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Challenges

e Gap between typical and peak performance is huge

e Complex architectures are harder to program effectively
— processors that are pipelined, out of order, superscalar
— multi-level memory hierarchy
— multi-level parallelism: multi-core, SIMD instructions

e Complex applications present challenges
— for measurement and analysis
— for understanding and tuning

 Leadership computing platforms pose additional challenges
— unique microkernel-based operating systems
— immense scale
— more than just computation: communication, 1/O




Performance Analysis Principles

 Without accurate measurement, analysis is irrelevant

— avoid systematic measurement error
— instrumentation-based measurement is often problematic

— measure actual execution of interest, not an approximation
— fully optimized production code on the target platform

 Without effective analysis, measurement is irrelevant

— pinpoint and explain problems in terms of source code
— binary-level measurements, source-level insight

— compute insightful metrics
— “unused bandwidth” or “unused flops” rather than “cycles”

 Without scalability, a tool is irrelevant
— large codes
— large-scale parallelism, including MPI + OpenMP hybrid




Performance Analysis Goals

e Accurate measurement of complex parallel codes
— large, multi-lingual programs
— fully optimized code: loop optimization, templates, inlining
— binary-only libraries, sometimes partially stripped

— complex execution environments
— dynamic loading (e.g. Linux clusters) vs. static linking (Cray XT, BG/P)
— SPMD parallel codes with threaded node programs

— batch jobs

o Effective performance analysis

— insightful analysis that pinpoints and explains problems
— correlate measurements with code (yield actionable resulits)
— intuitive enough for scientists and engineers
— detailed enough for compiler writers

e Scalable to petascale systems




HPCToolkit Design Principles

 Binary-level measurement and analysis
— observe fully optimized, dynamically linked executions
— support multi-lingual codes with external binary-only libraries

e Sampling-based measurement (avoid instrumentation)
— minimize systematic error and avoid blind spots
— enable data collection for large-scale parallelism

Collect and correlate multiple derived performance metrics
— diagnosis requires more than one species of metric
— derived metrics: “unused bandwidth” rather than “cycles”

 Associate metrics with both static and dynamic context
— loop nests, procedures, inlined code, calling context

Support top-down performance analysis
— intuitive enough for scientists and engineers to use
— detailed enough to meet the needs of compiler writers




Outline

e Overview of Rice’s HPCToolkit

e Accurate measurement
o Effective performance analysis

 Pinpointing scalability bottlenecks

— scalability bottlenecks on large-scale parallel systems
— scaling on multicore processors

» Assessing process variability
 Understanding temporal behavior
e Using HPCToolkit




HPCToolkit Workflow
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HPCToolkit Workflow

compile & link
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* For dynamically-linked executables on stock Linux
— compile and link as you usually do: nothing special needed
* For statically-linked executables (e.g. for BG/P, Cray XT)

— add monitoring by using hpclink as prefix to your link line
— uses “linker wrapping” to catch “control” operations
process and thread creation, finalization, signals, ...

presentation
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HPCToolkit Workflow

profile
execution
[hpcrun]

call stack
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* Measure execution unobtrusively

— launch optimized application binaries

— dynamically-linked applications: launch with hpcrun to measure
— statically-linked applications: measurement library added at link time
control with environment variable settings

— collect statistical call path profiles of events of interest
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HPCToolkit Workflow

] _ profile
compile & link e e call stack
profile
[hpcrun]
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program
structure

e Analyze binary with hpcstruct: recover program structure

— analyze machine code, line map, debugging information
— extract loop nesting & identify inlined procedures
— map transformed loops and procedures to source

presentation
[hpcviewer/

interpret profile
database correlate w/ source
[hpcprof/hpcprof-mpi]

hpctraceviewer]
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HPCToolkit Workflow
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e Combine multiple profiles
— multiple threads; multiple processes; multiple executions

call stack

profile

program
structure

e Correlate metrics to static & dynamic program structure

presentation
[hpcviewer/
hpctraceviewer]
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HPCToolkit Workflow

profile
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e Presentation

— explore performance data from multiple perspectives
— rank order by metrics to focus on what’s important
— compute derived metrics to help gain insight
e.g. scalability losses, waste, CPIl, bandwidth

— graph thread-level metrics for contexts
— explore evolution of behavior over time

interpret profile
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[hpcprof/hpcprof-mpi]

program
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Outline

e QOverview of Rice’s HPCToolkit

e Accurate measurement

o Effective performance analysis

 Pinpointing scalability bottlenecks

— scalability bottlenecks on large-scale parallel systems
— scaling on multicore processors

» Assessing process variability
 Understanding temporal behavior
e Using HPCToolkit
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Measurement
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Call Path Profiling

Measure and attribute costs in context
— sample timer or hardware counter overflows
— gather calling context using stack unwinding

Call path sample Calling context tree
return address

return address
return address

instruction pointer ‘

:
5 p

...not call frequency

Overhead proportional to sampling frequency...
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Novel Aspects of Our Approach
 Unwind fully-optimized and even stripped code
—use on-the-fly binary analysis to support unwinding

e Cope with dynamically-loaded shared libraries on Linux
— note as new code becomes available in address space

* Integrate static & dynamic context information in presentation

— dynamic call chains including procedures, inlined functions,
loops, and statements
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Measurement Effectiveness

Accurate

— PFLOTRAN on Cray XT @ 8192 cores
— 148 unwind failures out of 289M unwinds
— 5e-5% errors
— Flash on Blue Gene/P @ 8192 cores
— 212K unwind failures out of 1.1B unwinds
— 2e-2% errors
— SPEC2006 benchmark test suite (sequential codes)
— fully-optimized executables: Intel, PGI, and Pathscale compilers
— 292 unwind failures out of 18M unwinds (Intel Harpertown)
— 1e-3% error

Low overhead

— e.g. PFLOTRAN scaling study on Cray XT @ 512 cores
— measured cycles, L2 miss, FLOPs, & TLB @ 1.5% overhead

— suitable for use on production runs
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Outline

e QOverview of Rice’s HPCToolkit

e Accurate measurement

o Effective performance analysis

 Pinpointing scalability bottlenecks

— scalability bottlenecks on large-scale parallel systems
— scaling on multicore processors

» Assessing process variability
 Understanding temporal behavior
e Using HPCToolkit
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Effective Analysis
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Recovering Program Structure

 Analyze an application binary
— identify object code procedures and loops
— decode machine instructions
— construct control flow graph from branches
— identify natural loop nests using interval analysis
— map object code procedures/loops to source code
— leverage line map + debugging information

— discover inlined code
— account for many loop and procedure transformations

Unique benefit of our binary analysis

 Bridges the gap between
— lightweight measurement of fully optimized binaries

— desire to correlate low-level metrics to source level abstractions
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Analyzing Results with hpcviewer
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Principal Views

e Calling context tree view - “top-down” (down the call chain)
— associate metrics with each dynamic calling context
— high-level, hierarchical view of distribution of costs

e Caller’s view - “bottom-up” (up the call chain)
— apportion a procedure’s metrics to its dynamic calling contexts
— understand costs of a procedure called in many places

 Flat view - ignores the calling context of each sample point
— aggregate all metrics for a procedure, from any context
— attribute costs to loop nests and lines within a procedure
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Outline

e QOverview of Rice’s HPCToolkit

e Accurate measurement

o Effective performance analysis

* Pinpointing scalability bottlenecks

— scalability bottlenecks on large-scale parallel systems
— scaling on multicore processors

 Assessing process variability
* Understanding temporal behavior
 Using HPCToolkit
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The Problem of Scaling

Efficiency
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Note: higher is better
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Goal: Automatic Scaling Analysis

* Pinpoint scalability bottlenecks
e Guide user to problems
* Quantify the magnitude of each problem

 Diagnose the nature of the problem
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Challenges for Pinpointing Scalability Bottlenecks

e Parallel applications
— modern software uses layers of libraries
— performance is often context dependent

* Monitoring
— bottleneck nature: computation, data movement, synchronization?

— 2 pragmatic constraints
— acceptable data volume
— low perturbation for use in production runs

Example climate code skeleton
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Performance Analysis with Expectations

* You have performance expectations for your parallel code
— strong scaling: linear speedup
— weak scaling: constant execution time

 Putting your expectations to work

— measure performance under different conditions
— e.g. different levels of parallelism or different inputs

— express your expectations as an equation

— compute the deviation from expectations for each calling context

— for both inclusive and exclusive costs
— correlate the metrics with the source code
— explore the annotated call tree interactively

28




Pinpointing and Quantifying Scalability Bottlenecks
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Scalability Analysis Demo

Code:
Simulation:
Platform:
Experiment:
Scaling type:

xxxxx

Nova outbursts on white dwarfs
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Blue Gene/P

8192 vs. 256 processors
weak

A

Laser-driven shock instabilities

E Orzag/Tang MHD . . -
vortex Rayleigh-Taylor instability

Helium burning on neutron stars

Figures courtesy of FLASH Team, University of Chicago 30




Scaling on Multicore Processors

e Compare performance
— single vs. multiple processes on a multicore system

e Strategy

— differential performance analysis
— subtract the calling context trees as before, unit coefficient for each
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S3D: Multicore Losses at the Loop Level

hpcviewer: [Profile Name]
*¢ getrates.f I"‘.’

. rhsf.fo0 "2 diffflux_gen_uj.f 23 | ExeCUtion time
O ) e lbperd® = (3 - 1+1) /35321 - 4 increases 2.8x in the

dom=1,1__ujUpper3d, 3

do n =1, nspec - 1 loop that scales worst

do 1¢__2 - 1, nz

do 1¢__1 « 1, ny |

;:1 do 1t__0Q = 1, nx I .

200 diffflux(lt__0, 1t__1, 1t__2, n, m) = -ds_mixav

D e e e a5 el loop contributes a
0 *s(lt_.0, 1t__1, 1t__2, n) * grad mixmw(1lt__0, 1t__1, 1t__2, m))

diffFlux(lt__@, 1t__1, 1t_ 2, n_spec, m) = diff 69% Scaling IOSS to

*lux(le__0, 1+__1, 1t__2, n_spec, m) diffflux(le__0, 1t__1, 1le__

ey " st o s e e 1 - ass] WHOIE €Xecution

*xavg(lt__0, 1t__1, 1t__2, n) * (grad_ys(1t__0, 1t__1, 1t__2, n, m
P 1) wwellE A 1F 1 0% 2 A Y arad mivewIlE A TF 1 1k 2

"< Calling Context View I "% Callers View‘ "< Flat Vnewl =0

284 1|6 ol
Scope 1-c (ms) (1) 1-core (ms) (E) re(1) (ms) (D) 8-core(l) (ms) (E)... Multicore loss ¥

loop at diffflux_gen_uj.f: 197-22:2.86e06 2.6% 2.86e06 2.6% 8.12e06 4.3% 8.12e06 4.3%| 5.27e06 m
loop at integrate_erk_jstage_It_gel .09e08 98.1% 1.25e06 1.1% 1.84e08 97.9% 5.94e06 3.2%| 4.70e06 6.1% W/
loop at variables_m.f90. 88-99 1.49%9e06 1.3% 1.49e06 1.3% 6.08e06 3.2% 6.08e06 3.2% 4.60e06 6.0%
loop at rhsf.f90: 516-536 2.70e06 2.4% 1.31e06 1.2% 6.49e06 3.5% 3.72e06 2.0%| 2.4le06 3.1%
loop at rhsf.f90: 538-544 3.35e06 3.0% 1.45e06 1.3% 7.06006 3.8% 3.82¢06 2.0% 2.36006 3.1%
loop at rhsf.f90: 546-552 2.56e06 2.3% |1.47e06 1.3% 5.86e06 3.1% 3.42e06 1.8% 1.96e06 2.6%
loop at thermchem_m.f90: 127-18.00e05 0.7% £.00e05 0.7% 2.28e06 1.2% 2.28e06 1.2% 1.48e06 1.9%
loop at heatflux_Ilt_gen.f: 5-132 1.46e06 1.3% 1.46e06 1.3% 2.88e06 1.5% 2.88e06 1.5% 1.41e06 1.8%
loop at rhsf.f90: 576 6.65e05 0.6% 6.65e05 0.6% 1.87e06 1.0% 1.87e06 1.0% 1.20e06 1.6%
loop at getrates.f: 504-505 8.00e06 7.2% 8.00e06 7.2% 8.74e06 4.7% 8.74e06 4.7% 7.35e05 1.0% 3
loop at derivative_x.f90: 213-6901.78e06 1.6% 1.78e06 1.6% 2.47e06 1.3% 2.47e06 1.3%| 6.95e05 0.9% 3




Outline

e QOverview of Rice’s HPCToolkit

e Accurate measurement
o Effective performance analysis

 Pinpointing scalability bottlenecks

— scalability bottlenecks on large-scale parallel systems
— scaling on multicore processors

» Assessing process variability

 Understanding temporal behavior
e Using HPCToolkit
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PFLOTRAN
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Outline

e QOverview of Rice’s HPCToolkit

e Accurate measurement
o Effective performance analysis

 Pinpointing scalability bottlenecks

— scalability bottlenecks on large-scale parallel systems
— scaling on multicore processors

 Assessing process variability

 Understanding temporal behavior
e Using HPCToolkit
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Understanding Temporal Behavior

Profiling compresses out the temporal dimension

—te

mporal patterns, e.g. serialization, are invisible in profiles

What can we do? Trace call path samples
—sketch:

N times per second, take a call path sample of each thread
organize the samples for each thread along a time line
view how the execution evolves left to right

what do we view?

assign each procedure a color; view a depth slice of an execution

Processes

Time
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Process-Time Views of PFLOTRAN
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8184-core execution on Cray XT5. Trace view rendered using hpctraceviewer on a Mac Book Pro Laptop.
Insets show zoomed view of marked region at different call stack depths. 37




Outline

e QOverview of Rice’s HPCToolkit

e Accurate measurement
o Effective performance analysis

 Pinpointing scalability bottlenecks

— scalability bottlenecks on large-scale parallel systems
— scaling on multicore processors

» Assessing process variability
 Understanding temporal behavior
 Using HPCToolkit
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Where to Find HPCToolkit

e DOE Systems
— jaguar: /ccs/proj/hpctoolkit/pkgs/hpctoolkit
— intrepid: /home/projects/hpctoolkit/pkgs/hpctoolkit
— franklin: /project/projectdirs/hpctk/pkgs/hpctoolkit-franklin
— hopper: /project/projectdirs/hpctk/pkgs/hpctoolkit-hopper

e See examples subdirectory for chombo x 1024 data

 For your local Linux systems, you can download and install it

— documentation, build instructions, and software
— see http://hpctoolkit.org for instructions

— we recommend downloading and building from svn
— important notes:

— using hardware counters requires downloading and installing PAPI

— kernel support for hardware counters
on Linux 2.6.32 or better: built-in kernel support for counters
requires PAPI newer than 4.1.1 (CVS version at present)

earlier Linux needs a kernel patch (perfmon2 or perfctr)
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Using HPCToolkit at ORNL, NERSC, ANL

e jaguarpf, franklin, hopper, freedom
— module load java
— module load hpctoolkit

* intrepid, surveyor
— add the following to your .softenvrc before @default
— +ibmjava6
— +hpctoolkit
— resoft
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HPCToolkit Documentation

http://hpctoolkit.org/documentation.html

e Comprehensive user manual:

http://hpctoolkit.org/manual/HPCToolkit-users-manual.pdf
— Quick start guide
— essential overview that almost fits on one page

— Using HPCToolkit with statically linked programs
— a guide for using hpctoolkit on BG/P and Cray XT

— The hpcviewer user interface

— Effective strategies for analyzing program performance with
HPCToolkit

— analyzing scalability, waste, multicore performance ...
— HPCToolkit and MPI

— HPCToolkit Troubleshooting
— why don’t | have any source code in the viewer?
— hpcviewer isn’t working well over the network ... what can | do?

e |nstallation guide
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Using HPCToolkit

 Add hpctoolkit’s bin directory to your path
— see earlier slide for HPCToolkit’'s HOME directory on your system

e Adjust your compiler flags (if you want full attribution to src)
— add -g flag after any optimization flags

e Add hpclink as a prefix to your Makefile’s link line
— e.g. hpclink mpixlf -o myapp foo.o ... lib.a -1m ...

e Decide what hardware counters to monitor

— statically-linked executables (e.g., Cray XT, BG/P)
— use hpclink to link your executable
— launch executable with environment var HPCRUN_EVENT _LIST=LIST
(BG/P hardware counters supported)
— dynamically-linked executables (e.g., Linux)
— use hpcrun -L to learn about counters available for profiling
— use papi_avail
you can sample any event listed as “profilable”
42




HPCToolkit Examples on Intrepid

e Example script for monitoring an application using hpctoolkit
— /home/projects/hpctoolkit/pkgs/hpctoolkit/share/examples/bgp-
scripts/run-bgp.sh
e Example script for launching hpcprof-mpi
— /home/projects/hpctoolkit/pkgs/hpctoolkit/share/lexamples/bgp-
scripts/run-hpcprof-bgp.sh
e Example performance data

— /home/projects/hpctoolkit/pkgs/hpctoolkit/share/examples/data/
hpctoolkit-fft-crayxt-256
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Launching your Job

 Modify your run script to enable monitoring

— Cray XT: set environment variable in your PBS script

— e.g. setenv HPCRUN_EVENT_LIST “PAPI_TOT_CYC@3000000
PAPI_L2_MISS@400000 PAPI_TLB_MISS@400000
PAPI_FP_OPS@400000”

— Blue Gene/P: pass environment settings to cqsub

— cqgsub -p YourAllocation -q prod-devel -t 30 -n 2048 -c 8192 \
--mode vn --env HPCRUN_EVENT_LIST=WALLCLOCK@1000 \
flash3.hpc
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Analysis and Visualization

 Use hpcstruct to reconstruct program structure

— e.g. hpcstruct myapp
— creates myapp.hpcstruct

 Use hpcsummary script to summarize measurement data

— e.g. hpcsummary hpctoolkit-myapp-measurements-5912

e Use hpcprof to correlate measurements to source code
— run hpcprof on the front-end node

— run hpcprof-mpi on the back-end nodes to analyze data in
parallel

e Use hpcviewer to open resulting database

e Use hpctraceviewer to explore traces (collected with -t option)
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A Special Note About hpcstruct and x1f£

 IBM'’s xIf compiler emits machine code for Fortran that have
an unusual mapping back to source

e To compensate, hpcstruct needs a special option
— --loop-fwd-subst=no

— without this option, many nested loops will be missing in
hpcstruct’s output and (as a result) hpcviewer
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Other Useful Features

Leak detection

— hpclink --memleak -o myapp foo.o ... lib.a -1lm ...

— when you run
— setenv HPCTOOLKIT EVENT LIST=MEMLEAK
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HPCToolkit Capabilities at a Glance
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k ¢inlined procedures

*loops

£ imedi
.
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Scope
¥ main

calls in full context

LLLLLDGM()¥: PAPLTOT_CYC ()
63e+08 100 ¢ 1.13e+11 100 §
8le+08 78.9% 0.98e+1l 86.5%
436408 39.6%  3.37e+410 29.9%)
1180410 19.38
J16e+10 19.1%)

8.
¥ B testBivoid®,int, double constr,int const) 8.
|ineg from mbperf, esh.cop: 261] (2
[ loop at mbper, esh.cop. 280-313] >
¥ B imesh_getvixarrcoords_ 3.20408 37.1%
¥ B> MBCore:get_coords(unsigned long const*, int, double*) cc 3.20e+08 37.1%
¥[loop at MéCore cop: 681-693] A
2

W[linlined from sti_treeh: 472

046408 23,78 0.38e409 8.3%

V|

04e408 23,68 9.37¢409

780408 20,63

v [inlined from TypeSequenceManager hpp:27

1
0
3
2
2
20408 37.18 | 2.16e410 19.1%
9
9
8
TypeSequenceManager.hpp: 27 1.78e408 20.63 8

]
1560409 7.64
\56e409 7
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hpcviewer: [Profile Name]

Execution time

R gevrates ! | M rhsff90 | aiffflux_gen_uif 83 |
D e < 31D /33011 increases 2.8x in the
dom « 1,1__ujUpperdt 3

loop that scales worst

ds_mixav
*(1e_0, 11, 1 nm e
*s(1e_0, 11,

loop contributes a
52| 8.9% scaling loss to

lux(lt_.0, 1t
)

o ...| whole execution
*xavg(lt..0, 1t e By -
{-\ Calling Context View | =%, Callers View | =%, Flat View, “o
284 56/
oop at iffux_gen_ujF: 197-22: 2.86006 2.60 . @

100p at derivative_x.f90: 213-6901 . 78006

Pinpoint & Quantify
Scaling Bottlenecks

calsuck

S
Wl collectves barie
Wsiret AVl

Wgusnerc Aol
Wsasnercoonas poll

add(MEMFUN_OBJT (memfunT)& obj,
memfunT memfun,
const arglTh argl, const arg2T& arg2, const argdT& argd, const TaskAttributesk
Future<REMFUTURECMEMFUN_RETURNT (memfunT))> result;
add(new TaskMemfuncmemfunT>(result,obj,memfun,argl,arg2,arg3,attr));

return resul

} | quantum chemistry; MPI + pthreads |

Bgasnerc gecevent

X Calling Context View | &, Callers View, Tz, rmv.ew{
| 4“6 fw ¥ & A~ |16 cores; 1 thread/core (4 x Barcelona) |

Scope <. % idleness (al/E)y.
Experiment Aggregate Metrics 2.35e401 100

[=]

idleness (all/E)
1.57e409 100 &

be limbalance ) ¥ TOT_CYC:Sum ()
pflotran 5.28e+15 1.85e+16 100 &
¥ B timestepper_module_stepperrun_ 5.17e+15 | 1.82e+16 9s.3&|
¥ loop at timestepper.F90: 384 5.17e+15 | 1.82e+16 98.23
v B _module_stepp . 2.22e+15 | 1.33e+16 72.0%
¥ loop at timestepper.F90: 1230 2.22e+15 | 1.33e+16 72.0%
¥ loop at timestepper.F90: 1254 2.22e+15 1.32e+16 71.3%
¥ B snessolve 2.22e+15 1.30e+16 70.4%
¥ B SNESSolve 2.22e+15 1.30e+16 70.4%
¥ B SNESSolve_LS 2.22e+15 1.30e+16 70.4%
[ioopatisc 181] 1
> B3[SNES_KsPSolve . 5
> _SN(SComnutekcob 6.21e414 4

————————
ierr = |SNESComputelacobian nes,X,&snes—>jncubinn,&snes—>jn<cbian‘pre,ﬂ
S !

err - KSPSetOperators(snes->ksp,snes->jacobian,snes->jacobian_pre, flg:
ierr = |SNES_KSPSolve{snes,snes->ksp,F,Y);CHKERRQ(ierr); v
i
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Assess Imbalance
and Variability

T there 13 o extra 1800 (n the numerator for the sclecular welght comversion

ratecony - L_ref * 1,066 / (rho.ref * a.ref)

1 g6t reaction rote from getrates ond convert units

latency for this

gt = yspeciests, 3, k. DI
TN setratestorestureCi .k piony.tempCi 3. O"ecom,
Vipec, ke chmrk 113

rrrGisk = rr.

3 * rotecony * molat(:)

enddo

loop is 14.5% of total
latency in program

“nd subroutine reaction_rate_bounds

¥ pthread_spin_unlock | EFEErSIR (LI

S ateior 100.0 | lOCK contention .
786401 75.68 accoun!s.for2'3.5ﬂa
of execution time.

v 48 madness Spinlock-unlock() const
v & inlined from worldmutex.h: 142 1.

41.2% of memory hierarchy
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v 4@]madness ThreadPool -add(madness:PoolTaskinterface*) 1.78e401 75.6%
v 43 inlined from worldtask.h: 581

|7-35e+00 31.2%
» €@ madness:Future<> madness:WorldObject<> task<>{7.35e+00 31.2%
v 48 inlined from worldtask.h: 569 4.560400 19.4%

92e+08 31.2%

Adding futures
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Analyze Behavior
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» €8 madness: Future<> madness: WorldObject<>
» 48 inlined from worlddep.h: 68
v 48 inlined from worldtask.h: 570

» ¢8 madness:Future<> madness:WorldObject<>
» 48 inlined from worldtask.h: 558

» 48 madness:Future<> madness:WorldTaskQueue:add <>(mal 6.72e-01

task<>(4.56e400 19.4%

: to shared global
o4 work queue.
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