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Challenges
• Gap between typical and peak performance is huge

• Complex architectures are harder to program effectively
— processors that are pipelined, out of order, superscalar
— multi-level memory hierarchy
— multi-level parallelism: multi-core, SIMD instructions

• Complex applications present challenges 
— for measurement and analysis 
— for understanding and tuning

• Leadership computing platforms pose additional challenges
— unique microkernel-based operating systems 
— immense scale 
— more than just computation: communication, I/O
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Performance Analysis Principles
• Without accurate measurement, analysis is irrelevant

— avoid systematic measurement error
– instrumentation-based measurement is often problematic

— measure actual execution of interest, not an approximation
– fully optimized production code on the target platform

• Without effective analysis, measurement is irrelevant
— pinpoint and explain problems in terms of source code

– binary-level measurements, source-level insight
— compute insightful metrics

– “unused bandwidth” or “unused flops” rather than “cycles” 

• Without scalability, a tool is irrelevant
— large codes
— large-scale parallelism, including MPI + OpenMP hybrid
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Performance Analysis Goals
• Accurate measurement of complex parallel codes

— large, multi-lingual programs
— fully optimized code: loop optimization, templates, inlining
— binary-only libraries, sometimes partially stripped
— complex execution environments 

– dynamic loading (e.g. Linux clusters) vs. static linking (Cray XT, BG/P)
– SPMD parallel codes with threaded node programs
– batch jobs

• Effective performance analysis
— insightful analysis that pinpoints and explains problems

– correlate measurements with code (yield actionable results)
– intuitive enough for scientists and engineers
– detailed enough for compiler writers

• Scalable to petascale systems
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HPCToolkit Design Principles
• Binary-level measurement and analysis

— observe fully optimized, dynamically linked executions 
— support multi-lingual codes with external binary-only libraries

• Sampling-based measurement (avoid instrumentation)
— minimize systematic error and avoid blind spots
— enable data collection for large-scale parallelism

• Collect and correlate multiple derived performance metrics
— diagnosis requires more than one species of metric
— derived metrics: “unused bandwidth” rather than “cycles” 

• Associate metrics with both static and dynamic context
— loop nests, procedures, inlined code, calling context

• Support top-down performance analysis
— intuitive enough for scientists and engineers to use
— detailed enough to meet the needs of compiler writers
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Outline
• Overview of Rice’s HPCToolkit

• Accurate measurement

• Effective performance analysis

• Pinpointing scalability bottlenecks
— scalability bottlenecks on large-scale parallel systems
— scaling on multicore processors

• Assessing process variability

• Understanding temporal behavior

• Using HPCToolkit
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• For dynamically-linked executables on stock Linux
— compile and link as you usually do: nothing special needed

• For statically-linked executables (e.g. for BG/P, Cray XT)
— add monitoring by using hpclink as prefix to your link line

– uses “linker wrapping” to catch “control” operations
 process and thread creation, finalization, signals, ...
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• Measure execution unobtrusively
— launch optimized application binaries

– dynamically-linked applications: launch with hpcrun to measure
– statically-linked applications: measurement library added at link time

 control with environment variable settings
— collect statistical call path profiles of events of interest
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• Analyze binary with hpcstruct: recover program structure
— analyze machine code, line map, debugging information
— extract loop nesting & identify inlined procedures
— map transformed loops and procedures to source
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• Combine multiple profiles
— multiple threads; multiple processes; multiple executions

• Correlate metrics to static & dynamic program structure
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• Presentation
— explore performance data from multiple perspectives

– rank order by metrics to focus on what’s important
– compute derived metrics to help gain insight

 e.g. scalability losses, waste, CPI, bandwidth
— graph thread-level metrics for contexts
— explore evolution of behavior over time
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Outline
• Overview of Rice’s HPCToolkit

• Accurate measurement

• Effective performance analysis

• Pinpointing scalability bottlenecks
— scalability bottlenecks on large-scale parallel systems
— scaling on multicore processors

• Assessing process variability

• Understanding temporal behavior

• Using HPCToolkit
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• Measure and attribute costs in context
— sample timer or hardware counter overflows
— gather calling context using stack unwinding

Call Path Profiling
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Call path sample

instruction pointer

return address

return address

return address

Overhead proportional to sampling frequency... 
...not call frequency

Calling context tree
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Novel Aspects of Our Approach
• Unwind fully-optimized and even stripped code

—use on-the-fly binary analysis to support unwinding

• Cope with dynamically-loaded shared libraries on Linux
— note as new code becomes available in address space

• Integrate static & dynamic context information in presentation
— dynamic call chains including procedures, inlined functions, 

loops, and statements



Measurement Effectiveness
• Accurate

— PFLOTRAN on Cray XT @ 8192 cores
– 148 unwind failures out of 289M unwinds
– 5e-5% errors

— Flash on Blue Gene/P @ 8192 cores
– 212K unwind failures out of 1.1B unwinds 
– 2e-2% errors

— SPEC2006 benchmark test suite (sequential codes)
– fully-optimized executables: Intel, PGI, and Pathscale compilers
– 292 unwind failures out of 18M unwinds (Intel Harpertown)
– 1e-3% error

• Low overhead
— e.g. PFLOTRAN scaling study on Cray XT @ 512 cores

– measured cycles, L2 miss, FLOPs, & TLB @ 1.5% overhead
— suitable for use on production runs

18
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Outline
• Overview of Rice’s HPCToolkit

• Accurate measurement

• Effective performance analysis

• Pinpointing scalability bottlenecks
— scalability bottlenecks on large-scale parallel systems
— scaling on multicore processors
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Recovering Program Structure
• Analyze an application binary

— identify object code procedures and loops
– decode machine instructions
– construct control flow graph from branches
– identify natural loop nests using interval analysis

— map object code procedures/loops to source code
– leverage line map + debugging information
– discover inlined code
– account for many loop and procedure transformations

• Bridges the gap between
— lightweight measurement of fully optimized binaries
— desire to correlate low-level metrics to source level abstractions

Unique benefit of our binary analysis



Analyzing Results with hpcviewer
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costs for
• inlined procedures
• loops
• function calls in full context

source pane

navigation pane metric pane

view control
metric display
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Principal Views
• Calling context tree view - “top-down” (down the call chain)

— associate metrics with each dynamic calling context
— high-level, hierarchical view of distribution of costs

• Caller’s view - “bottom-up” (up the call chain)
— apportion a procedure’s metrics to its dynamic calling contexts
— understand costs of a procedure called in many places

• Flat view - ignores the calling context of each sample point
— aggregate all metrics for a procedure, from any context
— attribute costs to loop nests and lines within a procedure
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• Overview of Rice’s HPCToolkit

• Accurate measurement

• Effective performance analysis

• Pinpointing scalability bottlenecks
— scalability bottlenecks on large-scale parallel systems
— scaling on multicore processors

• Assessing process variability

• Understanding temporal behavior 

• Using HPCToolkit

Outline
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The Problem of Scaling
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Goal: Automatic Scaling Analysis

• Pinpoint scalability bottlenecks

• Guide user to problems

• Quantify the magnitude of each problem

• Diagnose the nature of the problem



27

Challenges for Pinpointing Scalability Bottlenecks
• Parallel applications

— modern software uses layers of libraries
— performance is often context dependent

• Monitoring
— bottleneck nature: computation, data movement, synchronization?
— 2 pragmatic constraints

– acceptable data volume
– low perturbation for use in production runs

Example climate code skeleton

main

ocean atmosphere

wait wait

sea ice

wait

land

wait
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Performance Analysis with Expectations
• You have performance expectations for your parallel code

— strong scaling: linear speedup
— weak scaling: constant execution time

• Putting your expectations to work
— measure performance under different conditions

– e.g. different levels of parallelism or different inputs
— express your expectations as an equation
— compute the deviation from expectations for each calling context

– for both inclusive and exclusive costs
— correlate the metrics with the source code 
— explore the annotated call tree interactively
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Pinpointing and Quantifying Scalability Bottlenecks

=−   

P Q

P × 

coefficients for analysis 
of strong scaling

    Q ×



• Parallel, adaptive-mesh refinement (AMR) code
• Block structured AMR; a block is the unit of computation
• Designed for compressible reactive flows
• Can solve a broad range of (astro)physical problems
• Portable: runs on many massively-parallel systems
• Scales and performs well
• Fully modular and extensible: components can be 

combined to create many different applications
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Scalability Analysis Demo

Cellular detonation
Helium burning on neutron stars

Laser-driven shock instabilitiesNova outbursts on white dwarfs

Rayleigh-Taylor instability
Orzag/Tang MHD
vortex

Magnetic
Rayleigh-Taylor Figures courtesy of FLASH Team, University of Chicago

Code:   University of Chicago FLASH
Simulation:  white dwarf detonation
Platform:  Blue Gene/P 
Experiment:  8192 vs. 256 processors
Scaling type:  weak



Scaling on Multicore Processors
• Compare performance 

— single vs. multiple processes on a multicore system

• Strategy
— differential performance analysis

– subtract the calling context trees as before, unit coefficient for each

31



       S3D: Multicore Losses at the Loop Level
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Execution time 
increases 2.8x in the 
loop that scales worst 

loop contributes a 
6.9% scaling loss to 
whole execution
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Outline
• Overview of Rice’s HPCToolkit

• Accurate measurement

• Effective performance analysis

• Pinpointing scalability bottlenecks
— scalability bottlenecks on large-scale parallel systems
— scaling on multicore processors

• Assessing process variability

• Understanding temporal behavior 

• Using HPCToolkit
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PFLOTRAN

2. Notice top two 
call sites...

3. Plot the per-process 
values:

Early finishers...

... become early 
arrivers at Allreduce

1. Drill down ‘hot path’ 
to loop (a balance point)

8K cores, Cray XT5 



35

Outline
• Overview of Rice’s HPCToolkit

• Accurate measurement
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• Pinpointing scalability bottlenecks
— scalability bottlenecks on large-scale parallel systems
— scaling on multicore processors

• Assessing process variability

• Understanding temporal behavior 

• Using HPCToolkit



• Profiling compresses out the temporal dimension
—temporal patterns, e.g. serialization, are invisible in profiles

• What can we do? Trace call path samples
—sketch: 

– N times per second, take a call path sample of each thread
– organize the samples for each thread along a time line
– view how the execution evolves left to right
– what do we view?

 assign each procedure a color; view a depth slice of an execution

3617

Understanding Temporal Behavior

Time

Processes

Call 
stack
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Process-Time Views of PFLOTRAN 

8184-core execution on Cray XT5. Trace view rendered using hpctraceviewer on a Mac Book Pro Laptop.
Insets show zoomed view of marked region at different call stack depths.
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Outline
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• Effective performance analysis

• Pinpointing scalability bottlenecks
— scalability bottlenecks on large-scale parallel systems
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Where to Find HPCToolkit
• DOE Systems

— jaguar: /ccs/proj/hpctoolkit/pkgs/hpctoolkit
— intrepid: /home/projects/hpctoolkit/pkgs/hpctoolkit
— franklin: /project/projectdirs/hpctk/pkgs/hpctoolkit-franklin
— hopper: /project/projectdirs/hpctk/pkgs/hpctoolkit-hopper

• See examples subdirectory for chombo x 1024 data

• For your local Linux systems, you can download and install it
— documentation, build instructions, and software

– see http://hpctoolkit.org for instructions
— we recommend downloading and building from svn
— important notes: 

– using hardware counters requires downloading and installing PAPI
– kernel support for hardware counters

  on Linux 2.6.32 or better: built-in kernel support for counters
 requires PAPI newer than 4.1.1 (CVS version at present)

 earlier Linux needs a kernel patch (perfmon2 or perfctr)
39



Using HPCToolkit at ORNL, NERSC, ANL
• jaguarpf, franklin, hopper, freedom

— module load java
— module load hpctoolkit

• intrepid, surveyor
— add the following to your .softenvrc before @default

– +ibmjava6 
– +hpctoolkit

— resoft

40



HPCToolkit Documentation
  http://hpctoolkit.org/documentation.html

• Comprehensive user manual:
 http://hpctoolkit.org/manual/HPCToolkit-users-manual.pdf
— Quick start guide 

– essential overview that almost fits on one page
— Using HPCToolkit with statically linked programs 

– a guide for using hpctoolkit on BG/P and Cray XT 
— The hpcviewer user interface
— Effective strategies for analyzing program performance with 

HPCToolkit 
– analyzing scalability, waste, multicore performance ...

— HPCToolkit and MPI 
— HPCToolkit Troubleshooting

– why don’t I have any source code in the viewer?
– hpcviewer isn’t working well over the network ... what can I do?

• Installation guide
41



Using HPCToolkit
• Add hpctoolkit’s bin directory to your path 

— see earlier slide for HPCToolkit’s HOME directory on your system

• Adjust your compiler flags (if you want full attribution to src)
— add -g flag after any optimization flags

• Add hpclink as a prefix to your Makefile’s link line
— e.g. hpclink mpixlf -o myapp foo.o ... lib.a -lm ...

• Decide what hardware counters to monitor 
— statically-linked executables (e.g., Cray XT, BG/P)

– use hpclink to link your executable
– launch executable with environment var HPCRUN_EVENT_LIST=LIST

 (BG/P hardware counters supported) 
— dynamically-linked executables (e.g., Linux)

– use hpcrun -L to learn about counters available for profiling
– use papi_avail

 you can sample any event listed as “profilable”
42



HPCToolkit Examples on Intrepid
• Example script for monitoring an application using hpctoolkit

— /home/projects/hpctoolkit/pkgs/hpctoolkit/share/examples/bgp-
scripts/run-bgp.sh

• Example script for launching hpcprof-mpi
— /home/projects/hpctoolkit/pkgs/hpctoolkit/share/examples/bgp-

scripts/run-hpcprof-bgp.sh

• Example performance data
— /home/projects/hpctoolkit/pkgs/hpctoolkit/share/examples/data/

hpctoolkit-fft-crayxt-256
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Launching your Job
• Modify your run script to enable monitoring

— Cray XT: set environment variable in your PBS script
– e.g. setenv HPCRUN_EVENT_LIST “PAPI_TOT_CYC@3000000 

PAPI_L2_MISS@400000 PAPI_TLB_MISS@400000 
PAPI_FP_OPS@400000”

— Blue Gene/P: pass environment settings to cqsub
– cqsub -p YourAllocation  -q prod-devel -t 30  -n 2048  -c 8192  \

--mode vn  --env HPCRUN_EVENT_LIST=WALLCLOCK@1000  \
flash3.hpc

44



Analysis and Visualization
• Use hpcstruct to reconstruct program structure 

— e.g. hpcstruct myapp
– creates myapp.hpcstruct

• Use hpcsummary script to summarize measurement data
— e.g. hpcsummary hpctoolkit-myapp-measurements-5912

• Use hpcprof to correlate measurements to source code
— run hpcprof on the front-end node
— run hpcprof-mpi on the back-end nodes to analyze data in 

parallel

• Use hpcviewer to open resulting database

• Use hpctraceviewer to explore traces (collected with -t option)
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A Special Note About hpcstruct and xlf
• IBM’s xlf compiler emits machine code for Fortran that have 

an unusual mapping back to source

• To compensate, hpcstruct needs a special option
— --loop-fwd-subst=no
— without this option, many nested loops will be missing in 

hpcstruct’s output and (as a result) hpcviewer
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Other Useful Features
• Leak detection

— hpclink --memleak -o myapp foo.o ... lib.a -lm ...
— when you run
— setenv HPCTOOLKIT_EVENT_LIST=MEMLEAK

47



HPCToolkit Capabilities at a Glance

Attribute Costs to Code

Analyze Behavior 
over Time

Assess Imbalance 
and Variability 

Associate Costs with DataShift Blame from 
Symptoms to Causes 

Pinpoint & Quantify 
Scaling Bottlenecks

hpctoolkit.org


