
John Mellor-Crummey
Department of Computer Science

Rice University

johnmc@rice.edu

Coarray Fortran 2.0: A Productive Language
for Scalable Scientific Computing

Center for Scalable Application Development Software

CScADS Leadership Computing, July 19, 2011

2

CAF 2.0 Project Team

• Laksono Adhianto

• Guohua Jin

• Mark Krentel

• Karthik Murthy

• Dung Nguyen

• William Scherer

• Nathan Tallent

• Scott Warren

• Chaoran Yang

Outline

• Coarray Fortran
—original 1998 version
—Fortran 2008 - a standard with coarrays

• Coarray Fortran 2.0 (CAF 2.0)
—features
—experiences - HPC challenge benchmarks + performance
—implementation notes

• Status and plans

3

4

• Global address space
—one-sided communication (GET/PUT)

• Programmer has control over performance-critical factors
—data distribution and locality control
—computation partitioning
—communication placement

• Data movement and synchronization as language primitives
—amenable to compiler-based communication optimization

• Examples: UPC, Titanium, Chapel, X10, Coarray Fortran

HPF & OpenMP compilers
must get this right

simpler than msg passing

lacking in OpenMP

Partitioned Global Address Space Languages

5

Coarray Fortran (CAF)

• Explicitly-parallel extension of Fortran 95 (Numrich & Reid 1998)

• Global address space SPMD parallel programming model
—one-sided communication

• Simple, two-level memory model for locality management
—local vs. remote memory

• Programmer has control over performance critical decisions
—data partitioning
—computation partitioning
—communication
—synchronization

• Suitable for mapping to shared and distributed memory systems

6

Coarray Fortran (1998)

• SPMD process images
—fixed number of images during execution: num_images()
—images operate asynchronously: this_image()

• Both private and shared data
– real x(20, 20) a private 20x20 array in each image
– real y(20, 20) [*] a shared 20x20 array in each image

• Coarrays with multiple codimensions
– real y(20, 20) [4,*]

• Simple one-sided shared-memory communication
– x(:,j:j+2) = y(:,p:p+2) [r] copy columns from p:p+2 into local columns

• Synchronization intrinsic functions
—sync_all – a barrier and a memory fence
—sync_team(notify, wait)

– notify = a vector of process ids to signal
– wait = a vector of process ids to wait for

– sync_memory – a memory fence
– start_critical/end_critical

• Asymmetric dynamic allocation of shared data

• Weak memory consistency

7

integer a(10,20)[*]

me = this_image()

if (me > 1) a(1:5,1:10) = a(1:5,1:10)[me-1]

a(10,20) a(10,20) a(10,20)

image 1 image 2 image N

image 1 image 2 image N

One-sided Communication with Coarrays

8

A CAF Finite Element Example (Numrich)

subroutine assemble(start, prin, ghost, neib, x)
 integer :: start(:), prin(:), ghost(:), neib(:), k1, k2, p
 real :: x(:) [*]
 call sync_team(neib)
 do p = 1, size(neib) ! Add contributions from ghost regions
 k1 = start(p); k2 = start(p+1)-1
 x(prin(k1:k2)) = x(prin(k1:k2)) + x(ghost(k1:k2)) [neib(p)]
 enddo
 call sync_team(neib)
 do p = 1, size(neib) ! Update the ghosts
 k1 = start(p); k2 = start(p+1)-1
 x(ghost(k1:k2)) [neib(p)] = x(prin(k1:k2))
 enddo
 call sync_all
end subroutine assemble

9

Fortran 2008

• SPMD process images
—fixed number of images during execution: num_images()
—images operate asynchronously: this_image()

• Both private and shared data
– real x(20, 20) a private 20x20 array in each image
– real y(20, 20) [*] a shared 20x20 array in each image

• Coarrays with multiple codimensions
– real y(20, 20) [4,*]

• Simple one-sided shared-memory communication
– x(:,j:j+2) = y(:,p:p+2) [r] copy columns from p:p+2 into local columns

• Synchronization intrinsic functions
—sync all, sync images(image vector)
– sync memory
– critical sections, locks
– atomic_define, atomic_ref

• Asymmetric dynamic allocation of shared data

• Weak memory consistency

Why a New Vision?

Fortran 2008 characteristics

• No support for process subsets

• No support for collective communication

• No support for latency hiding or avoidance
—rendezvous synchronization: sync all, sync images

• No remote pointers for manipulating remote linked data
structures

• ... and so on ... (see our critique)
—www.j3-fortran.org/doc/meeting/183/08-126.pdf

10

Coarray Fortran 2.0 Goals

• Exploit multicore processors

• Enable development of portable high-performance programs

• Interoperate with legacy models such as MPI

• Facilitate construction of sophisticated parallel applications and
parallel libraries

• Support irregular and adaptive applications

• Hide communication latency

• Colocate computation with remote data

• Scale to leadership computing facilities

11

12

Coarray Fortran 2.0 (CAF 2.0)

• Teams: process subsets, like MPI communicators
—formation using team_split (like MPI_Comm_split)
—collective communication

• Topologies

• Coarrays: shared data allocated across processor subsets
—declaration: double precision :: a(:,:)[*]
—dynamic allocation: allocate(a(n,m)[@row_team])
—access: x(:,n+1) = x(:,0)[mod(team_rank()+1, team_size())]

• Latency tolerance
—hide: asynchronous copy, asynchronous collectives
—avoid: function shipping

• Synchronization
—event variables: point-to-point sync; async completion
—finish: SPMD construct inspired by X10

• Copointers: pointers to remote data

Process Subsets: Teams

• Teams are first-class entities
—ordered sequences of process images
—namespace for indexing images by

rank r in team t
– r ∈ {0..team_size(t) - 1}

—domain for allocating coarrays
—substrate for collective

communication

• Teams need not be disjoint
—an image may be in multiple teams

13

0 1 2 3

2

Ocean Atmosphere

10

4

8

12

5

9

13

6

10

14

7

11

15

0

1

2

3

3

• Predefined teams
—team_world
—team_default

– used for any coarray operation that lacks an explicit team specification

• Operations on teams
—team_rank(team)

– returns the relative rank of the current image within a team
—team_size(team)

– returns the number of images of a given team
—team_split (existing_team, color, key, new_team)

– images supplying the same color are assigned to the same team
– each image’s rank in the new team is determined by lexicographic order of

(key, parent team rank)

Teams and Operations

14

Teams and Coarrays

• Coarray allocation occurs over teams
—storage is allocated over each member of the specified team

• Example
—integer :: a(:, :)[*]
—allocate (a (10, 100)[@team_world])

• Allocation is a collective operation
—need barrier after an allocation to know that a coarray is available

on other team members before accessing their data

15

Teams and Coarrays

16

real, allocatable :: x(:,:)[*] ! 2D array
real, allocatable :: z(:,:)[*]
team :: subset
integer :: color, rank

! each image allocates a singleton for z
allocate(z(200,200) [@team_world])

color = floor((2*team_rank(team_world)) / team_size(team_world))

! split into two subsets:
! top and bottom half of team_world
team_split(team_world, color, team_rank(team_world), subset)

! members of the two subset teams
! independently allocate their own coarray x
allocate(x(100,n)[@ subset])

0 1 2 3 ... 114 5 6 7

z

subsetsubset

x x

0 1 2 3 4 5 0 1 2 3 4 5

team_world

Accessing Coarrays on Teams

• Accessing a coarray relative to a team
—x(i,j)[p@ocean] ! p names a rank in team ocean

• Accessing a coarray relative to the default team
—x(i,j)[p] ! p names a rank in team_default
—x(i,j)[p@team_default] ! p names a rank in team_default

• Simplifying processor indexing using “with team”
 with team atmosphere ! set team_default to atmosphere within
 ! p is wrt team atmosphere, q is wrt team ocean
 x(:,0)[p] = y(:)[q@ocean]
 end with team

17

Communication Topologies

• Motivation
—a vector of images may not adequately reflect their logical

communication structure
—multiple codimensions only support grid-like logical structures
—want a single mechanism for expressing more general structures

• Topology
—shamelessly patterned after MPI Topologies
—logical structure for communication within a team
—more expressive than multiple codimensions

18

Using Topologies

• Creation
—Cartesian: topology_cartesian((/e1,e2,.../), (/ w1, w2, ... /))
—Graph: topology_graph(e)

– graph_neighbor_add(g,e,n,nv)
– graph_neighbor_delete(g,e,n,nv)

• Binding: topology_bind(team,topology)

• Accessing a coarray using a topology
—Cartesian

– array(:) [+(i1, i2, ..., in)@ocean] ! relative index wrt self in team ocean
– array(:) [(i1, i2, ..., in)@ocean] ! absolute index wrt team ocean
– array(:) [i1, i2, ..., ik] ! wrt enclosing default team

—Graph: access kth neighbor of image i in edge class e
– array(:) [(e,i,k)@g] ! wrt team g
– array(:) [e,i,k] ! wrt enclosing default team

19

Synchronization

• Point-to-point synchronization via event variables
—like counting semaphores
—each variable provides a synchronization context
—a program can use as many events as it needs

– user program events are distinct from library events
—event_notify() / event_wait()
—event_notify is non-blocking

• Lockset: ordered sets of locks
—convenient to avoid deadlock when locking/unlocking multiple

locks -- uses a canonical ordering

20

Latency Tolerance

• Hide latency for accessing remote data by overlapping it with
computation

• Avoid exposed latency when manipulating remote data structures

• Asynchrony models
—explicit: signal an event to indicate when an asynchronous

operation has completed
—implicit: programmer specifies a point when program must block

until outstanding asynchronous operations have completed
—interactions between models are subtle!

21

22

Predicated Asynchronous Copy

copy_async(var_dest, var_src [, ev_dest] [, ev_src] [, ev_pred])
– var_dest: data target
– var_src: data source
– ev_src: event to be triggered when the read of var_src is complete
– ev_dest: event to be triggered when the write of var_dest is complete
– ev_pred: optional event indicating that var_src is ready

Collective Communication

• Why provide collectives?
—application programmers want them
—avoid having programmers roll their own (non scalable) versions

• Collective operations
—alltoall, barrier, broadcast, all/gather, permute, all/reduce, scatter,

segmented/scan, shift

• User-defined reduction operators

• Potential flavors
—two-sided synchronous

– all execute it together
—two-sided asynchronous

– all team members will execute a call to start it
– all will later wait for it to complete

—one-sided synchronous: one starts it and blocks until done
—one-sided asynchronous: one starts it and later finishes it

23

Two-sided vs. One-sided Collectives

• Issues with one-sided collectives
—where does the data get delivered?

– does the initiator specify an address for each recipient?
– does data get delivered to the same offset in a coarray for each recipient?

—how do I know when I can overwrite it?

• Two-sided collectives address these issues
—each participant receiving a value specifies where to deliver it
—each participant can decide how many asynchronous collectives

can be outstanding at once
– based on the number of buffers available for receiving values

—an asynchronous collective initiated before some recipients are
ready will have (at least part of) its execution deferred until
recipients are ready

24

Coarray Fortran 2.0 supports two-sided
synchronous and asynchronous collectives

25

Asynchronous Collective Operations

• Synchronization:
—team_barrier_async([event] [, team])

• Communication:
—team_broadcast_async(var, root [, event] [, team])
—team_gather_async(var_src, var_dest, root [, event] [, team])
—team_allgather_async(var_src, var_dest [, event] [, team])
—team_reduce_async(var_src, var_dest, root, operator [, event] [, team])
—team_allreduce_async (var_src, var_dest, operator [, event] [, team])
—team_scatter_async(var_src, var_dest, root [, event] [, team])
—team_alltoall_async(var_src, var_dest [, event] [, team])
—team_sort_async(var_src, var_dest, comparison_fn [, event] [, team])
—...

26

Function Shipping

• Reduce communication overhead by moving computation to the
data instead of moving data to computation

• Implicit asynchrony

 finish (team)
 spawn fxn(table(i,j)[p], n)[p]
 ...
 end finish

CAF 2.0 Finish

• X10 finish
 finish {
 ...
 }
—synchronization model

– Cilk: fully strict - all spawned children reports directly to their parent
– X10: terminally strict

 all asyncs report to an enclosing finish scope
 the enclosing finish scope may be in a different procedure

• CAF 2.0 finish
—SPMD construct defined over teams

 finish (team)
 ...
 end finish

—all members of a team enter a finish block
— any functions that team members ship to one another from within a finish

block must complete before any node will exit the corresponding finish block

27

CAF 2.0 Cofence

• Finish is a heavyweight mechanism
—manages global completion across a team
—sometimes only local completion is needed

– e.g. an asynchronous copy has delivered a value locally

• Cofence manages local completion
—asynchronous copies with implicit completion
—asynchronous collectives with implicit completion

• Can use a cofence within a finish block to demand early
completion of asynchronous operations

28

Copointers: Global Pointers

29

• Motivation: support linked
data structures

• copointer attribute enables
association with remote
shared data

• imageof(x)returns the
image number for x

• useful to determine whether
copointer x is local

integer, allocatable :: a(:,:)[*]
integer, copointer :: x(:,:)[*]

allocate(a(1:20, 1:30)[@ team_world]

! associate copointer x with a
! remote section of a coarray
x => a(4:20, 2:25)[p]

! imageof intrinsic returns the target
! image for x
prank = imageof(x)

x(7,9) = 4 ! assumes target of x is local
x(7,9)[] = 4 ! target of x may be remote

Processor 0

Processor 2 Processor 3

Processor 1

Land

• Data partitioning of ocean blocks
— cartesian, balanced, space-filling curve distributions

• Data communication
— boundary updates between neighboring processors
— collective communications (gather, scatter, reduction)

• Different boundary types
— cyclic, closed, tripole 30

LANL’s Parallel Ocean Program

 ! post a receive
 do n=1,in_bndy%nmsg_ew_rcv
 bufsize = ny_block*nghost*in_bndy%nblocks_ew_rcv(n)
 call MPI_IRECV(buf_ew_rcv(1,1,1,n), bufsize, mpi_dbl, &
 in_bndy%ew_rcv_proc(n)-1, &
 mpitag_bndy_2d + in_bndy%ew_rcv_proc(n), &
 in_bndy%communicator, rcv_request(n), ierr)
 end do

 ! pack data and send data
 do n=1,in_bndy%nmsg_ew_snd
 bufsize = ny_block*nghost*in_bndy%nblocks_ew_snd(n)

 partner = in_bndy%ew_snd_proc(n)-1
 do i=1,in_bndy%nblocks_ew_snd(n)
 ib_src = in_bndy%ew_src_add(1,i,n)
 ie_src = ib_src + nghost - 1
 src_block = in_bndy%ew_src_block(i,n)
 buf_ew_snd(:,:,i,n) = ARRAY(ib_src:ie_src,:,src_block)
 end do

 call MPI_ISEND(buf_ew_snd(1,1,1,n), bufsize, mpi_dbl, &
 in_bndy%ew_snd_proc(n)-1, &
 mpitag_bndy_2d + my_task + 1, &
 in_bndy%communicator, snd_request(n), ierr)

 end do

 ! local updates
 ! wait to receive data and unpack data
 call MPI_WAITALL(in_bndy%nmsg_ew_rcv, rcv_request, rcv_status, ierr)

 do n=1,in_bndy%nmsg_ew_rcv
 partner = in_bndy%ew_rcv_proc(n) - 1
 do k=1,in_bndy%nblocks_ew_rcv(n)
 dst_block = in_bndy%ew_dst_block(k,n)
 ib_dst = in_bndy%ew_dst_add(1,k,n)
 ie_dst = ib_dst + nghost - 1
 ARRAY(ib_dst:ie_dst,:,dst_block) = buf_ew_rcv(:,:,k,n)
 end do
 end do

 ! wait send to finish
 call MPI_WAITALL(in_bndy%nmsg_ew_snd, snd_request, snd_status, ierr)

 ! notify each partner that my face is ready
 do face=1,bndy%rcv_faces
 call event_notify(bndy%incoming(face)%rcv_ready[])
 end do

 ! when each partner face is ready
 ! copy one of my faces to a partner’s face
 ! notify my partner’s event when the copy is complete
 do face=1,bndy%snd_faces
 copy_async(bndy%outgoing(face)%remote[], &
 bndy%outgoing(face)%local, &
 bndy%outgoing(face)%snd_done[], &
 bndy%outgoing(face)%snd_ready)
 end do

 ! wait for all of my incoming faces to arrive
 do face=1,bndy%rcv_faces
 call event_wait(bndy%incoming(face)%rcv_done)
 end do

MPI
CAF 2.0

 type :: outgoing_boundary
 double, copointer :: remote(:,:,:)[*]
 double, pointer :: local(:,:,:)
 event :: snd_ready[*]
 event, copointer :: snd_done[*]
 end type

 type :: incoming_boundary
 event, copointer :: rcv_ready[*]
 event :: rcv_done[*]
 end type

 type :: boundaries
 integer :: rcv_faces, snd_faces
 type(outgoing_boundary) :: outgoing(:)
 type(incoming_boundary) :: incoming(:)
 end type

 ! initialize outgoing boundary
 ! set remote to point to a partner’s incoming boundary face
 ! set local to point to one of my outgoing boundary faces
 ! set snd_done to point to rcv_done of a partner’s incoming boundary

 ! initialize incoming boundary
 ! set my face’s rcv_ready to point to my partner face’s snd_ready

Multithreading

• Where can asynchronous threads of control arise in CAF 2.0?
—spawned procedures
—parallel loops

– Fortran 90’s “do concurrent”

• Work in progress to employ Cilk-like lazy multithreading
—generate continuations when spawning functions
—generate a continuation when blocking for synchronization

32

Outline

• Coarray Fortran
—original 1998 version
—Fortran 2008 - a standard with coarrays

• Coarray Fortran 2.0 (CAF 2.0)
—features
—experiences - HPC challenge benchmarks + performance
—implementation notes

• Status and plans

33

HPC Challenge Benchmark Goal: Productivity

• Priorities, in order
—performance
—source code volume

• Productivity = performance / (lines of code)

• Implications
—EP STREAM Triad

– outlined a loop to assist compiler optimization
—Randomaccess

– used software routing for higher performance
—FFT

– blocked packing/unpacking loops for bitreversal (8x gain for packing kernel)
—HPL

– tuned code to make good use of the memory hierarchy

34

double precision, allocatable :: a(:)[*], b(:)[*], c(:)[*]

...

! each processor in the default team allocates their own array parts
allocate(a(local_n)[], b(local_n)[], c(local_n)[])

...

! perform the calculation repeatedly to get reliable timings
do round = 1, rounds
 do j = 1, rep
 call triad(a,b,c,local_n,scalar)
 end do
 call team_barrier() ! synchronous barrier across the default team
end do

...

! perform the calculation with top performance
! assembly code is identical to that for sequential Fortran
subroutine triad(a, b, c, n ,scalar)
 double precision :: a(n), b(n), c(n), scalar
 a = b + scalar * c ! EP triad as a Fortran 90 vector operation
end subroutine triad

EP STREAM Triad

35

Randomaccess

• A stream of updates to random locations in a distributed table

• Each update consists of xoring a random value into a random
location in the table

• Each processor performs a subsequence of the updates

36Figure credit: UTK

2

1

 event, allocatable :: delivered(:)[*],received(:)[*] !(stage)
 integer(i8), allocatable :: fwd(:,:,:)[*] ! (#,in/out,stage)
 ...
 ! hypercube-based routing: each processor has 1024 updates
 do i = world_logsize-1, 0, -1 ! log P stages in a route
 ...
 call split(retain(:,last), ret_sizes(last), &
 retain(:,current), ret_sizes(current), &
 fwd(1:,out,i), fwd(0,out,i), bufsize, dist)

 if (i < world_logsize-1) then
 event_wait(delivered(i+1))
 call split(fwd(1:,in,i+1), fwd(0,in,i+1), &
 retain(:,current), ret_sizes(current), &
 fwd(1:,out,i), fwd(0,out,i), bufsize, dist)
 event_notify(received(i+1)[from]) ! signal buffer is empty
 endif

 count = fwd(0,out,i)
 event_wait(received(i)) ! ensure buffer is empty from last route
 fwd(0:count,in,i)[partner] = fwd(0:count,out,i) ! send to partner
 event_notify(delivered(i)[partner]) ! notify partner data is there
 ...
 end do

Randomaccess Software Routing

37

HPL

38

• Block-cyclic data distribution

• Team based collective operations along rows and columns
—synchronous max reduction down columns of processors
—asynchronous broadcast of panels to all processors
type(paneltype) :: panels(1:NUMPANELS)

 event, allocatable :: delivered(:)[*]
 ...
 do j = pp, PROBLEMSIZE - 1, BLKSIZE
 cp = mod(j / BLKSIZE, 2) + 1
 ...
 event_wait(delivered(3-cp))
 ...
 if (mycol == cproc) then
 ...
 if (ncol > 0) ... ! update part of the trailing matrix
 call fact(m, n, cp) ! factor the next panel
 ...
 call team_broadcast_async(panels(cp)%buff(1:ub), panels(cp)%info(8), &

 delivered(cp))
 ! update rest of the trailing matrix
 if (nn-ncol>0) call update(m, n, col, nn-ncol, 3 - cp)
 ...
 end do

FFT

• Radix 2 1D FFT implementation

• Block distribution of array “c” across all processors

• Computation
—permute elements: c = (/ c(bitreverse(i), i = 0, n-1 /)

– 3 parts: pack data for all-to-all; team collective all-to-all; unpack data locally
—FFT is log N stages

– compute (log N - log P) stages of the FFT locally
– transpose the data so that each processor has elements ≡ rank mod P

 block distribution → cyclic distribution
– compute the remaining log P stages of the FFT locally
– transpose the data back to its original order

 cyclic distribution → block distribution

39

Experimental Setup

• Coarray Fortran 2.0 by Rice University
—source to source compilation from CAF 2.0 to Fortran 90

– generated code compiled with Portland Group’s pgf90
—CAF 2.0 runtime system built upon GASNet (version 1.14.2)
—scalable implementation of teams, using O(log P) storage

• Experimental platform: Cray XT
—systems

– Franklin at NERSC
 2.3 GHz AMD “Budapest” quad-core Opteron, 2GB DDR2-800/core

– Jaguar at ORNL
 2.1 GHz AMD “Budapest” quad-core Opteron, 2GB DDR2-800/core

—network topology
– 3D Torus based on Seastar2 routers
– OS provides an arbitrary set of nodes to an application

40

Scalability: Relative Parallel Efficiency

41

0

0.2

0.4

0.6

0.8

1

64 256 1024 4096

1.00 0.96 0.97 0.97

EP STREAM Triad

0

0.2

0.4

0.6

0.8

1

64 256 1024 4096

1.00

0.75

0.54

0.39

Randomaccess

0

0.2

0.4

0.6

0.8

1

64 256 1024 4096

1.00
0.94

0.87
0.79

HPL

0

0.2

0.4

0.6

0.8

1

64 256 1024 4096

1.00

0.80

0.65

0.53

FFT

Productivity = Performance / SLOC

Performance (Cray XT4)

Source lines of code

42

HPC Challenge
Benchmark

Source Lines
of Code

Reference
SLOC

Randomaccess 409 787
EP STREAM Triad 58 329

Global HPL 786 8800
Global FFT ~390 1130

Notes
• EP STREAM: 66% of

memory B/W peak
• Randomaccess: high

performance without
special-purpose runtime

• HPL: 49% of FP peak at @
4096 cores (uses dgemm)

of
cores

STREAM Triad†
(TByte/s)

RandomAccess*
(GUP/s)

Global HPL†
(TFlop/s)

Global FFT†
(GFlop/s)

64 0.14 0.08 0.36 6.69
256 0.54 0.24 1.36 22.82

1024 2.18 0.69 4.99 67.80
4096 8.73 2.01 18.3 187.04

HPC Challenge Benchmark

*Measured on Jaguar †Measured on Franklin

CAF 2.0 Early Experiences Summary

• A viable programming model for scalable parallel computing
—expressive
—easy to use

• Prototype implementation scales to thousands of nodes

• Scalable high performance
—demonstrated by HPC Challenge Benchmark results

43

Outline

• Coarray Fortran
—original 1998 version
—Fortran 2008 - a standard with coarrays

• Coarray Fortran 2.0 (CAF 2.0)
—features
—experiences - HPC challenge benchmarks + performance
—implementation notes

• Status and plans

44

CAF 2.0 Team Representation

45

• Designed for scalability: representation is O(log S) per node
for a team of size s

• Based on the concept of pointer jumping

• Pointers to predecessors and successors at distance i = 2j,
j = 0 ..⎣log S⎦

0 1 2 3 4 5 6 7

20

22

21

Collective Example: Barrier

Dissemination algorithm

46

for k = 0 to ⎡log2 P⎤
 processor i signals processor (i + 2k) mod P with a PUT

 processor i waits for signal from (i - 2k) mod P

0 1 2 3 4 5 6 7

20

22

21

round 0

round 1

round 2

Collective Example: Broadcast

Binomial Tree

47

0 1 2 3 4 5 6 7

20

22

21

round 0

round 1

round 2

48

Progress Engine

• Tracks and manages state for all outstanding asynchronous
operations on an image

• Operations are set up as finite state machines
—initialize, waiting for a non-blocking write, etc.

• Advance function invoked regularly
—inside various CAF 2.0 runtime calls
—(eventually) sprinked through user code by our compiler
—manually as desired

• Gives each operation a chance to make progress

• Cooperative multitasking

• Research issue
—scheduling progress engine tasks when there are multiple threads

Implementing Non-blocking Collectives
• State machine for each communication partner

—each state machine begins in state 0

• Example: long broadcast
—state machine (1) - for parent communication

0: provide my buffer location to my parent in the broadcast tree
 set closure variables

 count = number of my children; event = event to signal for completion
1: test for data for my parent; if no, state = 1; return to progress engine
 enqueue instance of state machine (2) for each child in the broadcast tree
 dequeue myself from the progress engine

—state machine (2) - for child communication
0: test if my child provided buffer location for receiving broadcast

if not, return to progress engine
 provide data to my child
 decrement a count in the closure for (1)

 if count = 0, signal event in parent’s closure, free my parent’s closure
 dequeue myself from the progress engine; free my closure

49

Outline

• Coarray Fortran
—original 1998 version
—Fortran 2008 - a standard with coarrays

• Coarray Fortran 2.0 (CAF 2.0)
—features
—experiences - HPC challenge benchmarks + performance
—implementation notes

• Status and plans

50

51

Strengths and Weaknesses of CAF 2.0

• Strengths
—provides full control over data and computation partitioning
—admits sophisticated parallelizations
—compiler and runtime systems are tractable
—yields scalable high performance today with careful programming

• Weaknesses
—users code data movement and synchronization

– significantly harder than HPF
—optimizing performance can require careful parallel programming

– overlapping communication and computation may require managing multiple
communication buffers

– hiding latency requires
 using non-blocking primitives for data movement and synchronization
 overlapping latency of communication with computation
 managing the completion of asynchronous operations

Implementation Status & Plans

• Source-to-source translator is a work in progress
—requires no vendor buy-in
—delivers node performance of mature vendor compilers
—ongoing work to improve Fortran coverage in ROSE

• Ongoing work
—copointers
—lazy multithreading
—coarray binding interface for inter-team communication
—graph topology for managing irregular communication patterns

• Future plans
—use compiler-based vectorization to target SIMD and accelerators

52

Planned Application Studies

• LANL’s Parallel Ocean Program
—block structured, dense matrix

• Sandia’s S3D
—regular, dense matrix

• LANL’s HEAT
—cell-by-cell AMR code, sparse matrix

• Community Earth System Model
—coupled code
—multiple block-structured dense matrix components

53

