
1

HPCToolkit: Sampling-based Performance
Tools for Leadership Computing

John Mellor-Crummey
Department of Computer Science

Rice University
johnmc@cs.rice.edu

http://hpctoolkit.org

CScADS Workshop on Leadership Computing July 19, 2011

2

Acknowledgments
• Research Staff

— Nathan Tallent, Laksono Adhianto, Mike Fagan, Mark Krentel

• Student
— Xu Liu

• Alumni
— Gabriel Marin (ORNL), Robert Fowler (RENCI), Nathan Froyd

(CodeSourcery)

• SciDAC project support
— Center for Scalable Application Development Software

– Cooperative agreement number DE-FC02-07ER25800
— Performance Engineering Research Institute

– Cooperative agreement number DE-FC02-06ER25762

3

Challenges
• Gap between typical and peak performance is huge

• Complex architectures are harder to program effectively
— processors that are pipelined, out of order, superscalar
— multi-level memory hierarchy
— multi-level parallelism: multi-core, SIMD instructions

• Complex applications present challenges
— for measurement and analysis
— for understanding and tuning

• Leadership computing platforms pose additional challenges
— unique microkernel-based operating systems
— immense scale
— more than just computation: communication, I/O

4

Performance Analysis Principles
• Without accurate measurement, analysis is irrelevant

— avoid systematic measurement error
– instrumentation-based measurement is often problematic

— measure actual execution of interest, not an approximation
– fully optimized production code on the target platform

• Without effective analysis, measurement is irrelevant
— pinpoint and explain problems in terms of source code

– binary-level measurements, source-level insight
— compute insightful metrics

– “unused bandwidth” or “unused flops” rather than “cycles”

• Without scalability, a tool is irrelevant
— large codes
— large-scale parallelism, including MPI + OpenMP hybrid

5

Performance Analysis Goals
• Accurate measurement of complex parallel codes

— large, multi-lingual programs
— fully optimized code: loop optimization, templates, inlining
— binary-only libraries, sometimes partially stripped
— complex execution environments

– dynamic loading (e.g. Linux clusters) vs. static linking (Cray XT, BG/P)
– SPMD parallel codes with threaded node programs
– batch jobs

• Effective performance analysis
— insightful analysis that pinpoints and explains problems

– correlate measurements with code (yield actionable results)
– intuitive enough for scientists and engineers
– detailed enough for compiler writers

• Scalable to petascale systems

6

HPCToolkit Design Principles
• Binary-level measurement and analysis

— observe fully optimized, dynamically linked executions
— support multi-lingual codes with external binary-only libraries

• Sampling-based measurement (avoid instrumentation)
— minimize systematic error and avoid blind spots
— enable data collection for large-scale parallelism

• Collect and correlate multiple derived performance metrics
— diagnosis requires more than one species of metric
— derived metrics: “unused bandwidth” rather than “cycles”

• Associate metrics with both static and dynamic context
— loop nests, procedures, inlined code, calling context

• Support top-down performance analysis
— intuitive enough for scientists and engineers to use
— detailed enough to meet the needs of compiler writers

7

Outline
• Overview of Rice’s HPCToolkit

• Accurate measurement

• Effective performance analysis

• Pinpointing scalability bottlenecks
— scalability bottlenecks on large-scale parallel systems
— scaling on multicore processors

• Assessing process variability

• Understanding temporal behavior

• Using HPCToolkit

app.
source

optimized
binary

compile & link call stack
profile

profile
execution
[hpcrun]

binary
analysis

[hpcstruct]

interpret profile
correlate w/ source
[hpcprof/hpcprof-mpi]

database
presentation
[hpcviewer/

hpctraceviewer]

program
structure

HPCToolkit Workflow

8

app.
source

optimized
binary

compile & link call stack
profile

profile
execution
[hpcrun]

binary
analysis

[hpcstruct]

interpret profile
correlate w/ source
[hpcprof/hpcprof-mpi]

database
presentation
[hpcviewer/

hpctraceviewer]

program
structure

HPCToolkit Workflow

9

• For dynamically-linked executables on stock Linux
— compile and link as you usually do: nothing special needed

• For statically-linked executables (e.g. for BG/P, Cray XT)
— add monitoring by using hpclink as prefix to your link line

– uses “linker wrapping” to catch “control” operations
 process and thread creation, finalization, signals, ...

app.
source

optimized
binary

compile & link call stack
profile

profile
execution
[hpcrun]

binary
analysis

[hpcstruct]

interpret profile
correlate w/ source
[hpcprof/hpcprof-mpi]

database
presentation
[hpcviewer/

hpctraceviewer]

program
structure

HPCToolkit Workflow

• Measure execution unobtrusively
— launch optimized application binaries

– dynamically-linked applications: launch with hpcrun to measure
– statically-linked applications: measurement library added at link time

 control with environment variable settings
— collect statistical call path profiles of events of interest

10

app.
source

optimized
binary

compile & link call stack
profile

profile
execution
[hpcrun]

binary
analysis

[hpcstruct]

interpret profile
correlate w/ source
[hpcprof/hpcprof-mpi]

database
presentation
[hpcviewer/

hpctraceviewer]

program
structure

HPCToolkit Workflow

• Analyze binary with hpcstruct: recover program structure
— analyze machine code, line map, debugging information
— extract loop nesting & identify inlined procedures
— map transformed loops and procedures to source

11

app.
source

optimized
binary

compile & link call stack
profile

profile
execution
[hpcrun]

binary
analysis

[hpcstruct]

interpret profile
correlate w/ source
[hpcprof/hpcprof-mpi]

database
presentation
[hpcviewer/

hpctraceviewer]

program
structure

HPCToolkit Workflow

• Combine multiple profiles
— multiple threads; multiple processes; multiple executions

• Correlate metrics to static & dynamic program structure

12

app.
source

optimized
binary

compile & link call stack
profile

profile
execution
[hpcrun]

binary
analysis

[hpcstruct]

interpret profile
correlate w/ source
[hpcprof/hpcprof-mpi]

database
presentation
[hpcviewer/

hpctraceviewer]

program
structure

HPCToolkit Workflow

• Presentation
— explore performance data from multiple perspectives

– rank order by metrics to focus on what’s important
– compute derived metrics to help gain insight

 e.g. scalability losses, waste, CPI, bandwidth
— graph thread-level metrics for contexts
— explore evolution of behavior over time

13

14

Outline
• Overview of Rice’s HPCToolkit

• Accurate measurement

• Effective performance analysis

• Pinpointing scalability bottlenecks
— scalability bottlenecks on large-scale parallel systems
— scaling on multicore processors

• Assessing process variability

• Understanding temporal behavior

• Using HPCToolkit

app.
source

optimized
binary

compile & link call stack
profile

profile
execution
[hpcrun]

binary
analysis

[hpcstruct]

interpret profile
correlate w/ source
[hpcprof/hpcprof-mpi]

database
presentation
[hpcviewer/

hpctraceviewer]

program
structure

Measurement

15

• Measure and attribute costs in context
— sample timer or hardware counter overflows
— gather calling context using stack unwinding

Call Path Profiling

16

Call path sample

instruction pointer

return address

return address

return address

Overhead proportional to sampling frequency...
...not call frequency

Calling context tree

17

Novel Aspects of Our Approach
• Unwind fully-optimized and even stripped code

—use on-the-fly binary analysis to support unwinding

• Cope with dynamically-loaded shared libraries on Linux
— note as new code becomes available in address space

• Integrate static & dynamic context information in presentation
— dynamic call chains including procedures, inlined functions,

loops, and statements

Measurement Effectiveness
• Accurate

— PFLOTRAN on Cray XT @ 8192 cores
– 148 unwind failures out of 289M unwinds
– 5e-5% errors

— Flash on Blue Gene/P @ 8192 cores
– 212K unwind failures out of 1.1B unwinds
– 2e-2% errors

— SPEC2006 benchmark test suite (sequential codes)
– fully-optimized executables: Intel, PGI, and Pathscale compilers
– 292 unwind failures out of 18M unwinds (Intel Harpertown)
– 1e-3% error

• Low overhead
— e.g. PFLOTRAN scaling study on Cray XT @ 512 cores

– measured cycles, L2 miss, FLOPs, & TLB @ 1.5% overhead
— suitable for use on production runs

18

19

Outline
• Overview of Rice’s HPCToolkit

• Accurate measurement

• Effective performance analysis

• Pinpointing scalability bottlenecks
— scalability bottlenecks on large-scale parallel systems
— scaling on multicore processors

• Assessing process variability

• Understanding temporal behavior

• Using HPCToolkit

app.
source

optimized
binary

compile & link call stack
profile

profile
execution
[hpcrun]

binary
analysis

[hpcstruct]

interpret profile
correlate w/ source
[hpcprof/hpcprof-mpi]

database
presentation
[hpcviewer/

hpctraceviewer]

program
structure

Effective Analysis

20

21

Recovering Program Structure
• Analyze an application binary

— identify object code procedures and loops
– decode machine instructions
– construct control flow graph from branches
– identify natural loop nests using interval analysis

— map object code procedures/loops to source code
– leverage line map + debugging information
– discover inlined code
– account for many loop and procedure transformations

• Bridges the gap between
— lightweight measurement of fully optimized binaries
— desire to correlate low-level metrics to source level abstractions

Unique benefit of our binary analysis

Analyzing Results with hpcviewer

22

costs for
• inlined procedures
• loops
• function calls in full context

source pane

navigation pane metric pane

view control
metric display

23

Principal Views
• Calling context tree view - “top-down” (down the call chain)

— associate metrics with each dynamic calling context
— high-level, hierarchical view of distribution of costs

• Caller’s view - “bottom-up” (up the call chain)
— apportion a procedure’s metrics to its dynamic calling contexts
— understand costs of a procedure called in many places

• Flat view - ignores the calling context of each sample point
— aggregate all metrics for a procedure, from any context
— attribute costs to loop nests and lines within a procedure

24

• Overview of Rice’s HPCToolkit

• Accurate measurement

• Effective performance analysis

• Pinpointing scalability bottlenecks
— scalability bottlenecks on large-scale parallel systems
— scaling on multicore processors

• Assessing process variability

• Understanding temporal behavior

• Using HPCToolkit

Outline

25

The Problem of Scaling

0.500

0.625

0.750

0.875

1.000

1 4 16 64 25
6

10
24

40
96

16
38

4
65

53
6

Ef
fic

ie
nc

y

CPUs

Ideal efficiency
Actual efficiency

?

Note: higher is better

26

Goal: Automatic Scaling Analysis

• Pinpoint scalability bottlenecks

• Guide user to problems

• Quantify the magnitude of each problem

• Diagnose the nature of the problem

27

Challenges for Pinpointing Scalability Bottlenecks
• Parallel applications

— modern software uses layers of libraries
— performance is often context dependent

• Monitoring
— bottleneck nature: computation, data movement, synchronization?
— 2 pragmatic constraints

– acceptable data volume
– low perturbation for use in production runs

Example climate code skeleton

main

ocean atmosphere

wait wait

sea ice

wait

land

wait

28

Performance Analysis with Expectations
• You have performance expectations for your parallel code

— strong scaling: linear speedup
— weak scaling: constant execution time

• Putting your expectations to work
— measure performance under different conditions

– e.g. different levels of parallelism or different inputs
— express your expectations as an equation
— compute the deviation from expectations for each calling context

– for both inclusive and exclusive costs
— correlate the metrics with the source code
— explore the annotated call tree interactively

200K

400K600K

29

Pinpointing and Quantifying Scalability Bottlenecks

=−

P Q

P ×

coefficients for analysis
of strong scaling

 Q ×

• Parallel, adaptive-mesh refinement (AMR) code
• Block structured AMR; a block is the unit of computation
• Designed for compressible reactive flows
• Can solve a broad range of (astro)physical problems
• Portable: runs on many massively-parallel systems
• Scales and performs well
• Fully modular and extensible: components can be

combined to create many different applications

30

Scalability Analysis Demo

Cellular detonation
Helium burning on neutron stars

Laser-driven shock instabilitiesNova outbursts on white dwarfs

Rayleigh-Taylor instability
Orzag/Tang MHD
vortex

Magnetic
Rayleigh-Taylor Figures courtesy of FLASH Team, University of Chicago

Code: University of Chicago FLASH
Simulation: white dwarf detonation
Platform: Blue Gene/P
Experiment: 8192 vs. 256 processors
Scaling type: weak

Scaling on Multicore Processors
• Compare performance

— single vs. multiple processes on a multicore system

• Strategy
— differential performance analysis

– subtract the calling context trees as before, unit coefficient for each

31

 S3D: Multicore Losses at the Loop Level

32

Execution time
increases 2.8x in the
loop that scales worst

loop contributes a
6.9% scaling loss to
whole execution

33

Outline
• Overview of Rice’s HPCToolkit

• Accurate measurement

• Effective performance analysis

• Pinpointing scalability bottlenecks
— scalability bottlenecks on large-scale parallel systems
— scaling on multicore processors

• Assessing process variability

• Understanding temporal behavior

• Using HPCToolkit

34

PFLOTRAN

2. Notice top two
call sites...

3. Plot the per-process
values:

Early finishers...

... become early
arrivers at Allreduce

1. Drill down ‘hot path’
to loop (a balance point)

8K cores, Cray XT5

35

Outline
• Overview of Rice’s HPCToolkit

• Accurate measurement

• Effective performance analysis

• Pinpointing scalability bottlenecks
— scalability bottlenecks on large-scale parallel systems
— scaling on multicore processors

• Assessing process variability

• Understanding temporal behavior

• Using HPCToolkit

• Profiling compresses out the temporal dimension
—temporal patterns, e.g. serialization, are invisible in profiles

• What can we do? Trace call path samples
—sketch:

– N times per second, take a call path sample of each thread
– organize the samples for each thread along a time line
– view how the execution evolves left to right
– what do we view?

 assign each procedure a color; view a depth slice of an execution

3617

Understanding Temporal Behavior

Time

Processes

Call
stack

3717

Process-Time Views of PFLOTRAN

8184-core execution on Cray XT5. Trace view rendered using hpctraceviewer on a Mac Book Pro Laptop.
Insets show zoomed view of marked region at different call stack depths.

38

Outline
• Overview of Rice’s HPCToolkit

• Accurate measurement

• Effective performance analysis

• Pinpointing scalability bottlenecks
— scalability bottlenecks on large-scale parallel systems
— scaling on multicore processors

• Assessing process variability

• Understanding temporal behavior

• Using HPCToolkit

Where to Find HPCToolkit
• DOE Systems

— jaguar: /ccs/proj/hpctoolkit/pkgs/hpctoolkit
— intrepid: /home/projects/hpctoolkit/pkgs/hpctoolkit
— franklin: /project/projectdirs/hpctk/pkgs/hpctoolkit-franklin
— hopper: /project/projectdirs/hpctk/pkgs/hpctoolkit-hopper

• See examples subdirectory for chombo x 1024 data

• For your local Linux systems, you can download and install it
— documentation, build instructions, and software

– see http://hpctoolkit.org for instructions
— we recommend downloading and building from svn
— important notes:

– using hardware counters requires downloading and installing PAPI
– kernel support for hardware counters

 on Linux 2.6.32 or better: built-in kernel support for counters
 requires PAPI newer than 4.1.1 (CVS version at present)

 earlier Linux needs a kernel patch (perfmon2 or perfctr)
39

Using HPCToolkit at ORNL, NERSC, ANL
• jaguarpf, franklin, hopper, freedom

— module load java
— module load hpctoolkit

• intrepid, surveyor
— add the following to your .softenvrc before @default

– +ibmjava6
– +hpctoolkit

— resoft

40

HPCToolkit Documentation
 http://hpctoolkit.org/documentation.html

• Comprehensive user manual:
 http://hpctoolkit.org/manual/HPCToolkit-users-manual.pdf
— Quick start guide

– essential overview that almost fits on one page
— Using HPCToolkit with statically linked programs

– a guide for using hpctoolkit on BG/P and Cray XT
— The hpcviewer user interface
— Effective strategies for analyzing program performance with

HPCToolkit
– analyzing scalability, waste, multicore performance ...

— HPCToolkit and MPI
— HPCToolkit Troubleshooting

– why don’t I have any source code in the viewer?
– hpcviewer isn’t working well over the network ... what can I do?

• Installation guide
41

Using HPCToolkit
• Add hpctoolkit’s bin directory to your path

— see earlier slide for HPCToolkit’s HOME directory on your system

• Adjust your compiler flags (if you want full attribution to src)
— add -g flag after any optimization flags

• Add hpclink as a prefix to your Makefile’s link line
— e.g. hpclink mpixlf -o myapp foo.o ... lib.a -lm ...

• Decide what hardware counters to monitor
— statically-linked executables (e.g., Cray XT, BG/P)

– use hpclink to link your executable
– launch executable with environment var HPCRUN_EVENT_LIST=LIST

 (BG/P hardware counters supported)
— dynamically-linked executables (e.g., Linux)

– use hpcrun -L to learn about counters available for profiling
– use papi_avail

 you can sample any event listed as “profilable”
42

HPCToolkit Examples on Intrepid
• Example script for monitoring an application using hpctoolkit

— /home/projects/hpctoolkit/pkgs/hpctoolkit/share/examples/bgp-
scripts/run-bgp.sh

• Example script for launching hpcprof-mpi
— /home/projects/hpctoolkit/pkgs/hpctoolkit/share/examples/bgp-

scripts/run-hpcprof-bgp.sh

• Example performance data
— /home/projects/hpctoolkit/pkgs/hpctoolkit/share/examples/data/

hpctoolkit-fft-crayxt-256

43

Launching your Job
• Modify your run script to enable monitoring

— Cray XT: set environment variable in your PBS script
– e.g. setenv HPCRUN_EVENT_LIST “PAPI_TOT_CYC@3000000

PAPI_L2_MISS@400000 PAPI_TLB_MISS@400000
PAPI_FP_OPS@400000”

— Blue Gene/P: pass environment settings to cqsub
– cqsub -p YourAllocation -q prod-devel -t 30 -n 2048 -c 8192 \

--mode vn --env HPCRUN_EVENT_LIST=WALLCLOCK@1000 \
flash3.hpc

44

Analysis and Visualization
• Use hpcstruct to reconstruct program structure

— e.g. hpcstruct myapp
– creates myapp.hpcstruct

• Use hpcsummary script to summarize measurement data
— e.g. hpcsummary hpctoolkit-myapp-measurements-5912

• Use hpcprof to correlate measurements to source code
— run hpcprof on the front-end node
— run hpcprof-mpi on the back-end nodes to analyze data in

parallel

• Use hpcviewer to open resulting database

• Use hpctraceviewer to explore traces (collected with -t option)

45

A Special Note About hpcstruct and xlf
• IBM’s xlf compiler emits machine code for Fortran that have

an unusual mapping back to source

• To compensate, hpcstruct needs a special option
— --loop-fwd-subst=no
— without this option, many nested loops will be missing in

hpcstruct’s output and (as a result) hpcviewer

46

Other Useful Features
• Leak detection

— hpclink --memleak -o myapp foo.o ... lib.a -lm ...
— when you run
— setenv HPCTOOLKIT_EVENT_LIST=MEMLEAK

47

HPCToolkit Capabilities at a Glance

Attribute Costs to Code

Analyze Behavior
over Time

Assess Imbalance
and Variability

Associate Costs with DataShift Blame from
Symptoms to Causes

Pinpoint & Quantify
Scaling Bottlenecks

hpctoolkit.org

