
Advanced Topics in MPI

Rusty Lusk
Mathematics and Computer Science
Division
Argonne National Laboratory

2
2

Outline

 What is MPI and where does it fit into HPC?
 Selected topics in MPI programming beyond the basics
 MPI profiling interface and tools

– SLOG/Jumpshot: visualizing parallel performance
– FPMPI: gathering summary statistics
– Collchk: runtime checking of correct use of collective operations

 MPI and threads: hybrid programming
 One-sided communication
 MPI at Exascale
 Recent Activities of the MPI Forum
 ADLB: a scalable load-balancing library built on MPI

What is MPI?
 MPI (Message-Passing Interface) is a message-passing

library interface standard.
– Specification, not implementation
– Library, not a language
– Classical message-passing programming model

 MPI-1 was defined (1994) by a broadly-based group of
parallel computer vendors, computer scientists, and
applications developers.
– 2-year intensive process

 MPI-2 was standardized in 1997
 Implementations appeared quickly and now MPI is taken for

granted as vendor-supported software on any parallel
machine.

 Portable, open-source implementations exist for virtually
every system in the world; MPICH2 and OpenMPI are
widely-used implementations

33

MPI in a Nutshell
 A parallel program consists of multiple processes, each with

its own program counter, call stack, and address space.
– A process may be multi-threaded, in which case each thread has

its own program counter and call stack, and they share the
address space.

– A process’s address space is not accessible to other processes
via the compiler-generated load and store instructions

 Data is moved from one address space to another using MPI
– Pair-wise exchange model (send-receive)

• Useful for computations with data dependencies (I wait for data from
another process using MPI receive)

– Group communication model (collective operations)
• Coordinated data exchange between multiple processes – takes

advantage of group semantics for performance improvements
• Applications form groups of sizes appropriate for their computation

– One-sided communication operations (Put, Get)
• Useful for asynchronous or uncoordinated computations

– I/O capabilities (MPI-IO)
• Data movement from memory space to the file-system (pair-wise and

4

5

Timeline of the MPI Standard
 MPI-1 (1994)

– Basic point-to-point communication, collectives, datatypes, etc
 MPI-2 (1997)

– Added parallel I/O, RMA, dynamic processes, C++ and Fortran90
bindings, semantics of interaction with threads, etc.

 ---- Stable for 10 years ----

 MPI-2.1 (2008)
– Minor clarifications and bug fixes to MPI-2

 MPI-2.2 (2009)
– Today’s official standard
– Small updates and additions to MPI 2.1. Backward compatible

 MPI-3 (in progress, expected early 2012)
– Major new features and additions to extend MPI to exascale
– Organized into several working groups
– Draft 1 was released last November; Draft 2 will be released this

November

Where does MPI fit into Exascale?
 Despite its record of success, there are concerns about

whether we should abandon MPI and look for an entirely new
way of programming massive parallelism

 Most of these questions are derived from a misunderstanding
of what MPI’s role is now and how actively it is evolving to
meet these concerns

 Is MPI too low-level to be a “productive” programming model?
– Some call it the “assembly language of parallel programming”
– Actually, since it is portable, it’s the C
– It wasn’t designed for ease of use, but rather for capabilities

needed to develop sophisticated portable parallel libraries
 Can MPI scale to the numbers of address spaces and threads

that will be needed/provided in the future?
– Being addressed now by both standards (MPI-3 Forum) and

implementations
 Will MPI be able to interoperate with other programming

models that we will need for parallelism within an address
6

Beyond Elementary MPI

7

8

Message Passing, Buffering, Deadlocks

 Message passing is a simple programming model, but there
are some special issues
– Buffering and deadlock
– Deterministic execution
– Performance

9

Buffers

 When you send data, where does it go? One possibility is:

Process 0 Process 1

User data

Local buffer

the network

User data

Local buffer

10

Avoiding Buffering

 It is better to avoid copies:

This requires that MPI_Send wait on delivery, or that
MPI_Send return before transfer is complete, and we wait
later.

Process 0 Process 1

User data

User data

the network

11

 Send a large message from process 0 to process 1
– If there is insufficient storage at the destination, the send

must wait for the user to provide the memory space
(through a receive)

 What happens with this code?

Sources of Deadlocks

Process 0

Send(1)
Recv(1)

Process 1

Send(0)
Recv(0)

• This is called “unsafe” because it depends on the
availability of system buffers in which to store the data
sent until it can be received

12

Some Solutions to the “unsafe” Problem

 Order the operations more carefully:

• Supply receive buffer at same time as send:

Process 0

Send(1)
Recv(1)

Process 1

Recv(0)
Send(0)

Process 0

Sendrecv(1)

Process 1

Sendrecv(0)

13

More Solutions to the “unsafe” Problem

 Supply own space as buffer for send

 Use non-blocking operations:

Process 0

Bsend(1)
Recv(1)

Process 1

Bsend(0)
Recv(0)

Process 0

Isend(1)
Irecv(1)
Waitall

Process 1

Isend(0)
Irecv(0)
Waitall

14

Communication Modes

 MPI provides multiple modes for sending messages:
– Synchronous mode (MPI_Ssend): the send does not complete

until a matching receive has begun. (Unsafe programs deadlock.)
– Buffered mode (MPI_Bsend): the user supplies a buffer to the

system for its use. (User allocates enough memory to make an
unsafe program safe.

– Ready mode (MPI_Rsend): user guarantees that a matching
receive has been posted.
• Allows access to fast protocols
• undefined behavior if matching receive not posted

 Non-blocking versions (MPI_Issend, etc.)
 MPI_Recv receives messages sent in any mode.

15

Buffered Mode

 When MPI_Isend is awkward to use (e.g. lots of small
messages), the user can provide a buffer for the system to
store messages that cannot immediately be sent.
 int bufsize;

char *buf = malloc(bufsize);
MPI_Buffer_attach(buf, bufsize);
...
MPI_Bsend(... same as MPI_Send ...)
...
MPI_Buffer_detach(&buf, &bufsize);

 MPI_Buffer_detach waits for completion.
 Performance depends on MPI implementation and size of

message.

16

MPI_Sendrecv

 Allows simultaneous send and receive
 Everything else is general.

– Send and receive datatypes (even type signatures) may be
different

– Can use Sendrecv with plain Send or Recv (or Irecv or Ssend_init,
…)

– More general than “send left”

Process 0

SendRecv(1)

Process 1

SendRecv(0)

17

Understanding Performance:
Unexpected Hot Spots

 Basic performance analysis looks at two-party exchanges
 Real applications involve many simultaneous communications
 Performance problems can arise even in common grid exchange

patterns
 Message passing illustrates problems present even in shared

memory
– Blocking operations may cause unavoidable memory stalls

18
18

Basic MPI: Looking Closely at a Simple
Communication Pattern

 Many programs rely on “halo exchange” (ghost cells, ghost
points, stencils) as the core communication pattern
– Many variations, depending on dimensions, stencil shape
– Here we look carefully at a simple 2-D case

 Unexpected performance behavior
– Even simple operations can give surprising performance behavior.
– Examples arise even in common grid exchange patterns
– Message passing illustrates problems present even in shared

memory
• Blocking operations may cause unavoidable stalls

19
19

Processor Parallelism

• Decomposition of a mesh into 1 patch
per process

• Update formula typically a(i,j) = f(a
(i-1,j),a(i+1,j),a(i,j+1),a(i,j-1),…)

• Requires access to “neighbors” in
adjacent patches

20

Sample Code

 Do i=1,n_neighbors
 Call MPI_Send(edge, len, MPI_REAL, nbr(i), tag,
 comm, ierr)
Enddo
Do i=1,n_neighbors
 Call MPI_Recv(edge,len,MPI_REAL,nbr(i),tag,
 comm,status,ierr)
Enddo

 What is wrong with this code?

21

Deadlocks!

 All of the sends may block, waiting for a matching receive
(will for large enough messages)

 The variation of
if (has down nbr)
 Call MPI_Send(… down …)
if (has up nbr)
 Call MPI_Recv(… up …)
…
sequentializes (all except the bottom process blocks)

22

Sequentialization

RecvSend
RecvSend

RecvSend
Send Recv
RecvSend

RecvSendStart
Send

Start
Send

Start
Send

Start
Send

Start
Send

Start
Send

RecvSend

23

Fix 1: Use Irecv

 Do i=1,n_neighbors
 Call MPI_Irecv(edge,len,MPI_REAL,nbr(i),tag,
 comm,requests(i),ierr)
Enddo
Do i=1,n_neighbors
 Call MPI_Send(edge, len, MPI_REAL, nbr(i), tag,
 comm, ierr)
Enddo
Call MPI_Waitall(n_neighbors, requests, statuses, ierr)

 Does not perform well in practice. Why?

24

Timing Model

 Sends interleave
 Sends block (data larger than buffering will allow)
 Sends control timing
 Receives do not interfere with Sends
 Exchange can be done in 4 steps (down, right, up, left)

25

Mesh Exchange - Step 1

 Exchange data on a mesh

26

Mesh Exchange - Step 2

 Exchange data on a mesh

27

Mesh Exchange - Step 3

 Exchange data on a mesh

28

Mesh Exchange - Step 4

 Exchange data on a mesh

29

Mesh Exchange - Step 5

 Exchange data on a mesh

30

Mesh Exchange - Step 6

 Exchange data on a mesh

31

Timeline from IBM SP

• Note that process 1 finishes last, as predicted

32

Distribution of Sends

33

Why Six Steps?

 Ordering of Sends introduces delays when there is contention
at the receiver

 Takes roughly twice as long as it should
 Bandwidth is being wasted
 Same thing would happen if using memcpy and shared

memory

34

Fix 2: Use Isend and Irecv

 Do i=1,n_neighbors
 Call MPI_Irecv(edge,len,MPI_REAL,nbr(i),tag,
 comm,request(i),ierr)
Enddo
Do i=1,n_neighbors
 Call MPI_Isend(edge, len, MPI_REAL, nbr(i), tag,
 comm, request(n_neighbors+i), ierr)
Enddo
Call MPI_Waitall(2*n_neighbors, request, statuses,
 ierr)

35

Mesh Exchange - Steps 1-4

 Four interleaved steps

36

Timeline from IBM SP

Note processes 5 and 6 are the only interior processors; these perform
more communication than the other processors

37

Lesson: Defer Synchronization

 Send-receive accomplishes two things:
– Data transfer
– Synchronization

 In many cases, there is more synchronization than required
 Use nonblocking operations and MPI_Waitall to defer

synchronization

38

MPI Message Ordering

 Multiple messages from one process to another will be
matched in order, not necessarily completed in order

MPI_Isend(dest=1)

MPI_Isend(dest=1)

MPI_Irecv(any_src, any_tag)

MPI_Irecv(any_src, any_tag)

MPI_Isend(dest=1)

MPI_Isend(dest=1)

MPI_Irecv(any_src, any_tag)

MPI_Irecv(any_src, any_tag)

Rank 0 Rank 1 Rank 2

MPI Profiling Interface

40
40

Tools Enabled by the MPI Profiling Interface

 The MPI profiling interface: how it works
 Some freely available tools

– Those to be presented in other talks
– A few that come with MPICH2

• SLOG/Jumpshot: visualization of detailed timelines
• FPMPI: summary statistics
• Collcheck: runtime checking of consistency in use of collective

operations

41
41

MPI LibraryUser Program

Call MPI_Send

Call MPI_Bcast

MPI_Send

MPI_Bcast

The MPI Profiling Interface

Profiling
Library

PMPI_Send

MPI_Send

42
42

Performance Visualization with Jumpshot

 For detailed analysis of parallel program behavior,
timestamped events are collected into a log file during the
run.

 A separate display program (Jumpshot) aids the user in
conducting a post mortem analysis of program behavior.

 We use an indexed file format (SLOG-2) that uses a preview
to select a time of interest and quickly display an interval,
without ever needing to read much of the whole file.

Logfile

Jumpshot

Processes

Display

43
43

Viewing Multiple Scales

Each line represents
1000’s of messages

Detailed view shows opportunities
for optimization

1000x zoom

44
44

Pros and Cons of this Approach

 Cons:
– Scalability limits

• Screen resolution
• Big log files, although

– Jumpshot can read SLOG files fast
– SLOG can be instructed to log few types of events

– Use for debugging only indirect
 Pros:

– Portable, since based on MPI profiling interface
– Works with threads
– Aids understanding of program behavior

• Almost always see something unexpected

45
45

Looking at MILC in SPEC2007

 Curious amount of All_reduce in initialization - why?

46
46

MILC
 The answer, and how

47
47

MILC

 The answer - why
– Deep in innermost of quadruply nested loop, an innocent-looking

line of code:

If (i > myrank()) …

And myrank is a function that calls MPI_Comm_rank

– It actually doesn’t cost that much here, but

– It illustrates that you might not know what your code is doing
what you think it is
– Not a scalability issue (found on small # of processes)

48
48

Detecting Consistency Errors in MPI Collective
Operations

 The Problem: the specification of MPI_Bcast:
 MPI_Bcast(buf, count, datatype, root, comm)

 requires that
– root is an integer between 0 and the maximum rank.
– root is the same on all processes.
– The message specified by buf, count, datatype has the

same signature on all processes.
 The first of these is easy to check on each process at the

entry to the MPI_Bcast routine.
 The second two are impossible to check locally; they are

consistency requirements requiring communication to check.
 There are many varieties of consistency requirements in the

MPI collective operations.

49
49

Datatype Signatures

 Consistency requirements for messages in MPI (buf, count,
datatype) are not on the MPI datatypes themselves, but on the
signature of the message:
– {type1, type2, …} where typei is a basic MPI datatype

 So a message described by (buf1, 4, MPI_INT) matches a
message described by (buf2, 1, vectype), where vectype was
created to be a strided vector of 4 integers.

 For point-to-point operations, datatype signatures don’t have to
match exactly (it is OK to receive a short message into a long

50
50

Approach

 Use the MPI profiling interface to intercept the collective calls,
“borrow” the communicator passed in, and use it to check
argument consistency among its processes.

 For example, process 0 can broadcast its value of root, and
each other process can compare with the value it was passed
for root.

 For datatype consistency checks, we will communicate hash
values of datatype signatures.

 Reference: Falzone, Chan, Lusk, Gropp, “Collective Error

51
51

Types of Consistency Checks

 Call – checks that all processes have made the same collective
call (not MPI_Allreduce on some processes and MPI_Reduce on
others).
– Used in all collective functions

 Root – checks that the same value of root was passed on all
processes
– Used in Bcast, Reduce, Gather(v), Scatter(v), Spawn, Spawn_multiple,

Connect
 Datatype – checks consistency of data arguments

52
52

More Types of Consistency Checks

 MPI_IN_PLACE – checks whether all process or none of the
processes specified MPI_IN_PLACE instead of a buffer.
– Used in Allgather(v), Allreduce, and Reduce_scatter

 Local leader and tag – checks consistency of these
arguments
– Used only in MPI_Intercomm_create

 High/low – checks consistency of these arguments
– Used only in MPI_Intercomm_merge

 Dims – checks consistency of these arguments

53
53

Still More Types of Consistency Checks

 Graph – checks graph consistency
– Used in Graph_create and Graph_map

 Amode – checks file mode argument consistency
– Used in File_open

 Size, datarep, flag – checks consistency of these I/O
arguments
– Used in File_set_size, File_set_automicity, File_preallocate

 Etype – checks consistency of this argument
– Used in File_set_view

 Order – checks that split-collective calls are properly ordered

54
54

Example Output

 We try to make error output instance specific:

 Validate Bcast error (Rank 4) – root parameter (4)
is inconsistent with rank 0’s (0)

 Validate Bcast error (Rank 4) – datatype signature
is inconsistent with Rank 0’s

 Validate Barrier (rank 4) – collective call
(Barrier) is inconsistent with Rank 0’s (Bcast)

55
55

Experiences

 Finding errors
– Found error in MPICH2 test suite, in which a message with one

MPI_INT was allowed to match sizeof(int) MPI_BYTEs.
– MPICH2 allowed the match, but shouldn’t have.
– Ran large astrophysics application (FLASH) containing many

collective operations
• Collective calls all in third-party AMR library (Paramesh), but could still

be examined through MPI profiling library approach.
• Found no errors ()

 Portability, Performance
– Linux cluster (MPICH2)
– Blue Gene (IBM’s BG/L MPI)
– Relative overhead decreases as size of message increases

• The extra checking messages are much shorter than the real messages
– Overhead can be relatively large for small messages

• Opportunities for optimization remain

56

MPI and Threads

57

MPI and Threads

 MPI describes parallelism between processes (with separate
address spaces)

 Thread parallelism provides a shared-memory model within
a process

 OpenMP and Pthreads are common models
– OpenMP provides convenient features for loop-level

parallelism. Threads are created and managed by the
compiler, based on user directives.

– Pthreads provide more complex and dynamic approaches.
Threads are created and managed explicitly by the user.

58

Programming for Multicore

 Almost all chips are multicore these days
 Today’s clusters often comprise multiple CPUs per node

sharing memory, and the nodes themselves are connected
by a network

 Common options for programming such clusters
– All MPI

• Use MPI to communicate between processes both within a node
and across nodes

• MPI implementation internally uses shared memory to
communicate within a node

– MPI + OpenMP
• Use OpenMP within a node and MPI across nodes

– MPI + Pthreads
• Use Pthreads within a node and MPI across nodes

 The latter two approaches are known as “hybrid
programming”

59

MPI’s Four Levels of Thread Safety

 MPI defines four levels of thread safety. These are in the form of
commitments the application makes to the MPI implementation.
– MPI_THREAD_SINGLE: only one thread exists in the application
– MPI_THREAD_FUNNELED: multithreaded, but only the main thread

makes MPI calls (the one that called MPI_Init or MPI_Init_thread)
– MPI_THREAD_SERIALIZED: multithreaded, but only one thread at a

time makes MPI calls
– MPI_THREAD_MULTIPLE: multithreaded and any thread can make

MPI calls at any time (with some restrictions to avoid races – see
next slide)

 MPI defines an alternative to MPI_Init
– MPI_Init_thread(requested, provided)

• Application indicates what level it needs; MPI implementation returns

60

Specification of MPI_THREAD_MULTIPLE

 When multiple threads make MPI calls concurrently, the
outcome will be as if the calls executed sequentially in some
(any) order

 Blocking MPI calls will block only the calling thread and will
not prevent other threads from running or executing MPI
functions

 It is the user's responsibility to prevent races when threads
in the same application post conflicting MPI calls
– e.g., accessing an info object from one thread and freeing it

from another thread
 User must ensure that collective operations on the same

communicator, window, or file handle are correctly ordered
among threads

61

Threads and MPI in MPI-2

 An implementation is not required to support levels higher than
MPI_THREAD_SINGLE; that is, an implementation is not required
to be thread safe

 A fully thread-safe implementation will support
MPI_THREAD_MULTIPLE

 A program that calls MPI_Init (instead of MPI_Init_thread) should
assume that only MPI_THREAD_SINGLE is supported

 A threaded MPI program that does not call MPI_Init_thread is an
incorrect program (common user error we see)

62

An Incorrect Program

Process 0

MPI_Bcast(comm)

MPI_Barrier(comm)

Process 1

MPI_Bcast(comm)

MPI_Barrier(comm)

Thread 1

Thread 2

 Here the user must use some kind of synchronization to
ensure that either thread 1 or thread 2 gets scheduled first
on both processes

 Otherwise a broadcast may get matched with a barrier on
the same communicator, which is not allowed in MPI

63

A Correct Example

Process 0

MPI_Recv(src=1)

MPI_Send(dst=1)

Process 1

MPI_Recv(src=0)

MPI_Send(dst=0)

Thread 1

Thread 2

 An implementation must ensure that the above example
never deadlocks for any ordering of thread execution

 That means the implementation cannot simply acquire a
thread lock and block within an MPI function. It must
release the lock to allow other threads to make progress.

64

The Current Situation

 All MPI implementations support MPI_THREAD_SINGLE (duh).
 They probably support MPI_THREAD_FUNNELED even if they

don’t admit it.
– Does require thread-safe malloc
– Probably OK in OpenMP programs

 Many (but not all) implementations support
THREAD_MULTIPLE
– Hard to implement efficiently though (lock granularity issue)

 “Easy” OpenMP programs (loops parallelized with OpenMP,
communication in between loops) only need FUNNELED
– So don’t need “thread-safe” MPI for many hybrid programs
– But watch out for Amdahl’s Law!

65

Performance with MPI_THREAD_MULTIPLE

 Thread safety does not come for free
 The implementation must protect certain data structures or

parts of code with mutexes or critical sections
 To measure the performance impact, we ran tests to

measure communication performance when using multiple
threads versus multiple processes
– Details in our Parallel Computing (journal) paper (2009)

66

Tests with Multiple Threads versus Processes

T

T

T

T

T

T

T

T

P

P

P

P

P

P

P

P

67

Concurrent Bandwidth Test on Linux Cluster

MPICH2 version 1.0.5
Open MPI version 1.2.1

68

Concurrent Bandwidth Test on a single SMP
(Sun and IBM)

69

Concurrent Latency Test on Linux Cluster

MPICH2 version 1.0.5
Open MPI version 1.2.1

70

Concurrent Latency Test on a single SMP
(Sun and IBM)

71

What MPI’s Thread Safety Means in the Hybrid MPI
+OpenMP Context

 MPI_THREAD_SINGLE
– There is no OpenMP multithreading in the program.

 MPI_THREAD_FUNNELED
– All of the MPI calls are made by the master thread. i.e. all MPI

calls are
• Outside OpenMP parallel regions, or
• Inside OpenMP master regions, or
• Guarded by call to MPI_Is_thread_main MPI call.

– (same thread that called MPI_Init_thread)

 MPI_THREAD_SERIALIZED
#pragma omp parallel
…
#pragma omp atomic
{
 …MPI calls allowed here…
}

 MPI_THREAD_MULTIPLE
– Any thread may make an MPI call at any time

72

Visualizing Hybrid Programs with Jumpshot

 Recent additions to Jumpshot for multithreaded and hybrid
programs that use Pthreads
– Separate timelines for each thread id
– Support for grouping threads by communicator as well as by

process

73

Using Jumpshot with Hybrid MPI+OpenMP
Programs

 SLOG2/Jumpshot needs two properties of the
OpenMP implementation that are not guaranteed by
the OpenMP standard
– OpenMP threads must be Pthreads

• Otherwise, the locking in the logging library (which uses
Pthread locks) necessary to preserve exclusive access to the
logging buffers would need to be modified

– These Pthread ids must be reused (threads are “parked”
when not in use)
• Otherwise Jumpshot would need zillions of time lines

74

Three Platforms for Hybrid Programming
Experiments

 Linux cluster
– 24 nodes, each with two Opteron dual-core processors, 2.8 Ghz each
– Intel 9.1 Fortran compiler
– MPICH2-1.0.6, which has MPI_THREAD_MULTIPLE
– Multiple networks; we used GigE

 IBM Blue Gene/P
– 40,960 nodes, each consisting of four PowerPC 850 MHz cores
– XLF 11.1 Fortran cross-compiler
– IBM’s MPI V1R1M2 (based on MPICH2), has MPI_THREAD_MULTIPLE
– 3D Torus and tree networks

 SiCortex SC5832
– 972 nodes, each consisting of six MIPS 500 MHz cores
– Pathscale 3.0.99 Fortran cross-compiler
– SiCortex MPI implementation based on MPICH2, has

MPI_THREAD_FUNNELED
– Kautz graph network

75

Experiments

 Basic
– Proved that necessary assumptions for our tools hold

• OpenMP threads are Pthreads
• Thread id’s are reused

 NAS Parallel Benchmarks
– NPB-MZ-MPI, version 3.1
– Both BT and SP
– Two different sizes (W and B)
– Two different modes (“MPI everywhere” and OpenMP/MPI)

• With four nodes on each machine
 Demonstrated satisfying level of portability of programs and

tools across three quite different hardware/software
environments

76

It Might Not Be Doing What You Think
 An early run:

 Nasty interaction between the environment variables
OMP_NUM_THREADS and NPB_MAX_THREADS

77

More Like What You Expect
 BT class B on 4 BG/P nodes, using OpenMP on each node

78

MPI Everywhere
 BT class B on 4 BG/P nodes, using 16 MPI processes

79

Observations on Experiments

Experiment Cluster BG/P SiCortex
Bt-mz.W.16x1 1.84 9.46 20.60
Bt-mz-W.4x4 0.82 3.74 11.26
Sp-mz.W.16x1 0.42 1.79 3.72
Sp-mz.W.4x4 0.78 3.00 7.98
Bt-mz.B.16.1 24.87 113.31 257.67
Bt-mz.B.4x4 27.96 124.60 399.23
Sp-mz.B.16x1 21.19 70.69 165.82
Sp-mz.B.4x4 24.03 81.47 246.76
Bt-mz.B.24x1 241.85
Bt-mz.B.4x6 337.86
Sp-mz.B.24x1 127.28
Sp-mz.B.4x6 211.78

 Time in seconds
 On the small version of BT (W), hybrid was better
 For SP and size B problems, MPI everywhere is better
 On SiCortex, more processes or threads are better than fewer

80

Observations

 This particular benchmark has been studied much more
deeply elsewhere
– Rolf Rabenseifner, “Hybrid parallel programming on HPC

platforms,” Proceedings of EWOMP’03.
– Barbara Chapman, Gabriele Jost, and Ruud van der Pas, Using

OpenMP: Portable Shared Memory Parallel Programming, MIT
Press, 2008.

 Adding “hybridness” to a well-tuned MPI application is not
going to speed it up. So this NPB study doesn’t tell us much.

 More work is needed to understand the behavior of hybrid
programs and what is needed for future application
development.

81

One-Sided
Communication

82

One-Sided Communication

 A process can directly access another process’s memory (with a
function call)

 Three data transfer functions
– MPI_Put, MPI_Get, MPI_Accumulate

 Three synchronization methods
– MPI_Win_fence
– MPI_Win_post/start/complete/wait
– MPI_Win_lock/unlock

MPI_Put

MPI_Get

83

Remote Memory Access Windows and Window
Objects

Get

Put

Process 2

Process 1

Process 3

Process 0

= address spaces = window object

window

84

Window Creation

 MPI_Win_create exposes local memory to RMA
operation by other processes in a communicator
– Collective operation
– Creates window object

MPI_Win_Create(base, size, disp_unit, info, comm, win)

 MPI_Win_free deallocates window object

85

Fence Synchronization

 MPI_Win_fence is collective over the communicator
associated with the window object

 (The numbers in parentheses refer to the target ranks)

Process 0

MPI_Win_fence(win)

MPI_Put(1)
MPI_Get(1)

MPI_Win_fence(win)

Process 1

MPI_Win_fence(win)

MPI_Put(0)
MPI_Get(0)

MPI_Win_fence(win)

86

Post-Start-Complete-Wait Synchronization

 Scalable: Only the communicating processes need to
synchronize

 (The numbers in parentheses refer to the target ranks)

Process 0

MPI_Win_start(1)

MPI_Put(1)
MPI_Get(1)

MPI_Win_complete(1)

Process 1
MPI_Win_post(0,2)

MPI_Win_wait(0,2)

Process 2

MPI_Win_start(1)

MPI_Put(1)
MPI_Get(1)

MPI_Win_complete(1)

87

Lock-Unlock Synchronization

 “Passive” target: The target process does not make any
synchronization call

 (The numbers in parentheses refer to the target ranks)

Process 0
MPI_Win_create

MPI_Win_lock(shared,1)
MPI_Put(1)
MPI_Get(1)
MPI_Win_unlock(1)

MPI_Win_free

Process 1
MPI_Win_create

MPI_Win_free

Process 2
MPI_Win_create

MPI_Win_lock(shared,1)
MPI_Put(1)
MPI_Get(1)
MPI_Win_unlock(1)

MPI_Win_free

88

Performance Tests

 “Halo” exchange or ghost-cell exchange operation
– Each process exchanges data with its nearest neighbors
– Part of mpptest benchmark
– One-sided version uses all 3 synchronization methods

 Ran on
– Sun Fire SMP at Univ. of Aachen, Germany
– IBM p655+ SMP at San Diego Supercomputer Center

89

One-Sided Communication on Sun SMP with Sun
MPI

0

20.0000

40.0000

60.0000

80.0000

0 375 750 1125 1500

Halo Performance on Sun
uS

ec

Bytes

sendrecv-8
psendrecv-8
putall-8
putpscwalloc-8
putlockshared-8
putlocksharednb-8

90

One-Sided Communication on IBM SMP with IBM
MPI

0

100.0000

200.0000

300.0000

400.0000

0 375 750 1125 1500

Halo Performance (IBM-7)

uS
ec

Bytes

sendrecv-2
psendrecv-2
put-2
putpscw-2
sendrecv-4
psendrecv-4
put-4
putpscw-4

MPI at Exascale

Rajeev Thakur
Mathematics and Computer Science
Division
Argonne National Laboratory

92

MPI on the Largest Machines Today

 Systems with the largest core counts in June 2010 Top500 list
 Juelich BG/P 294,912 cores
 Oak Ridge Cray XT5 224,162 cores
 LLNL BG/L 212,992 cores
 Argonne BG/P 163,840 cores
 LLNL BG/P (Dawn) 147,456 cores
 (All these systems run MPICH2-based MPI implementations)

 In a couple of years, we will have systems with more than a
million cores

 For example, in 2012, the Sequoia machine at Livermore will

93

Future Extreme Scale Platforms

 Hundreds of thousands of “nodes”
 Each node has large numbers of cores, including

– Regular CPUs and accelerators (e.g., GPUs)

Compute
Nodes

I/O
Nodes

Storage
Targets

Mgmt
Nodes

Login
Nodes

94

Multiple Cores Per Node

95

Scaling MPI to Exascale

 MPI already runs on the largest systems today at ~300,000
cores

 What would it take to scale MPI to exascale systems with
millions of cores?

 On exascale, MPI is likely to be used as part of a “hybrid
programming” model (MPI+X), much more so than it is today
– MPI being used to communicate between “address spaces”
– With some other “shared-memory” programming model

(OpenMP, UPC, CUDA, OpenCL) for programming within an
address space

 How can MPI support efficient “hybrid” programming on
exascale systems?

96

Scaling MPI to Exascale

 Although the original designers of MPI were not thinking of
exascale, MPI was always intended and designed with
scalability in mind. For example:
– A design goal was to enable implementations that maintain very

little global state per process
– Another design goal was to require very little memory

management within MPI (all memory for communication can be in
user space)

– MPI defines many operations as collective (called by a group of
processes), which enables them to be implemented scalably and
efficiently

 Nonetheless, some parts of the MPI specification may need to
be fixed for exascale
– Being addressed by the MPI Forum in MPI-3

97

Factors Affecting MPI Scalability

 Performance and memory consumption
 A nonscalable MPI function is one whose time or memory

consumption per process increase linearly (or worse) with
the total number of processes (all else being equal)

 For example
– If memory consumption of MPI_Comm_dup increases linearly

with the no. of processes, it is not scalable
– If time taken by MPI_Comm_spawn increases linearly or more

with the no. of processes being spawned, it indicates a
nonscalable implementation of the function

 Such examples need to be identified and fixed (in the
specification and in implementations)

 The goal should be to use constructs that require only
constant space per process

98

Requirements of a message-passing library at
extreme scale

 No O(nprocs) consumption of resources (memory, network
connections) per process

 Resilient and fault tolerant
 Efficient support for hybrid programming (multithreaded

communication)
 Good performance over the entire range of message sizes

and all functions, not just latency and bandwidth
benchmarks

 Fewer performance surprises (in implementations)

 These issues are being addressed by the MPI Forum for
MPI-3 and by MPI implementations

99

Scalability Issues in the MPI Specification

 Some functions take parameters that grow linearly with
number of processes

 E.g., irregular (or “v”) version of collectives such as
MPI_Gatherv

 Extreme case: MPI_Alltoallw takes six such arrays
– On a million processes, that requires 24 MB on each process

 On low-frequency cores, even scanning through large arrays
takes time (see next slide)

 Solution: The MPI Forum is considering a proposal to define
sparse, neighborhood collectives that could be used instead
of irregular collectives

100

Zero-byte MPI_Alltoallv time on BG/P

 This is just the time to scan the parameter array to determine
it is all

 0 bytes. No communication performed.

101

Scalability Issues in the MPI Specification

 Graph Topology
– In MPI 2.1 and earlier, requires the entire graph to be specified

on each process
– Already fixed in MPI 2.2 – new distributed graph topology

functions

 One-sided communication
– Synchronization functions turn out to be expensive
– Being addressed by RMA working group of MPI-3

 Representation of process ranks
– Explicit representation of process ranks in some functions,

such as MPI_Group_incl and MPI_Group_excl
– Concise representations should be considered

102

Scalability Issues in the MPI Specification

 All-to-all communication
– Not a scalable communication pattern
– Applications may need to consider newer algorithms that do

not require all-to-all

 Fault tolerance
– Large component counts will result in frequent failures
– Greater resilience needed from all components of the software

stack
– MPI can return error codes, but need more support than that
– Being addressed in the fault tolerance group of MPI-3

103

MPI Implementation Scalability

 MPI implementations must pay attention to two aspects as
the number of processes is increased:
– memory consumption of any function, and
– performance of all collective functions

• Not just collective communication functions that are commonly
optimized

• Also functions such as MPI_Init and MPI_Comm_split

104

Process Mappings

 MPI communicators maintain mapping from ranks to
processor ids

 This mapping is often a table of O(nprocs) size in the
communicator

 Need to explore more memory-efficient mappings, at least
for common cases

 More systematic approaches to compact representations of
permutations (research problem)

105

Communicator Memory Consumption

 NEK5000 is a well-known fluid dynamics code developed by
Paul Fischer and colleagues at Argonne

 When they first tried to scale this code on the BG/P, it failed
on as little as 8K processes because the MPI library ran out of
communicator memory

 NEK5000 calls MPI_Comm_dup about 64 times (because it
makes calls to libraries)

 64 is not a large number, and, in any case, MPI_Comm_dup
should not consume O(nprocs) memory (it doesn’t in MPICH2)

 We ran an experiment to see what was going on…

106

Communicator Memory Consumption with original MPI on
BG/P

 Run MPI_Comm_dup in a loop until it fails. Vary the no.
of processes

0

2250

4500

6750

9000

4 8 16 32 64 12
8

25
6

51
2 1K 2K 4K 8K 16

K
32

K
64

K
12

8K

Maximum Number of Communicators

N
um

be
r

of
 C

om
m

un
ic

at
or

s

Number of Processes

107

What was going on --- and the fix

 The default MPI_Comm_dup in IBM’s MPI was allocating
memory to store process mapping info for optimizing future
calls to collective communication (Alltoall)

 Allocated memory was growing linearly with system size
 One could disable the memory allocation with an environment

variable, but that would also disable the collective
optimizations

 On further investigation we found that they really only needed
one buffer per thread instead of one buffer per new
communicator

 Since there are only four threads on the BG/P, we fixed the
problem by allocating a fixed buffer pool within MPI

108

Communicator Memory Consumption Fixed

 NEK5000 code failed on BG/P at large scale because MPI ran
out of communicator memory. We fixed the problem by using a
fixed buffer pool within MPI and provided a patch to IBM.

0

2250

4500

6750

9000

4 8 16 32 64 12
8

25
6

51
2 1K 2K 4K 8K 16

K
32

K
64

K
12

8K

Maximum Number of Communicators
N

um
be

r
of

 C
om

m
un

ic
at

or
s

Number of Processes

Default
Buffer Pool

109

MPI Memory Usage on BG/P after 32 calls to
MPI_Comm_dup

 Using a buffer pool enables all collective optimizations and takes
up only a small amount of memory

0

7.5000

15.0000

22.5000

30.0000

4 8 16 32 64 128256512 1K 2K 4K 8K 16K32K64K128K

Percentage Memory Usage (32 dups)
%

 S
ys

te
m

 M
em

or
y

U
se

d

Number of Processes

Default
Buffer Pool

110

Scalability of MPI_Init

 Cluster with 8 cores per node. TCP/IP across nodes
 Setting up all connections at Init time is too expensive at

large scale; must be done on demand as needed

111

Scalable Algorithms for Collective
Communication

 MPI implementations typically use
– O(lg p) algorithms for short messages (binomial tree)
– O(m) algorithms, where m=message size, for large messages

• E.g., bcast implemented as scatter + allgather
 O(lg p) algorithms can still be used on a million processors

for short messages
 However, O(m) algorithms for large messages may not

scale, as the message size in the allgather phase can get
very small
– E.g., for a 1 MB bcast on a million processes, the allgather

phase involves 1 byte messages
 Hybrid algorithms that do logarithmic bcast to a subset of

nodes, followed by scatter/allgather may be needed
 Topology-aware pipelined algorithms may be needed
 Use network hardware for broadcast/combine

112

Enabling Hybrid Programming

 MPI is good at moving data between address spaces
 Within an address space, MPI can interoperate with other

“shared memory” programming models
 Useful on future machines that will have limited memory

per core
 (MPI + X) Model: MPI across address spaces, X within an

address space
 Examples:

– MPI + OpenMP
– MPI + UPC/CAF (here UPC/CAF address space could span

multiple nodes)
– MPI + CUDA/OpenCL on GPU-accelerated systems

 Precise thread-safety semantics of MPI enable such hybrid
models

113

MPI-3 Hybrid Proposal on Endpoints

 In MPI today, each process has one communication endpoint
(rank in MPI_COMM_WORLD)

 Multiple threads communicate through that one endpoint,
requiring the implementation to do use locks etc., which are
expensive

 This proposal (originally by Marc Snir) allows a process to
have multiple endpoints

 Threads within a process attach to different endpoints and
communicate through those endpoints as if they are separate
ranks

 The MPI implementation can avoid using locks if each thread
communicates on a separate endpoint

114

MPI-3 Hybrid Proposal on Endpoints

 Today, each MPI process has one communication endpoint
(rank in MPI_COMM_WORLD)

 Multiple threads communicate through that one endpoint,
requiring the implementation to do use locks etc. (expensive)

Single threaded Multi threaded

Separate address spaces for each endpoint

Current MPI Design

115

MPI-3 Hybrid Proposal on Endpoints

 The proposal is to allow a process to have multiple endpoints
 Threads within a process attach to different endpoints and

communicate through those endpoints as if they are separate
ranks

 The MPI implementation can avoid using locks if each thread

Multiple endpoints are mapped in the same address space

Single threaded
 (per endpoint)

Multiple threads
 (per endpoint)

Proposed MPI Design

116116

Recent Efforts of the MPI Forum

117

MPI Standard Timeline

 MPI-1 (1994)
– Basic point-to-point communication, collectives, datatypes, etc

 MPI-2 (1997)
– Added parallel I/O, RMA, dynamic processes, C++ bindings, etc

 ---- Stable for 10 years ----

 MPI-2.1 (2008)
– Minor clarifications and bug fixes to MPI-2

 MPI-2.2 (2009)
– Today’s official standard
– Small updates and additions to MPI 2.1. Backward compatible

 MPI-3 (in progress, expected late 2011)
– Major new features and additions to extend MPI to exascale
– Organized into several working groups

118

MPI 2.2 (Today’s Official MPI Standard)

 Led by Bill Gropp
 Officially approved by the MPI Forum at the Sept 2009

meeting
 Small updates to the standard

– Does not break backward compatibility
 Spec can be downloaded from the MPI Forum web site
 www.mpi-forum.org
 Also available for purchase as a book from https://

fs.hlrs.de/projects/par/mpi/mpi22/
 Supported by MPICH2 1.2

119

New Features in MPI 2.2

 Scalable graph topology interface
– Existing interface requires the entire graph to be specified on

all processes, which requires too much memory on large
numbers of processes

– New functions allow the graph to be specified in a distributed
fashion (MPI_Dist_graph_create, MPI_Dist_graph_create_adjacent)

 A local reduction function
– MPI_Reduce_local(inbuf, inoutbuf, count, datatype, op)
– Needed for libraries to implement user-defined reductions

 MPI_Comm_create extended to enable creation of multiple
disjoint communicators

 Regular (non-vector) version of MPI_Reduce_scatter called
MPI_Reduce_scatter_block

120

New Features in MPI 2.2

 MPI_IN_PLACE option added to MPI_Alltoall, Alltoallv,
Alltoallw, and Exscan

 The restriction on the user not being allowed to access the
contents of the buffer passed to MPI_Isend before the send is
completed by a test or wait has been lifted

 New C99 datatypes (MPI_INT32_T, MPI_C_DOUBLE_COMPLEX,
etc) and MPI_AINT/ MPI_OFFSET

121

New Features being considered in MPI-3

 Note: All these are still under discussion in the Forum
and not final

 Support for hybrid programming (Lead: Pavan Balaji,
Argonne)
– Extend MPI to allow multiple communication endpoints per

process
– Helper threads: application sharing threads with the

implementation

 Improved RMA (Leads: Bill Gropp, UIUC, and Rajeev Thakur,
Argonne)
– Fix the limitations of MPI-2 RMA
– New compare-and-swap, fetch-and-add functions
– Collective window memory allocation
– Test for completion of individual operations
– Others…

122

New Features being considered in MPI-3

 New collectives (Lead: Torsten Hoefler, UIUC)
– Nonblocking collectives already voted in (MPI_Ibcast,

MPI_Ireduce, etc)
– Sparse, neighborhood collectives being considered as

alternatives to irregular collectives that take vector arguments

 Fault tolerance (Lead: Rich Graham, Oak Ridge)
– Detecting when a process has failed; agreeing that a process

has failed
– Rebuilding communicator when a process fails or allowing it to

continue in a degraded state
– Timeouts for dynamic processes (connect-accept)
– Piggybacking messages to enable application-level fault

tolerance

123

New Features being considered in MPI-3

 Fortran 2008 bindings (Lead: Craig Rasmussen, LANL)
– Full and better quality argument checking with individual handles
– Support for choice arguments, similar to (void *) in C
– Passing array subsections to nonblocking functions
– Many other issues

 Better support for Tools (Lead: Martin Schulz, LLNL)
– MPIT performance interface to query performance information

internal to an implementation
– Standardizing an interface for parallel debuggers

124

MPI Forum Mailing Lists and Archives

 Web site: http://lists.mpi-forum.org/

 Lists
– mpi-forum
– mpi-22, mpi-3
– mpi3-coll
– mpi3-rma
– mpi3-ft
– mpi3-fortran
– mpi3-tools
– mpi3-hybridpm

 Further info: http://meetings.mpi-forum.org/
 Wiki: https://svn.mpi-forum.org/trac/mpi-forum-web/wiki

What are we doing in MPICH2

126

Goals of the MPICH2 project

 Be the MPI implementation of choice for the highest-end
parallel machines
– 7 of the top 10 machines in the June 2010 Top500 list use

MPICH2-based implementations

 Carry out the research and development needed to scale MPI
to exascale
– Optimizations to reduce memory consumption
– Fault tolerance
– Efficient multithreaded support for hybrid programming
– Performance scalability

 Work with the MPI Forum on standardization and early
prototyping of new features

127

MPICH2 collaboration with vendors

 Enable vendors to provide high-performance MPI
implementations on the leading machines of the future

 Collaboration with IBM on MPI for the Blue Gene/Q
– Aggressive multithreaded optimizations for high concurrent

message rates
– Recent publications in Cluster 2010 and EuroMPI 2010

 Collaboration with Cray for MPI on their next-generation
interconnect (Gemini)

 Collaboration with UIUC on MPICH2 over LAPI for Blue Waters

 Continued collaboration with Intel, Microsoft, and Ohio State

128128

Conclusions

 MPI has succeeded because
– features are orthogonal (complexity is the product of the

number of features, not routines)
– complex programs are no harder than easy ones
– open process for defining MPI led to a solid design
– programmer can control memory motion and program for

locality (critical in high-performance computing)
– precise thread-safety specification has enabled hybrid

programming

 MPI is ready for scaling to extreme scale systems with
millions of cores barring a few issues that can be (and are
being) fixed by the MPI Forum and by MPI implementations

129129

The MPI Standard (1 & 2)

130

MPI 2.2 Standard

131131

Tutorial Material on MPI, MPI-2

http://www.mcs.anl.gov/mpi/{usingmpi,usingmpi2}

ADLB: The Asynchronous Dynamic
Load-Balancing Library

An approach to extreme scalability with an extremely
simple programming model (for some applications)

Outline
 Introduction

– Simple programming models
– Load balancing
– Scalability problems

 ADLB
– What it is
– How it works
– The API

 Example applications
– Fun – Sudoku solver
– Serious – GFMC: complex Monte Carlo physics application
– Useful – batcher: running independent jobs

133

Two Classes of Parallel Programming Models

 Data Parallelism
– Parallelism arises from the fact that physics is largely local
– Same operations carried out on different data representing

different patches of space
– Communication usually necessary between patches (local)

• global (collective) communication sometimes also needed
– Load balancing sometimes needed

 Task Parallelism
– Work to be done consists of largely independent tasks, perhaps

not all of the same type
– Little or no communication between tasks
– Usually needs a separate “master” task for scheduling
– Load balancing essential

134

Load Balancing

 Definition: the assignment (scheduling) of tasks (code +
data) to processes so as to minimize the total idle times of
processes

 Static load balancing
– all tasks are known in advance and pre-assigned to processes
– works well if all tasks take the same amount of time
– requires no coordination process

 Dynamic load balancing
– tasks are assigned to processes by coordinating process when

processes become available
– Requires communication between manager and worker processes
– Tasks may create additional tasks
– Tasks may be quite different from one another

135

Generic Master/Slave Algorithm

 Easily implemented in MPI
 Solves some problems

– implements dynamic load balancing
– termination
– dynamic task creation
– can implement workflow structure of tasks

 Scalability problems
– Master can become a communication bottleneck (granularity

dependent)
– Memory can become a bottleneck (depends on task description

size) 136

Master

Slave Slave Slave Slave Slave

Shared
Work queue

The ADLB Vision

 No explicit master for load balancing; slaves make calls to
ADLB library; those subroutines access local and remote data
structures (remote ones via MPI).

 Simple Put/Get interface from application code to distributed
work queue hides MPI calls
– Advantage: multiple applications may benefit
– Wrinkle: variable-size work units, in Fortran, introduce some

complexity in memory management
 Proactive load balancing in background

– Advantage: application never delayed by search for work from
other slaves

– Wrinkle: scalable work-stealing algorithms not obvious

137

The ADLB Model (no master)

 Doesn’t really change algorithms in slaves
 Not a new idea (e.g. Linda)
 But need scalable, portable, distributed implementation of

shared work queue
– MPI complexity hidden here

138

Slave Slave Slave Slave Slave

Shared
Work queue

API for a Simple Programming Model

 Basic calls
– ADLB_Init(num_servers, am_server, app_comm)
– ADLB_Server()
– ADLB_Put(type, priority, len, buf, answer_dest)
– ADLB_Reserve(req_types, handle, len, type, prio, answer_dest)
– ADLB_Ireserve(…)
– ADLB_Get_Reserved(handle, buffer)
– ADLB_Set_Done()
– ADLB_Finalize()

 A few others, for tuning and debugging
– ADLB_{Begin,End}_Batch_Put()
– Getting performance statistics with ADLB_Get_info(key)

139

API Notes

 Return codes (defined constants)
– ADLB_SUCCESS
– ADLB_NO_MORE_WORK
– ADLB_DONE_BY_EXHAUSTION
– ADLB_NO_CURRENT_WORK (for ADLB_Ireserve)

 Batch puts are for inserting work units that share a large
proportion of their data

 Types, answer_rank, reserve_rank can be used to implement
some common patterns
– Sending a message
– Decomposing a task into subtasks
– Maybe should be built into API

140

How It Works

141

Application Processes
ADLB Servers

put/get

The ADLB Server Logic

 Main loop:
– MPI_Iprobe for message in busy loop
– MPI_Recv message
– Process according to type

• Update status vector of work stored on remote servers
• Manage work queue and request queue
• (may involve posting MPI_Isends to isend queue)

– MPI_Test all requests in isend queue
– Return to top of loop

 The status vector replaces single master or shared
memory
– Circulates every .1 second at high priority
– Multiple ways to achieve priority

142

143

A Tutorial Example: Sudoku

1 9 7

7 8
3 16

1 9

2 5 3
7 1

5

5 6
7 9 1 8 62

3

2

6
8

Parallel Sudoku Solver with ADLB

Program:
 if (rank = 0)
 ADLB_Put initial board
 ADLB_Get board (Reserve+Get)
 while success (else done)
 ooh
 find first blank square
 if failure (problem solved!)
 print solution
 ADLB_Set_Done
 else
 for each valid value
 set blank square to

value
 ADLB_Put new board
 ADLB_Get board

144

1 9 7

7 8
3 16

1 9

2 5 3
7 1

5

5 6
7 9 1 8 62

3

2

6
8

Work unit =
 partially completed “board”

How it Works

 After initial Put, all processes execute same loop (no master)

145

1 9 7

7 8
3 16

1 9

2 5 3
7 1

5

5 6
7 9 1 8 62

3

2

6
8

Pool
 of

Work
Units

1 9 7

7 8
3 16

1 9

2 5 3
7 1

5

5 6
7 9 1 8 62

3

2

6
8

1 6 9 7

7 8
3 16

1 9

2 5 3
7 1

5

5 6
7 9 1 8 62

3

2

6
8

1 4 9 7

7 8
3 16

1 9

2 5 3
7 1

5

5 6
7 9 1 8 62

3

2

6
8

1 8 9 7

7 8
3 16

1 9

2 5 3
7 1

5

5 6
7 9 1 8 62

3

2

6
8

4 6 8

Get

Put

Optimizing Within the ADLB Framework

 Can embed smarter strategies in this algorithm
– ooh = “optional optimization here”, to fill in more squares
– Even so, potentially a lot of work units for ADLB to manage

 Can use priorities to address this problem
– On ADLB_Put, set priority to the number of filled squares
– This will guide depth-first search while ensuring that there is

enough work to go around
• How one would do it sequentially

 Exhaustion automatically detected by ADLB (e.g., proof that
there is only one solution, or the case of an invalid input
board)

146

147

Green’s Function Monte Carlo – the defining
application

 Green’s Function Monte Carlo -- the “gold standard” for ab
initio calculations in nuclear physics at Argonne (Steve Pieper,
PHY)

 A non-trivial master/slave algorithm, with assorted work
types and priorities; multiple processes create work; large
work units

 Has scaled to 2000 processors on BG/L a little over four years
ago, then hit scalability wall.

 Need to get to 10’s of thousands of processors at least, in
order to carry out calculations on 12C, an explicit goal of the
UNEDF SciDAC project.

 The algorithm has had to become even more complex, with
more types and dependencies among work units, together
with smaller work units

 Wanted to maintain master/slave structure of physics code

Experiments with GFMC/ADLB on BG/P

 Using GFMC to compute the binding energy of 14 neutrons in
an artificial well (“neutron drop” = teeny-weeny neutron star)

 A weak scaling experiment

 Recent work: “micro-parallelization” needed for 12C, OpenMP in
GFMC.
– a successful example of hybrid programming, with ADLB + MPI +

OpenMP 148

BG/P
cores

ADLB
Servers

Configs Time
(min.)

Efficiency
(incl. serv.)

4K 130 20 38.1 93.8%

8K 230 40 38.2 93.7%

16K 455 80 39.6 89.8%

32K 905 160 44.2 80.4%

Progress with GFMC

149

Another Physics Application – Parameter Sweep

150

 Luminescent solar concentrators
– Stationary, no moving parts
– Operate efficiently under diffuse light conditions

(northern climates)
 Inexpensive collector, concentrate light on high-

performance solar cell
 This application was parallelized by “non-parallel”

programmers using ADLB without learning MPI

The “Batcher”

 Simple but useful
 Input is a file of Unix command lines
 ADLB worker processes execute each one with the Unix

“system” call
– therefore need this call available on each node

• true for Unix clusters
• problematic on machines with custom compute-node kernels

 100-line program, mainly error-checking

151

ADLB Uses Multiple MPI Features

 ADLB_Init returns separate application communicator, so
application can use MPI for its own purposes if it needs to.

 Servers are in MPI_Iprobe loop for responsiveness.
 MPI_Datatypes for some complex, structured messages (status)
 Servers use nonblocking sends and receives, maintain queue of

active MPI_Request objects.
 Queue is traversed and each request kicked with MPI_Test each

time through loop; could use MPI_Testany. No MPI_Wait.
 Client side uses MPI_Ssend to implement ADLB_Put in order to

conserve memory on servers, MPI_Send for other actions.
 Servers respond to requests with MPI_Rsend since MPI_Irecvs

are known to be posted by clients before requests.
 MPI provides portability: laptop, Linux cluster, SiCortex, BG/P
 MPI profiling library is used to understand application/ADLB

behavior.

152

Getting ADLB
 Web site is http://www.cs.mtsu.edu/~rbutler/adlb
 To download adlb:

– svn co http://svn.cs.mtsu.edu/svn/adlbm/trunk adlbm
 What you get:

– source code
– configure script and Makefile
– README, with API documentation
– Examples

• Sudoku
• Batcher

– Batcher README
• Traveling Salesman Problem

 To run your application
– configure, make to build ADLB library
– Compile your application with mpicc, use Makefile as example
– Run with mpiexec

 Problems/complaints/kudos to {lusk,rbutler}@mcs.anl.gov
153

Future Directions

 API design
– Some higher-level function calls might be useful
– User community will generate these

 Implementations
– The one-sided version

• implemented
• single server to coordinate matching of requests to work units
• stores work units on client processes
• Uses MPI_Put/Get (passive target) to move work
• Hit scalability wall for GFMC at about 8000 processes

– The thread version
• uses separate thread on each client; no servers
• the original plan
• maybe for BG/Q, where there are more threads per node
• not re-implemented (yet)

154

Where We Are Now

 ADLB is a research project working its way toward
being useful general-purpose software.

 More users sought, especially those with more
straightforward applications than GFMC!

 Its point is to explore whether extreme scalability
in an application can be achieved without extreme
complexity in application code.

155

Conclusions

 The Philosophical Accomplishment: Scalability
need not come at the expense of complexity

 The Practical Accomplishment: Maybe this can
accelerate the development of your application.

156

The End

157

