

Example sfdump5 output

Event Summary
CPU_CLK_UNHALTED.THREAD

2396 = Samples collected due to this event

2000000 = Sample after value used during collection

4792000000 = Total events (samples*SAV)
INST_RETIRED.ANY

1327 = Samples collected due to this event

2000000 = Sample after value used during collection

2654000000 = Total events (samples*SAV)

Module View (all values in decimal)

Module Process
Event Events% Samples Events
triad triad
CPU_CLK_UNHALTED.THREAD 90.40% 2166
INST_RETIRED.ANY 89.98% 1194
vmlinux triad
CPU_CLK_UNHALTED.THREAD 4.47% 107
INST_RETIRED.ANY 4.97% 66

* Thus CPU_CLK_UNHALTED.THREAD is event 0
* Thus Inst_RETIRED.ANY is event 1

171

Module Path
4332000000 /home/vtune/snb3/triad_src/triad
2388000000
214000000 vmlinux
132000000

\\ei_ooll
“ei-01"

intel.

Low level utilities

e Sfdumpb5 tbsXXXZZZ.tb5 /dumpsamples >
samples.txt

- Text dump of all samples
—All sample records in a given file are same length

-Length = SUM of all required fields for all events

- If PEBS record is collected for PEBS events, the
corresponding fields exist for non PEBS event but
are zero filled

- Events with LBR collection are only collected with
other events that have SAME LBR filter value

— 33 X 64 bits are added

172 ‘ inter]

/dumpsamples example output

00000208 64--0033:0x0000000000400DF9-0 p-0x0000231C c-00 t-0x0000231C sgno-
0x00000001 ei-00 tsc-0x0003CO6FOCF15DD4 triad

*00000208 is the record number
*64--0033:0x0000000000400DF9-0 tells you this is a 64 bit binary and the IP of
the interupt was 0x0000000000400DF9
*p-0x0000231C gives the process ID
*c-00 the core number of the interupt in this case O
t-0x0000231C the thread ID
*ei-00 the event number
thus this is an record triggered by CPU_CLK _UNHALTED.THREAD
*See —modules output to determine event numbers for a particular collection
*tsc-0x0003CO06FOCF15DD4 the Time Stamp Counter
*Triad the load module name

173 ‘ inter]

/dumpsamples example output
LBRs

00000091 64--0033:0x0000000000400694-0 p-0xO0000AO0A c-00 t-OxO0000AO0A sgno-
0x00000001 ei-00 tsc-0x000000C43DECAFB1 extra_00-0x0000000000000006 extra_01-
0x0000000000400A2C extra_02-0x00000000004009C4 extra_03-0x000000000040095C extra_04-
0x00000000004008E6 extra_05-0x000000000040086E extra_06-0x0000000000400806 extra_07-
0x000000000040074A extra_08-0x00000000004006E2 extra_09-0x0000000000401061 extra_10-
0x0000000000400D7F extra_11-0x0000000000400D97 extra_12-0x0000000000400C52 extra_13-
0x0000000000400BEC extra_14-0x0000000000400B84 extra_15-0x0000000000400AFC extra_16-
0x0000000000400A94 extra_17-0x0000000000400976 extra_18-0x000000000040090E extra_19-
0x0000000000400888 extra_20-0x0000000000400820 extra_21-0x00000000004007B8 extra_22-
0x00000000004006FC extra_23-0x0000000000400694 extra_24-0x0000000000400648 extra_25-
0x0000000000400D38 extra_26-0x0000000000400CC2 extra_27-0x0000000000400C06 extra_28-
0x0000000000400B9E extra_29-0x0000000000400B36 extra_30-0x0000000000400AAE extra_31-
0x0000000000400A46 extra_32-0x00000000004009DE call_chain

srecord number is 91

*Event number (ei) is O

*Extra_01 -> extra_16 are the branch source addresses

*Extra_17 -> extra_32 are the branch target addresses

sextra_00 points to the most recent LBR source entry
*In this case extra_06

*Most recent target is extra_(extra_00+17)
*Thus last target is extra 23 = extra_23-0x0000000000400694
And PEBS IP field is = 64--0033:0x0000000000400694-0

174 ‘ inter]

/dumpsamples example output
PEBS

00000445 64--0033:0x0000000000401665-0 p-0x00000978 c-00 t-0x00000978 sgno-
0x00000001 ei-00 tsc-0x0000011CF7198F6F extra_00-0x0000000000000202 extra_01-
0x0000000000401665 extra_02-0x00000123F1DE149A extra_03-0x0000000000000001 extra_04-
0x0000000000000000 extra_05-0x00000123F1DE149A extra_06-0x000000001B4E4355 extra_07-
0x000000004ABCE4E1 extra_08-0x00007FFFA989B710 extra_09-0x00007FFFA989B6A0 extra_10-
0x0000000000000000 extra_11-0x0000000000000001 extra_12-0x00007FFFA989B400 extra_13-
0x0000003731E97DDO0 extra_14-0x0000000000400720 extra_15-0x00007FFFA989B860 extra_16-
0x0000000000000000 extra_17-0x0000000000000000 extra_18-0x00007FFFA989B6F8 extra_19-
0x0000000000000041 extra_20-0x0000000000000038 extra_21-0x000000000000FFFF extra_22-
0x0000000000000000 store_fwd_Inx2

*Event number (ei) is O (in this case the latency event)
*Extra_01 is Event IP

*|P of instruction after the instruction that caused the interupt (“IP+17)
*Extra_02-> extra_17 are the register values at the completion of the offending
instruction

175 ‘ inter]

176

PEBS Buffer field definitions

(x)->r_flags //extra_00
(x)->linear_ip //extra_01
(x)->rax //extra_02
(x)->rbx //extra_03
(x)->rex //extra_04
(x)->rdx //extea_05
(x)->rsi //extra_06
(x)->rdi //extra_07
(x)->rbp //extra_08
(x)->rsp //extra_09
(x)->r8 //extra_10
(x)->r9 //extra_11
(x)->r10 //extra_12
(x)->r11 //extra_13
(x)->r12 //extra_14
(x)->r13 //extra_15
(x)->r14 //extra_16
(x)->r15 //extra_17
(x)->data_linear_address //extra_18
(x)->data_source //extra_19
(x)->latency //extra_20

Precise Events

* Significant expansion of PEBS
capability on Intel® Core™ 17
Processors

-4 events simultaneously

- Latency event = IPF data ear + bit pattern for
data source

- Branches retired by type
— Calls retired + LBR gives call counts

— Calls_retired + full PEBS gives function
arguments on Intel64

Data Access Analysis and PEBS

- Data address profiling for loads and
stores can be done as it is on Intel®
Core™2 Processor Family

- Full PEBS buffer + disassembly to identify
registers with valid addresses at time of
capture

- Mem_inst_retired.load
— Cannot deal with mov rax,[rax] type instruction

- Mem_inst_retired.store
— Not subject to constraint of loads

- Inst_retired.any
— Cannot deal with EIP+1 = first instr of Basic Block

178 ‘ inter]

Intel® Core™ i7 Processor PerfMon
PEBS Buffer

63 BTS Buffer Base 0 63 RFLAGS 0
RIP
BTS Index
RAX
BTS Absolute Maximum RBX
BTS Interrupt Threshold RCX
RDX
PEBS Buffer Base
RSI
PEBS Index RDI
RBP
PEBS Absolute Maximum
RSP
PEBS Interrupt Threshold RS
PEBS Counter Reset 0 T T
R15

PEBS Counter Reset 1

Global Perf Overflow MSR

PEBS Counter Reset 2 .
Data Linear Address

PEBS Counter Reset 3 Data Source (encodings)

Latency (core cycles)
Merom/Penryn - Format 0000b

Nehalem - Format 0001b

179 ‘ inter]

Load Latency Threshold Event:

* Ability to trigger count on minimum latency
— Core cycles from load execute->data availability

 Linear address in PEBS buffer

- Allows driver to collect physical address
- Only total measurement of local/remote home access

 Data source captured in bit pattern
— Actual NUMA source revealed

« Only ONE latency event/min thresh can be
taken per run
— Minimum latency programmed with MSR
- Global per core
— Ox3F6 MS_PEBS LD _LAT THRESHOLD bits 15:0
- HW samples loads

- EX: Sampling fraction for local dram=
mem_inst_retired.latency_gt_128(DS= A or C)
/mem_uncore_retired.local_dram

Front End/Decode Analysis

e Instruction decode BW has lower maximum

e Instruction flow interruption at RAT output

-~ UOPS_ISSUED.STALL_CYCLES -
RESOURCE_STALLS.ANY

- HT ON

— subtract half the cycles as well

— Or UOPS_ISSUED.CORE_STALL CYCLES-
RESOURCE_STALLS.ANY

« ILD_STALL.LCP_STALL

181 ‘ inter]

NUMA, Intel® QuickPath Interconnect, and
Intel ® Xeon 5500/5600 Processor DP
systems

* Intel® QuickPath Interconnect (Intel® QPI)
will greatly increase memory bandwidth of
our platforms

 Integrated memory controllers on each
socket access DIMMs

- Intel® QPI provides cache coherency
- Bandwidth improves by a lot

 Bandwidth improvement comes at a price
- Non-Uniform Memory Access (NUMA)

- Latency to DIMMs on remote sockets
is ~2X larger

Pealing away the Bandwidth layer

reveals the NUMA Latency layer

182 ‘ inter]

NUMA Modes on DP Systems
Controlled in BIOS

‘Non-NUMA

-Even/0dd lines assighed to sockets 0/1
- Line interleaving

*‘NUMA mode

- First Half of memory space on socket 0
- Second half of memory space on socket 1

183 ‘ inter]

Non-Uniform Memory Access
and
Parallel Execution

- Parallel processing is intrinsically NUMA
friendly

— Affinity pinning maximizes local memory access
- Message Passing Interface (MPI)
- Parallel submission to batch queues
- Standard for HPC

« Shared memory threading is more
problematic

- Explicit threading, OpenMP* product, Intel®
Threading Building Blocks (Intel® TﬁB)

- NUMA friendly data decomposition (page-based) has
not been required

- OS-scheduled thread migration can aggravate
situation

*Other names and brands may be claimed as the property of others. - l®
184 (lnte)

HPC Applications will see
Large Performance Gains due to
Bandwidth Improvements

A remaining performance bottleneck may be
due to Non-Uniform Memory Access latency

* This next level in the performance onion was
not really addressed
- Other performance tools offered little insight
- Default usage of Non-NUMA BIOS settings
- Except for some HPC accounts

 Intel® PTU data access profiling feature was
designhed to address NUMA

- NHM events were designed to provide the required
data

185 ‘ inter]

Gather and OO0 execution

no prefetch pref=8 pref=16 pref=32 pref=64 pref=96

2 fp ops 34.5 34.9 34.2 37.2 38.7 38.9
4 fp ops 44.5 34.5 33.6 38 42.2 41.4
8 fp ops 74.8 34.8 34.1 38.7 42.7 41.7
16 fp ops 108.9 34.6 34 42.2 50.9 45.6

Data collected on Core™ 2 processor, prefetchers on

56 (intelg)

Glossary

* PMU: Performance Monitoring Unit

- Assembly of counters and programmable
crossbars that allow counting and profiling using
user selectable events

* FE: core pipeline Front End

—Responsible for branch prediction, instruction
fetch, decode to uops, allocation of OOO backend
resources

* BE: core pipeline Backend

—Stage uops waiting for inputs, execute upon
availability, retire in order

Glossary

e RS: reservation station

- Where uops are staged for execution waiting for
availability of their inputs

e ROB: Reorder Buffer

—Where uops wait prior to retirement until all
older uops have retired and execution path is
confirmed. Second point corrects when uops are
executed on a mispredicted path.

* RAT: Resource Allocation Table

— Allocates BE resources for uops prior to issuing
them from front end of pipeline to the backend

Glossary
e Cachelines are 64 bytes

 LLC: Last level Cache
- L3 on these processors

 LFB: line fill buffer

—Buffers used for transfering cachelines into and
out of L1D

e WB: writeback

—Modified data is written back to higher level in
memory subsystem on eviction

 RFO: Read for Ownership

—Stores require cachelines are in exclusive
ownership state so they can be modified

Glossary

* Prefetch, by hardware (HW) or by explicit
instruction (SW)

- Request cacheline prior to execution of
consuming instruction (load/store) with intention
of hiding latency

* BW: bandwidth

- Data moved/unit time. I prefer cachelines/cycle
as that is what is measured

e Latency: time required to transfer a single
line from source to usage.

Glossary

 SIMD: Single instruction multiple data
—SSE parallel execution mode
— AKA vectorization

* X87: legacy floating point computation
mode. In contrast to SSE FP instructions
* NT: Non Temporal

- Data store mode that writebacks data in 64 byte
aligned contiguous 64 byte chunks directly to
dram without RFO

e HITM: Hit Modified
-Snoop response when line is found in modified

state in another cache In/teD

Glossary

 HT: Intel® Hyper-threading Technology

- Execution mode allowing uops from two threads
to be executed in an intermingled flow, without
an OS context switch, through a single core
pipeline.

* Turbo: Intel® Turbo Boost Technology

- Adjusting core frequency upwards on active core
when other cores are under utilized, while
staying within required power envelope.
Enhances performance of single threaded
execution

